nltkor 1.2.19__tar.gz → 1.2.20__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nltkor-1.2.19 → nltkor-1.2.20}/PKG-INFO +1 -1
- {nltkor-1.2.19 → nltkor-1.2.20}/README.md +101 -25
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/__init__.py +1 -1
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/search/faiss_search.py +7 -314
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor.egg-info/PKG-INFO +1 -1
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor.egg-info/SOURCES.txt +0 -1
- {nltkor-1.2.19 → nltkor-1.2.20}/setup.py +1 -1
- nltkor-1.2.19/nltkor/search/test.py +0 -25
- {nltkor-1.2.19 → nltkor-1.2.20}/LICENSE.txt +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/Kor_char.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/alignment/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/cider/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/cider/cider.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/cider/cider_scorer.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/distance/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/distance/wasserstein.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/etc.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/lazyimport.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/make_requirement.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/bartscore.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/bertscore.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/classical.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/entment.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/eval.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/mauve.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/metrics/mauve_utils.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/misc/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/misc/string2string_basic_functions.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/misc/string2string_default_tokenizer.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/misc/string2string_hash_functions.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/misc/string2string_word_embeddings.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/search/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/search/classical.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/search/kobert_tokenizer.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/search/trie_search.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__pycache__/sejong_download.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__pycache__/sejong_download.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__pycache__/ssem.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/__pycache__/ssem.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/ch.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/dict_semClassNum.txt +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/layer.txt +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/sejong_download.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/sejong/ssem.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/similarity/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/similarity/bartscore____.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/similarity/bertscore____.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/similarity/classical.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/similarity/cosine_similarity.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/__pycache__/espresso_tag.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/__pycache__/espresso_tag.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/espresso_tag.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/attributes.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/attributes.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/config.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/config.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/metadata.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/metadata.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/reader.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/reader.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/taggers.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/taggers.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/utils.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/utils.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/word_dictionary.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/word_dictionary.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/arguments.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/attributes.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/config.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/metadata.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/macmorphoreader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/ner/ner_reader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/network.c +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/network.pyx +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/networkconv.pyx +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/networkdependencyconv.pyx +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/parse_reader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/macmorphoreader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/pos/pos_reader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/reader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/train_srl.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/train_srl.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/__srl_reader_.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/srl_reader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/srl/train_srl.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/taggers.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/utils.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/word_dictionary.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/__init__.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/__init__.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-38.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-39.pyc +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/macmorphoreader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/wsd/wsd_reader.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tokenize/__init__.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tokenize/ko_tokenize.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor/trans.py +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor.egg-info/dependency_links.txt +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor.egg-info/requires.txt +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/nltkor.egg-info/top_level.txt +0 -0
- {nltkor-1.2.19 → nltkor-1.2.20}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: nltkor
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.20
|
4
4
|
Home-page: https://modi.changwon.ac.kr/air_cwnu/nlp_tool/nltk_ko.git
|
5
5
|
Keywords: string matching,pattern matching,edit distance,string to string correction,string to string matching,Levenshtein edit distance,Hamming distance,Damerau-Levenshtein distance,Jaro-Winkler distance,longest common subsequence,longest common substring,dynamic programming,approximate string matching,semantic similarity,natural language processing,NLP,information retrieval,rouge,sacrebleu,bertscore,bartscore,fasttext,glove,cosine similarity,Smith-Waterman,Needleman-Wunsch,Hirschberg,Karp-Rabin,Knuth-Morris-Pratt,Boyer-Moore
|
6
6
|
Classifier: Programming Language :: Python :: 3.7
|
@@ -1528,21 +1528,33 @@ P to Q2 : 0.1981
|
|
1528
1528
|
```
|
1529
1529
|
|
1530
1530
|
#### 12.5 Faiss-Semantic 검색
|
1531
|
-
|
1532
|
-
- **
|
1533
|
-
-
|
1534
|
-
|
1535
|
-
-
|
1536
|
-
-
|
1537
|
-
-
|
1538
|
-
-
|
1539
|
-
-
|
1540
|
-
-
|
1541
|
-
-
|
1531
|
+
- class FaissSearch
|
1532
|
+
- **__new__**(mode = None, model_name_or_path: str = 'klue/bert-base', tokneizer_name_or_path: str = 'klue/bert-base', device: str = 'cpu') -> None : mode에 따라 이용할 class로 이동합니다.
