nltkor 1.2.9__tar.gz → 1.2.11__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (88) hide show
  1. {nltkor-1.2.9 → nltkor-1.2.11}/PKG-INFO +8 -2
  2. {nltkor-1.2.9 → nltkor-1.2.11}/README.md +150 -27
  3. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/__init__.py +1 -1
  4. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/config.py +0 -0
  5. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/network.c +123 -123
  6. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/reader.py +8 -3
  7. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/utils.py +0 -0
  8. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor.egg-info/PKG-INFO +8 -2
  9. {nltkor-1.2.9 → nltkor-1.2.11}/setup.py +1 -1
  10. {nltkor-1.2.9 → nltkor-1.2.11}/LICENSE.txt +0 -0
  11. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/Kor_char.py +0 -0
  12. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/alignment/__init__.py +0 -0
  13. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/cider/__init__.py +0 -0
  14. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/cider/cider.py +0 -0
  15. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/cider/cider_scorer.py +0 -0
  16. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/distance/__init__.py +0 -0
  17. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/distance/wasserstein.py +0 -0
  18. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/etc.py +0 -0
  19. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/lazyimport.py +0 -0
  20. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/make_requirement.py +0 -0
  21. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/__init__.py +0 -0
  22. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/bartscore.py +0 -0
  23. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/bertscore.py +0 -0
  24. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/bleu_tensor.py +0 -0
  25. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/classical.py +0 -0
  26. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/entment.py +0 -0
  27. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/eval.py +0 -0
  28. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/mauve.py +0 -0
  29. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/metrics/mauve_utils.py +0 -0
  30. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/misc/__init__.py +0 -0
  31. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/misc/string2string_basic_functions.py +0 -0
  32. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/misc/string2string_default_tokenizer.py +0 -0
  33. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/misc/string2string_hash_functions.py +0 -0
  34. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/misc/string2string_word_embeddings.py +0 -0
  35. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/search/__init__.py +0 -0
  36. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/search/classical.py +0 -0
  37. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/search/faiss_search.py +0 -0
  38. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/search/kobert_tokenizer.py +0 -0
  39. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__init__.py +0 -0
  40. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__pycache__/__init__.cpython-38.pyc +0 -0
  41. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__pycache__/__init__.cpython-39.pyc +0 -0
  42. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__pycache__/sejong_download.cpython-38.pyc +0 -0
  43. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__pycache__/sejong_download.cpython-39.pyc +0 -0
  44. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__pycache__/ssem.cpython-38.pyc +0 -0
  45. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/__pycache__/ssem.cpython-39.pyc +0 -0
  46. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/ch.py +0 -0
  47. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/dict_semClassNum.txt +0 -0
  48. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/layer.txt +0 -0
  49. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/sejong_download.py +0 -0
  50. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/sejong/ssem.py +0 -0