|
1533
|
+
- mode = dense(dense | sparse)
|
1534
|
+
|
1535
|
+
- class FaissSearch_Dense : 기존 Faiss를 이용한 검색
|
1536
|
+
- **init**(model_name_or_path: str = 'klue/bert-base', tokenizer_name_or_path: str = 'klue/bert-base', device: str = 'cpu')→ None : FaissSearh_Dense를 초기화 합니다.
|
1537
|
+
- add_faiss_index(column_name: str = 'embeddings', metric_type: int | None = None, batch_size: int = 8, \*\*kwargs)→ None : FAISS index를 dataset에 추가합니다.
|
1538
|
+
- get_embeddings(text: str | List[str], embedding_type: str = 'last_hidden_state', batch_size: int = 8, num_workers: int = 4)→ Tensor : 텍스트를 임베딩합니다.
|
1539
|
+
- get_last_hidden_state(embeddings: Tensor)→ Tensor : 임베딩된 텍스트의 last hidden state를 반환합니다.
|
1540
|
+
- get_mean_pooling(embeddings: Tensor)→ Tensor : 입력 임베딩의 mean pooling을 반환합니다.
|
1541
|
+
- initialize_corpus(corpus: Dict[str, List[str]] | DataFrame | Dataset, section: str = 'text', index_column_name: str = 'embeddings', embedding_type: str = 'last_hidden_state', batch_size: int | None = None, num_workers: int | None = None, save_path: str | None = None)→ Dataset : 데이터셋을 초기화합니다.
|
1542
|
+
- load_dataset_from_json(json_path: str)→ Dataset : json 파일에서 데이터셋을 로드합니다.
|
1543
|
+
- load_faiss_index(index_name: str, file_path: str, device: str = 'cpu')→ None : FAISS index를 로드합니다.
|
1544
|
+
- save_faiss_index(index_name: str, file_path: str)→ None : 특정한 파일 경로로 FAISS index를 저장합니다.
|
1545
|
+
- search(query: str, k: int = 1, index_column_name: str = 'embeddings')→ DataFrame : 데이터셋에서 쿼리를 검색합니다.
|
1546
|
+
|
1547
|
+
- class FaissSearch_Sparse(FaissSearch_Dense) : 학습가능한 sparse representation을 이용하는 모델을 위한 faiss
|
1548
|
+
- **init**(model_name_or_path: str = 'klue/bert-base', tokenizer_name_or_path: str = 'klue/bert-base', device: str = 'cpu') -> None : FaissSearch_Sparse를 초기화합니다.
|
1549
|
+
- get_embeddings(text: str | List[str], embedding_type: str = 'last_hidden_state', batch_size: int = 8, num_workers: int = 4) -> Tensor : 텍스트를 임베딩합니다.
|
1550
|
+
|
1551
|
+
<br>
|
1552
|
+
|
1553
|
+
- mode = 'dense' : 원본 faiss를 실행합니다.
|
1542
1554
|
|
1543
1555
|
```python
|
1544
|
-
>>> from nltkor.search import FaissSearch
|
1545
|
-
>>> faiss = FaissSearch(model_name_or_path = '
|
1556
|
+
>>> from nltkor.search.faiss_search import FaissSearch
|
1557
|
+
>>> faiss = FaissSearch(model_name_or_path = 'klue/bert-base', mode='dense')
|
1546
1558
|
>>> corpus = {
|
1547
1559
|
'text': [
|
1548
1560
|
"오늘은 날씨가 매우 덥습니다.",
|
@@ -1578,29 +1590,93 @@ P to Q2 : 0.1981
|
|
1578
1590
|
],
|
1579
1591
|
}
|
1580
1592
|
>>> faiss.initialize_corpus(corpus=corpus, section='text', embedding_type='mean_pooling')
|
1581
|
-
>>> query = "오늘은
|
1593
|
+
>>> query = "오늘은 날씨가 매우 춥다."
|
1582
1594
|
>>> top_k = 5
|
1583
1595
|
>>> result = faiss.search(query, top_k)
|
1584
1596
|
>>> print(result)
|
1585
|
-
|
1586
|
-
|
1587
|
-
|
1588
|
-
|
1589
|
-
|
1590
|
-
|
1597
|
+
|
1598
|
+
|
1599
|
+
text embeddings score
|
1600
|
+
0 오늘은 날씨가 매우 덥습니다. [-0.06737425178289413, -0.6356450319290161, -0... 52.453941
|
1601
|
+
1 휴대폰 없이 하루를 보내는 것이 쉽지 않아요. [0.09126424789428711, -0.011225797235965729, -... 168.310577
|
1602
|
+
2 내일은 친구와 영화를 보러 갈 거예요. [-0.21793286502361298, -0.2237573117017746, 0.... 181.051544
|
1603
|
+
3 요리를 만들면 집안이 좋아보입니다. [0.7215852737426758, -0.426792711019516, -0.07... 203.423340
|
1604
|
+
4 스포츠를 하면 건강에 좋습니다. [0.1290944665670395, -0.6169838905334473, -0.2... 205.527954
|
1605
|
+
|
1591
1606
|
```
|
1592
1607
|
|
1608
|
+
<br>
|
1609
|
+
|
1610
|
+
- mode = 'sparse' : 학습가능한 sparse representation을 이용한 모델을 위한 faiss 코드를 실행합니다.
|
1611
|
+
|
1612
|
+
```python
|
1613
|
+
>>> from nltkor.search.faiss_search import FaissSearch
|
1614
|
+
>>> model_name_or_path = 'klue/bert-base'
|
1615
|
+
>>> faiss = FaissSearch(model_name_or_path=model_name_or_path, mode='sparse')
|
1616
|
+
>>> corpus = {
|
1617
|
+
'text': [
|
1618
|
+
"오늘은 날씨가 매우 덥습니다.",
|
1619
|
+
"저는 음악을 듣는 것을 좋아합니다.",
|
1620
|
+
"한국 음식 중에서 떡볶이가 제일 맛있습니다.",
|
1621
|
+
"도서관에서 책을 읽는 건 좋은 취미입니다.",
|
1622
|
+
"내일은 친구와 영화를 보러 갈 거예요.",
|
1623
|
+
"여름 휴가 때 해변에 가서 수영하고 싶어요.",
|
1624
|
+
"한국의 문화는 다양하고 흥미로워요.",
|
1625
|
+
"피아노 연주는 나를 편안하게 해줍니다.",
|
1626
|
+
"공원에서 산책하면 스트레스가 풀립니다.",
|
1627
|
+
"요즘 드라마를 많이 시청하고 있어요.",
|
1628
|
+
"커피가 일상에서 필수입니다.",
|
1629
|
+
"새로운 언어를 배우는 것은 어려운 일이에요.",
|
1630
|
+
"가을에 단풍 구경을 가고 싶어요.",
|
1631
|
+
"요리를 만들면 집안이 좋아보입니다.",
|
1632
|
+
"휴대폰 없이 하루를 보내는 것이 쉽지 않아요.",
|
1633
|
+
"스포츠를 하면 건강에 좋습니다.",
|
1634
|
+
"고양이와 개 중에 어떤 동물을 좋아하세요?"