  51. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/similarity/__init__.py +0 -0
  52. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/similarity/bartscore____.py +0 -0
  53. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/similarity/bertscore____.py +0 -0
  54. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/similarity/classical.py +0 -0
  55. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/similarity/cosine_similarity.py +0 -0
  56. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/__init__.py +0 -0
  57. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/espresso_tag.py +0 -0
  58. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/__init__.py +0 -0
  59. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/arguments.py +0 -0
  60. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/attributes.py +0 -0
  61. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/metadata.py +0 -0
  62. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/ner/__init__.py +0 -0
  63. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/ner/macmorphoreader.py +0 -0
  64. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/ner/ner_reader.py +0 -0
  65. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/parse/__init__.py +0 -0
  66. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/parse/parse_reader.py +0 -0
  67. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/pos/__init__.py +0 -0
  68. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/pos/macmorphoreader.py +0 -0
  69. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/pos/pos_reader.py +0 -0
  70. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/srl/__init__.py +0 -0
  71. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/srl/__srl_reader_.py +0 -0
  72. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/srl/srl_reader.py +0 -0
  73. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/srl/train_srl.py +0 -0
  74. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/taggers.py +0 -0
  75. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/word_dictionary.py +0 -0
  76. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/wsd/__init__.py +0 -0
  77. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/wsd/macmorphoreader.py +0 -0
  78. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tag/libs/wsd/wsd_reader.py +0 -0
  79. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tokenize/__init__.py +0 -0
  80. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/tokenize/ko_tokenize.py +0 -0
  81. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor/trans.py +0 -0
  82. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor.egg-info/SOURCES.txt +0 -0
  83. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor.egg-info/dependency_links.txt +0 -0
  84. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor.egg-info/requires.txt +0 -0
  85. {nltkor-1.2.9 → nltkor-1.2.11}/nltkor.egg-info/top_level.txt +0 -0
  86. {nltkor-1.2.9 → nltkor-1.2.11}/setup.cfg +0 -0
  87. {nltkor-1.2.9 → nltkor-1.2.11}/test/test.py +0 -0
  88. {nltkor-1.2.9 → nltkor-1.2.11}/test/testespresso.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: nltkor
3
- Version: 1.2.9
3
+ Version: 1.2.11
4
4
  Home-page: https://modi.changwon.ac.kr/air_cwnu/nlp_tool/nltk_ko.git
5
5
  Keywords: string matching,pattern matching,edit distance,string to string correction,string to string matching,Levenshtein edit distance,Hamming distance,Damerau-Levenshtein distance,Jaro-Winkler distance,longest common subsequence,longest common substring,dynamic programming,approximate string matching,semantic similarity,natural language processing,NLP,information retrieval,rouge,sacrebleu,bertscore,bartscore,fasttext,glove,cosine similarity,Smith-Waterman,Needleman-Wunsch,Hirschberg,Karp-Rabin,Knuth-Morris-Pratt,Boyer-Moore
6
6
  Classifier: Programming Language :: Python :: 3.7
@@ -34,3 +34,9 @@ Requires-Dist: bert_score
34
34
  Requires-Dist: chardet
35
35
  Requires-Dist: GPUtil
36
36
  Requires-Dist: fasttext
37
+ Dynamic: classifier
38
+ Dynamic: home-page
39
+ Dynamic: keywords
40
+ Dynamic: license-file
41
+ Dynamic: requires-dist
42
+ Dynamic: requires-python
@@ -4,9 +4,10 @@
4
4
 