|
1635
|
+
"천천히 걸어가면서 풍경을 감상하는 것이 좋아요.",
|
1636
|
+
"일주일에 한 번은 가족과 모임을 가요.",
|
1637
|
+
"공부할 때 집중력을 높이는 방법이 있을까요?",
|
1638
|
+
"봄에 꽃들이 피어날 때가 기대되요.",
|
1639
|
+
"여행 가방을 챙기고 싶어서 설레여요.",
|
1640
|
+
"사진 찍는 걸 좋아하는데, 카메라가 필요해요.",
|
1641
|
+
"다음 주에 시험이 있어서 공부해야 해요.",
|
1642
|
+
"운동을 하면 몸이 가벼워집니다.",
|
1643
|
+
"좋은 책을 읽으면 마음이 풍요로워져요.",
|
1644
|
+
"새로운 음악을 발견하면 기분이 좋아져요.",
|
1645
|
+
"미술 전시회에 가면 예술을 감상할 수 있어요.",
|
1646
|
+
"친구들과 함께 시간을 보내는 건 즐거워요.",
|
1647
|
+
"자전거 타면 바람을 맞으면서 즐거워집니다."
|
1648
|
+
],
|
1649
|
+
}
|
1650
|
+
>>> faiss.initialize_corpus(corpus=corpus, section='text', embedding_type='last_hidden_state')
|
1651
|
+
>>> query = "오늘은 날씨가 매우 춥다."
|
1652
|
+
>>> top_k = 5
|
1653
|
+
>>> result = faiss.search(query=query, k=top_k)
|
1654
|
+
>>> print(result)
|
1655
|
+
|
1656
|
+
text embeddings score
|
1657
|
+
0 오늘은 날씨가 매우 덥습니다. [0.0, 0.055695388466119766, 0.0, 0.0, 0.0, 0.0... 0.130759
|
1658
|
+
1 휴대폰 없이 하루를 보내는 것이 쉽지 않아요. [0.0, 0.06064636632800102, 0.0, 0.0, 0.0, 0.03... 0.418491
|
1659
|
+
2 내일은 친구와 영화를 보러 갈 거예요. [0.0, 0.0474698506295681, 0.0, 0.0, 0.0, 0.039... 0.435895
|
1660
|
+
3 가을에 단풍 구경을 가고 싶어요. [0.0, 0.05392831563949585, 0.0, 0.0, 0.0, 0.05... 0.488796
|
1661
|
+
4 스포츠를 하면 건강에 좋습니다. [0.0, 0.05404529720544815, 0.0, 0.0, 0.0, 0.04... 0.496646
|
1662
|
+
|
1663
|
+
```
|
1664
|
+
|
1665
|
+
<br>
|
1666
|
+
|
1667
|
+
|
1593
1668
|
- faiss 검색을 매번 initialize 하지 않고, 미리 initialize 해놓은 후 검색을 수행할 수 있습니다.
|
1594
1669
|
|
1670
|
+
|
1595
1671
|
**사용법 & 결과**
|
1596
1672
|
|
1597
1673
|
```python
|
1598
|
-
>>> from nltkor.search import FaissSearch
|
1674
|
+
>>> from nltkor.search.faiss_search import FaissSearch
|
1599
1675
|
|
1600
1676
|
# if you use model and tokenizer in local
|
1601
1677
|
# faiss = FaissSearch(model_name_or_path = '~/test_model/trained_model/', tokenizer_name_or_path = '~/test_model/trained_model/')
|
1602
1678
|
|
1603
|
-
>>> faiss = FaissSearch(model_name_or_path = '
|
1679
|
+
>>> faiss = FaissSearch(model_name_or_path = 'klue/bert-base', mode='dense')
|
1604
1680
|
>>> corpus = {
|
1605
1681
|
'text': [
|
1606
1682
|
"오늘은 날씨가 매우 덥습니다.",
|
@@ -1641,12 +1717,12 @@ P to Q2 : 0.1981
|
|
1641
1717
|
- `initialize_corpus()` 메소드 실행시 `save_path`를 지정하면, 해당 경로에 임베딩된 Dataset이 json형식으로 저장됩니다.
|
1642
1718
|
|
1643
1719
|
```python
|
1644
|
-
>>> from nltkor.search import FaissSearch
|
1720
|
+
>>> from nltkor.search.faiss_search import FaissSearch
|
1645
1721
|
|
1646
|
-
>>> faiss = FaissSearch(model_name_or_path = '
|
1722
|
+
>>> faiss = FaissSearch(model_name_or_path = 'klue/bert-base', mode='dense')
|
1647
1723
|
>>> faiss.load_dataset_from_json('./test.json')
|
1648
1724
|
>>> faiss.embedding_type = 'mean_pooling' # initalize_corpus() 메소드 실행시 지정한 embedding_type과 동일하게 지정해야 합니다.
|
1649
|
-
>>> faiss
|
1725
|
+
>>> faiss.add_faiss_index(colum_name = 'embeddings')
|
1650
1726
|
>>> query = '오늘은 날씨가 매우 춥다.'
|
1651
1727
|
>>> top_k = 5
|
1652
1728
|
>>> result = faiss.search(query=query, top_k=top_k)
|
@@ -68,24 +68,22 @@ except ImportError:
|
|
68
68
|
|
69
69
|
class FaissSearch:
|
70
70
|
def __new__(cls,
|
71
|
-
mode =
|
71
|
+
mode = 'dense',
|
72
72
|
model_name_or_path: str = 'klue/bert-base',
|
73
73
|
tokenizer_name_or_path: str = 'klue/bert-base',
|
74
74
|
embedding_type: str = 'last_hidden_state',
|
75
75
|
device: str = 'cpu'
|
76
76
|
) -> None:
|
77
|
-
if mode == '
|
78
|
-
return
|
79
|
-
elif mode == 'word':
|
80
|
-
return FaissSearch_WordEmbed(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
|
77
|
+
if mode == 'dense':
|
78
|
+
return FaissSearch_Dense(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
|
81
79
|
elif mode == 'sparse':
|
82
80
|
return FaissSearch_Sparse(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
|
83
81
|
else:
|
84
|
-
raise ValueError("choice '
|
82
|
+
raise ValueError("choice 'dense' or 'sparse'.")
|
85
83
|
|
86
84
|
|
87
85
|
|
88
|
-
class
|
86
|
+
class FaissSearch_Dense:
|
89
87
|
def __init__(self,
|
90
88
|
model_name_or_path: str = 'klue/bert-base',
|
91
89
|
tokenizer_name_or_path: str = 'klue/bert-base',
|
@@ -474,7 +472,7 @@ class FaissSearch_SenEmbed:
|
|
474
472
|
|
475
473
|
|
476
474
|
|
477
|
-
class FaissSearch_Sparse(
|
475
|
+
class FaissSearch_Sparse(FaissSearch_Dense):
|
478
476
|
def __init__(self,
|
479
477
|
model_name_or_path: str = 'klue/bert-base',
|
480
478
|
tokenizer_name_or_path: str = 'klue/bert-base',
|
@@ -586,312 +584,7 @@ class FaissSearch_Sparse(FaissSearch_SenEmbed):
|
|
586
584
|
embeddings = embeddings['logits']
|
587
585
|
|
588
586
|
embeddings = torch.sum(torch.log(1+torch.relu(embeddings)) * encoded_text['attention_mask'].unsqueeze(-1), dim=1)
|
589
|
-
e_norm = torch.nn.functional.normalize(embeddings, p=2, dim=1, eps=1e-8)
|
590
587
|
|
591
588
|
# Return the embeddings
|
592
|
-
return
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
# FAISS word embedding library wrapper class
|
597
|
-
class FaissSearch_WordEmbed(FaissSearch_SenEmbed):
|
598
|
-
def __init__(self,
|
599
|
-
model_name_or_path: str = 'klue/bert-base',
|
600
|
-
tokenizer_name_or_path: str = 'klue/bert-base',
|
601
|
-
embedding_type: str = 'last_hidden_state',
|
602
|
-
device: str = 'cpu',
|
603
|
-
) -> None:
|
604
|
-
r"""
|
605
|
-
This function initializes the wrapper for the FAISS library, which is used to perform semantic search.