5
5
  | 번호 | 날짜 | 작성자 | 내용 |
6
6
  | ---- | --------- | ------ | ---------------- |
7
- | 1 | 2024.4.1 | 김도원 | NLTKo 1.0.0 공개 |
7
+ | 1 | 2024.4.1 | 김도원 | NLTKo 1.0.0 공개<br> string2string 기능 추가, METEOR Score 추가 |
8
8
  | 2 | 2024.5.22 | 차정원 | NLTKo 1.1.0 공개 |
9
- | 3 | 2025.2.5 | 이예나 | NLTKor 1.2.0 공개 |
9
+ | 3 | 2025.2.5 | 이예나 | NLTKor 1.2.0 공개<br> bleu tensor 추가, entment 추가, accurancy norm 추가 |
10
+ | 4 | 2025.4.3 | 이예나 | NLTKor 1.2.10 업데이트<br> espresso 오류 수정 |
10
11
 
11
12
 
12
13
 
@@ -37,19 +38,20 @@
37
38
  - [4.11 is_numConnection(Ch)](#411-is_numconnectionch)
38
39
  - [5. 기본 평가 함수들](#5-기본-평가-함수들)
39
40
  - [5.1 Accuracy](#51-accuracy)
40
- - [5.2 Precision](#52-precision)
41
- - [5.3 Recall](#53-recall)
42
- - [5.4 F1 score](#54-f1-score)
43
- - [5.5 P@k (Precision at k), R@k (Recall ar k)](#55-pk-precision-at-k-rk-recall-ar-k)
44
- - [5.6 Hit rate @ k](#56-hit-rate--k)
45
- - [5.7 세종형식 품사태깅 결과 평가](#57-세종형식-품사태깅-결과-평가)
46
- - [5.8 WER/CER](#58-wercer)
47
- - [5.9 BLEU](#59-bleu)
48
- - [5.9.1 BLEU for tensor](#591-bleu-for-tensor)
49
- - [5.10 ROUGE](#510-rouge)
50
- - [5.11 CIDER](#511-cider)
51
- - [5.12 METEOR](#512-meteor)
52
- - [5.13 EntMent](#513-entment)
41
+ - [5.2 Accurancy norm](#52-accuracy-norm)
42
+ - [5.3 Precision](#53-precision)
43
+ - [5.4 Recall](#54-recall)
44
+ - [5.5 F1 score](#55-f1-score)
45
+ - [5.6 P@k (Precision at k), R@k (Recall ar k)](#56-pk-precision-at-k-rk-recall-ar-k)
46
+ - [5.7 Hit rate @ k](#57-hit-rate--k)
47
+ - [5.8 세종형식 품사태깅 결과 평가](#58-세종형식-품사태깅-결과-평가)
48
+ - [5.9 WER/CER](#59-wercer)
49
+ - [5.10 BLEU](#510-bleu)
50
+ - [5.10.1 BLEU for tensor](#5101-bleu-for-tensor)
51
+ - [5.11 ROUGE](#511-rouge)
52
+ - [5.12 CIDER](#512-cider)
53
+ - [5.13 METEOR](#513-meteor)
54
+ - [5.14 EntMent](#514-entment)
53
55
  - [6 확장 평가 함수](#6-확장-평가-함수)
54
56
  - [6.1 MAUVE](#61-mauve)
55
57
  - [6.2 BERT Score](#62-bert-score)
@@ -146,6 +148,18 @@ apt install git
146
148
  - `apt install pythonx.x-dev` (x.x는 사용자의 python 버전에 맞게 입력)
147
149
  - `apt-get install pythonx.x-distutils` (x.x는 사용자의 python 버전에 맞게 입력)
148
150
 
151
+ - 만약 설치 도중 해당 에러가 발생한다면
152
+ ```h
153
+ × Getting requirements to build wheel did not run successfully.
154
+ │ exit code: 1
155
+ ╰─> See above for output.
156
+ ```
157
+
158
+ ```h
159
+ pip install wheel
160
+ ```
161
+ 로 wheel을 먼저 설치해야한다.
162
+
149
163
  <div style="page-break-after: always;"></div>
150
164
 