|
606
|
-
|
607
|
-
|
608
|
-
.. attention::
|
609
|
-
|
610
|
-
* If you use this class, please make sure to cite the following paper:
|
611
|
-
|
612
|
-
.. code-block:: latex
|
613
|
-
|
614
|
-
@article{johnson2019billion,
|
615
|
-
title={Billion-scale similarity search with {GPUs}},
|
616
|
-
author={Johnson, Jeff and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
|
617
|
-
journal={IEEE Transactions on Big Data},
|
618
|
-
volume={7},
|
619
|
-
number={3},
|
620
|
-
pages={535--547},
|
621
|
-
year={2019},
|
622
|
-
publisher={IEEE}
|
623
|
-
}
|
624
|
-
|
625
|
-
* The code is based on the following GitHub repository:
|
626
|
-
https://github.com/facebookresearch/faiss
|
627
|
-
|
628
|
-
Arguments:
|
629
|
-
model_name_or_path (str, optional): The name or path of the model to use. Defaults to 'facebook/bart-large'.
|
630
|
-
tokenizer_name_or_path (str, optional): The name or path of the tokenizer to use. Defaults to 'facebook/bart-large'.
|
631
|
-
device (str, optional): The device to use. Defaults to 'cpu'.
|
632
|
-
|
633
|
-
Returns:
|
634
|
-
None
|
635
|
-
"""
|
636
|
-
|
637
|
-
# Set the device
|
638
|
-
self.device = device
|
639
|
-
|
640
|
-
# If the tokenizer is not specified, use the model name or path
|
641
|
-
if tokenizer_name_or_path is None:
|
642
|
-
tokenizer_name_or_path = model_name_or_path
|
643
|
-
|
644
|
-
# Load the tokenizer
|
645
|
-
if tokenizer_name_or_path == 'skt/kobert-base-v1':
|
646
|
-
# self.tokenizer = KoBERTTokenizer.from_pretrained(tokenizer_name_or_path)
|
647
|
-
self.tokenizer = XLNetTokenizer.from_pretrained(tokenizer_name_or_path)
|
648
|
-
else:
|
649
|
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
|
650
|
-
|
651
|
-
# Load the model
|
652
|
-
self.model = AutoModel.from_pretrained(model_name_or_path).to(self.device)
|
653
|
-
|
654
|
-
|
655
|
-
# Set the model to evaluation mode (since we do not need the gradients)
|
656
|
-
self.model.eval()
|
657
|
-
|
658
|
-
# Initialize the dataset
|
659
|
-
self.dataset = None
|
660
|
-
|
661
|
-
|
662
|
-
# Get the embeddings (new code)
|
663
|
-
def get_doc_embeddings(self,
|
664
|
-
#text: Union[str, List[str]],
|
665
|
-
text=None,
|
666
|
-
embedding_type: str = 'last_hidden_state',
|
667
|
-
batch_size: int = 8,
|
668
|
-
num_workers: int = 4,
|
669
|
-
) -> torch.Tensor:
|
670
|
-
"""
|
671
|
-
This function returns the embeddings of the input text.
|
672
|
-
|
673
|
-
Arguments:
|
674
|
-
text (Union[str, List[str]]): The input text.
|
675
|
-
embedding_type (str, optional): The type of embedding to use. Defaults to 'last_hidden_state'.
|
676
|
-
batch_size (int, optional): The batch size to use. Defaults to 8.
|
677
|
-
num_workers (int, optional): The number of workers to use. Defaults to 4.
|
678
|
-
|
679
|
-
Returns:
|
680
|
-
torch.Tensor: The embeddings.
|
681
|
-
|
682
|
-
Raises:
|
683
|
-
ValueError: If the embedding type is invalid.
|
684
|
-
"""
|
685
|
-
|
686
|
-
# Check if the embedding type is valid
|
687
|
-
if embedding_type not in ['last_hidden_state', 'mean_pooling']:
|
688
|
-
raise ValueError(f'Invalid embedding type: {embedding_type}. Only "last_hidden_state" and "mean_pooling" are supported.')
|
689
|
-
|
690
|
-
ids_dict = {}
|
691
|
-
# Tokenize the input text
|
692
|
-
for sentence in text['text']:
|
693
|
-
encoded_text = self.tokenizer(
|
694
|
-
sentence,
|
695
|
-
padding=False,
|
696
|
-
truncation=True,
|
697
|
-
return_tensors='pt',
|
698
|
-
add_special_tokens=False
|
699
|
-
)
|
700
|
-
# Move the input text to the device
|
701
|
-
encoded_text = encoded_text.to(self.device)
|
702
|
-
token_ids_list = encoded_text['input_ids'].tolist()
|
703
|
-
token_ids_list = token_ids_list[0]
|
704
|
-
for ids in token_ids_list:
|
705
|
-
if ids not in ids_dict.keys():
|
706
|
-
ids_dict[ids] = [sentence]
|
707
|
-
else:
|
708
|
-
if text not in ids_dict[ids]:
|
709
|
-
ids_dict[ids].append(sentence)
|
710
|
-
# Get the embeddings
|
711
|
-
embedding_dict = {}
|
712
|
-
self.model.eval()
|
713
|
-
for key, value in ids_dict.items():
|
714
|
-
embed = self.model(torch.tensor([[key]]), output_hidden_states=True).hidden_states[-1][:,0,:].detach()
|
715
|
-
embedding_dict[embed] = value
|
716
|
-
|
717
|
-
# Return the embeddings
|
718
|
-
return embedding_dict
|
719
|
-
|
720
|
-
|
721
|
-
# Get the embeddings (new code)
|
722
|
-
def get_query_embeddings(self,
|
723
|
-
text: Union[str, List[str]],
|
724
|
-
embedding_type: str = 'last_hidden_state',
|
725
|
-
batch_size: int = 8,
|
726
|
-
num_workers: int = 4,
|
727
|
-
) -> torch.Tensor:
|
728
|
-
"""
|
729
|
-
This function returns the embeddings of the input text.
|
730
|
-
|
731
|
-
Arguments:
|
732
|
-
text (Union[str, List[str]]): The input text.
|
733
|
-
embedding_type (str, optional): The type of embedding to use. Defaults to 'last_hidden_state'.
|
734
|
-
batch_size (int, optional): The batch size to use. Defaults to 8.
|
735
|
-
num_workers (int, optional): The number of workers to use. Defaults to 4.
|
736
|
-
|
737
|
-
Returns:
|
738
|
-
torch.Tensor: The embeddings.
|
739
|
-
|
740
|
-
Raises:
|
741
|
-
ValueError: If the embedding type is invalid.
|
742
|
-
"""
|
743
|
-
|
744
|
-
# Check if the embedding type is valid
|
745
|
-
if embedding_type not in ['last_hidden_state', 'mean_pooling']:
|
746
|
-
raise ValueError(f'Invalid embedding type: {embedding_type}. Only "last_hidden_state" and "mean_pooling" are supported.')