151
165
  ## 3. 함수 설명
@@ -511,7 +525,96 @@ False
511
525
  0.4
512
526
  ```
513
527
 
514
- #### 5.2 Precision
528
+ #### 5.2 Accuracy norm
529
+ 일반적으로 생성형 모델의 예측 정확도를 정규화(normalization)한 값을 의미한다.
530
+ ```python
531
+ import torch
532
+ from transformers import AutoModelForCausalLM, AutoTokenizer
533
+ import time
534
+ import random
535
+ from nltkor.metrics import DefaultMetric
536
+
537
+ # 모델과 토크나이저 로드
538
+ model_name = 'gpt2-medium'
539
+ model = AutoModelForCausalLM.from_pretrained(model_name).cuda().eval()
540
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
541
+
542
+ # HellaSwag 형식의 임의 데이터 생성
543
+ examples = [
544
+ {
545
+ "input_text": "The boy threw a frisbee and",
546
+ "candidates": ["it landed on the roof.", "the dog chased it.", "it broke.", "it disappeared."],
547
+ "label": 1
548
+ },
549
+ {
550
+ "input_text": "The man started cooking by",
551
+ "candidates": ["turning on the stove.", "reading a book.", "watching TV.", "taking a nap."],
552
+ "label": 0
553
+ },
554
+ {
555
+ "input_text": "The girl put on her shoes and",
556
+ "candidates": ["went for a run.", "started sleeping.", "ate breakfast.", "watched TV."],
557
+ "label": 0
558
+ },
559
+ {
560
+ "input_text": "The cat jumped onto the table and",
561
+ "candidates": ["fell asleep.", "knocked over a glass.", "started barking.", "flew away."],
562
+ "label": 1
563
+ },
564
+ {
565
+ "input_text": "The boy opened the door and saw",
566
+ "candidates": ["a pizza delivery.", "nothing.", "a spaceship.", "an elephant."],
567
+ "label": 0
568
+ },
569
+ {
570
+ "input_text": "The woman picked up her phone and",
571
+ "candidates": ["called her friend.", "ate it.", "threw it away.", "danced."],
572
+ "label": 0
573
+ },
574
+ {
575
+ "input_text": "After finishing his homework, the student",
576
+ "candidates": ["went to sleep.", "built a house.", "flew a kite.", "started driving."],
577
+ "label": 0
578
+ },
579
+ {
580
+ "input_text": "The dog found a stick and",
581
+ "candidates": ["ran away with it.", "ate the sofa.", "drove a car.", "built a boat."],
582
+ "label": 0
583
+ },
584
+ {
585
+ "input_text": "She turned off the lights and",
586
+ "candidates": ["went to bed.", "started cooking.", "went jogging.", "washed her car."],
587
+ "label": 0
588
+ },
589
+ {
590
+ "input_text": "The chef tasted the soup and",
591
+ "candidates": ["smiled.", "cried loudly.", "threw it away.", "started singing."],
592
+ "label": 0
593
+ }
594
+ ]
595
+
596
+ # 평가 실행 및 결과 출력
597
+ correct = 0
598
+ memory_usages = []
599
+ inference_times = []
600
+
601
+ for example in examples:
602
+ cor, metrics = DefaultMetric().accuracy_norm(model, tokenizer, example["input_text"], example["candidates"], example["label"])
603
+ correct += cor
604
+ memory_usages.append(metrics["reserved_memory"])
605
+ inference_times.append(metrics["inference_time"])
606
+
607
+ accuracy = correct / len(examples)
608
+
609
+ print(f"Accuracy: {accuracy * 100:.2f}%")
610
+ print(f"Time: {sum(inference_times)/len(inference_times)}, memory: {sum(memory_usages)/len(memory_usages)}")
611
+ ```
612
+ ```
613
+ Accuracy: 20.00
614
+ Time: 0.05374705195426941, memory: 1409.9
615
+ ```
616
+
617
+ #### 5.3 Precision
515
618
 
516
619
  'micro' precision은 'Accuracy'와 같이 $2/5 = 0.4$ 로 계산이 된다.
517
620
  'macro' precision은 각 클래스별로 precision을 계산하여 평균을 낸다. 다음 예에서는 'a'=1/2, 'b' = 1/2, 'c' = 0, 'd' = 0. 따라서 1/4 = 0.25가 된다.
@@ -526,7 +629,7 @@ False
526
629
  0.25
527
630
  ```
528
631
 
529
- #### 5.3 Recall
632
+ #### 5.4 Recall
530
633
 
531
634
  ```python
532
635
  >>> from nltkor.metrics import DefaultMetric
@@ -538,7 +641,7 @@ False
538
641
  0.25
539
642
  ```
540
643
 
541
- #### 5.4 F1 score
644
+ #### 5.5 F1 score
542
645
 
543
646
  ```python
544
647
  >>> from nltkor.metrics import DefaultMetric
@@ -550,7 +653,7 @@ False
550
653
  0.25
551
654
  ```
552
655
 
553
- #### 5.5 P@k (Precision at k), R@k (Recall ar k)
656
+ #### 5.6 P@k (Precision at k), R@k (Recall ar k)
554
657
 
555
658
  ```python
556
659
  >>> from nltkor.metrics import DefaultMetric
@@ -562,7 +665,7 @@ False
562
665
  0.6666666666666666
563
666
  ```
564
667
 
565
- #### 5.6 Hit rate @ k
668
+ #### 5.7 Hit rate @ k
566
669
 
567
670
  'user', 'h_pred'는 정렬된 이중 리스트 형식이다. 다음 예제에서 k = 3이다. 이 경우에 'h_pred[:k]'까지만 평가한다.
568
671
 
@@ -574,7 +677,7 @@ False
574
677
  0.25
575
678
  ```
576
679
 
577
- #### 5.7 세종형식 품사태깅 결과 평가
680
+ #### 5.8 세종형식 품사태깅 결과 평가
578
681
 
579
682
  다음 예제와 같은 품사 태깅 결과를 입력하여 성능을 측정한다.
580
683
 
@@ -604,7 +707,7 @@ False
604
707
  (0.8, 0.8636363636363636, 0.8636363636363636, 0.8636363636363636)
605
708
  ```
606
709
 
607
- #### 5.8 WER/CER
710
+ #### 5.9 WER/CER
608
711
 
609
712
  - wer (단어 오류율) : 두 입력 문장 사이의 단어 오류율 반환
610
713
  - cer (음절 오류율) : 두 입력 문장 사이의 문자(음절) 오류율 반환
@@ -628,7 +731,7 @@ False
628
731
  0.3333333333333333
629
732
  ```
630
733
 
631
- #### 5.9 BLEU
734
+ #### 5.10 BLEU
632
735
 
633
736
  - bleu_n : bleu-n(1,2,3,4) 스코어 반환
634
737
 
@@ -671,7 +774,27 @@ False
671
774
  0.4001601601922499
672
775
  ```
673
776
 
674
- #### 5.10 ROUGE
777
+ #### 5.10.1 BLEU for tensor
778
+ - 각 score의 값이 tensor 로 반환한다.
779
+ ```python
780
+ >>> from nltk.translate.bleu_score import *
781
+ >>> from nltko.tokenize import Ko_tokenize
782
+ >>> can=torch.tensor([[1,2,3,4,5],[3,4,5,6,4]])
783
+ >>> ref=torch.tensor([[1,2,3,4,5],[3,5,6,7,10]])
784
+ >>> bleu_tensor(ref,can,1)
785
+ tensor(0.8000)
786
+ >>> bleu_tensor(ref,can,2)
787
+ tensor(0.6250)
788
+ >>> bleu_tensor(ref,can,3)
789
+ tensor(0.5000)
790
+ >>> bleu_tensor(ref,can,4)
791
+ tensor(0.5000)
792
+ >>> bleu_tensor(ref,can)
793
+ tensor(0.5946)
794
+
795
+ ```
796
+
797
+ #### 5.11 ROUGE
675
798
 
676
799
  ※ rouge는 recall based score이며 l, s는 f-measure를 사용하며 n은 recall score이다.
677
800
 
@@ -725,7 +848,7 @@ False
725
848
  0.8275862068965517
726
849
  ```
727
850
 
728
- #### 5.11 CIDER
851
+ #### 5.12 CIDER
729
852
 
730
853
  TF-IDF를 n-gram에 대한 가중치로 계산하고 참조 캡션과 생성 캡션에 대한 유사도를 측정
731
854
 
@@ -761,7 +884,7 @@ TF-IDF를 n-gram에 대한 가중치로 계산하고 참조 캡션과 생성 캡
761
884
  0.1748041
762
885
  ```
763
886
 
764
- #### 5.12 METEOR
887
+ #### 5.13 METEOR
765
888
 
766
889
  - METEOR (Meter For Evaluation of Translation with Explicit Ordering )
767
890
 
@@ -787,7 +910,7 @@ TF-IDF를 n-gram에 대한 가중치로 계산하고 참조 캡션과 생성 캡
787
910
  0.6303797468354431
788
911
  ```
789
912
 
790
- #### 5.13 EntMent
913
+ #### 5.14 EntMent
791
914
 
792
915
  - EntMent (Entity Mention Recall)
793
916
 
@@ -13,4 +13,4 @@ from nltkor import trans
13
13
  from nltkor import Kor_char
14
14
  from nltkor import etc
15
15
 
16
- __version__ = '1.2.9'
16
+ __version__ = '1.2.11'