|
747
|
-
|
748
|
-
# Tokenize the input text
|
749
|
-
encoded_text = self.tokenizer(
|
750
|
-
text,
|
751
|
-
padding=False,
|
752
|
-
truncation=True,
|
753
|
-
return_tensors='pt',
|
754
|
-
add_special_tokens=False,
|
755
|
-
)
|
756
|
-
|
757
|
-
# Move the input text to the device
|
758
|
-
encoded_text = encoded_text.to(self.device)
|
759
|
-
|
760
|
-
token_ids_list = encoded_text['input_ids'].tolist()
|
761
|
-
token_ids_list = token_ids_list[0]
|
762
|
-
tensor_list = [torch.tensor([[value]]) for value in token_ids_list]
|
763
|
-
|
764
|
-
# Get the embeddings
|
765
|
-
embeds = []
|
766
|
-
self.model.eval()
|
767
|
-
for index, tensor in enumerate(tensor_list):
|
768
|
-
embed = self.model(tensor, output_hidden_states=True).hidden_states[-1][:,0,:].detach().cpu().numpy()
|
769
|
-
embeds.append(embed)
|
770
|
-
|
771
|
-
# Return the embeddings
|
772
|
-
return embeds
|
773
|
-
|
774
|
-
|
775
|
-
# Initialize the corpus using a dictionary or pandas DataFrame or HuggingFace Datasets object
|
776
|
-
def initialize_corpus(self,
|
777
|
-
corpus: Union[Dict[str, List[str]], pd.DataFrame, Dataset],
|
778
|
-
section: str = 'text',
|
779
|
-
index_column_name: str = 'embeddings',
|
780
|
-
embedding_type: str = 'last_hidden_state',
|
781
|
-
batch_size: Optional[int] = None,
|
782
|
-
num_workers: Optional[int] = None,
|
783
|
-
save_path: Optional[str] = None,
|
784
|
-
) -> Dataset:
|
785
|
-
"""
|
786
|
-
This function initializes a dataset using a dictionary or pandas DataFrame or HuggingFace Datasets object.
|
787
|
-
|
788
|
-
Arguments:
|
789
|
-
dataset_dict (Dict[str, List[str]]): The dataset dictionary.
|
790
|
-
section (str): The section of the dataset to use whose embeddings will be used for semantic search (e.g., 'text', 'title', etc.) (default: 'text').
|
791
|
-
index_column_name (str): The name of the column containing the embeddings (default: 'embeddings')
|
792
|
-
embedding_type (str): The type of embedding to use (default: 'last_hidden_state').
|
793
|
-
batch_size (int, optional): The batch size to use (default: 8).
|
794
|
-
max_length (int, optional): The maximum length of the input sequences.
|
795
|
-
num_workers (int, optional): The number of workers to use.
|
796
|
-
save_path (Optional[str], optional): The path to save the dataset (default: None).
|
797
|
-
|
798
|
-
Returns:
|
799
|
-
Dataset: The dataset object (HuggingFace Datasets).
|
800
|
-
|
801
|
-
Raises:
|
802
|
-
ValueError: If the dataset is not a dictionary or pandas DataFrame or HuggingFace Datasets object.
|
803
|
-
"""
|
804
|
-
|
805
|
-
# corpus = { 'text': [...] } -> form_dict
|
806
|
-
|
807
|
-
# Set the embedding_type
|
808
|
-
self.embedding_type = embedding_type
|
809
|
-
|
810
|
-
# get embedding dict
|
811
|
-
embedding_dict = self.get_doc_embeddings(text=corpus, embedding_type=self.embedding_type)
|
812
|
-
|
813
|
-
data = {
|
814
|
-
'text' : embedding_dict.values(),
|
815
|
-
'embeddings': []
|
816
|
-
}
|
817
|
-
|
818
|
-
for embed in embedding_dict.keys():
|
819
|
-
embed_list = embed.tolist()
|
820
|
-
data['embeddings'].append(embed_list[0])
|
821
|
-
|
822
|
-
|
823
|
-
if isinstance(data, dict):
|
824
|
-
self.dataset = Dataset.from_dict(data)
|
825
|
-
elif isinstance(data, pd.DataFrame):
|
826
|
-
self.dataset = Dataset.from_pandas(data)
|
827
|
-
elif isinstance(data, Dataset):
|
828
|
-
self.dataset = corpus
|
829
|
-
else:
|
830
|
-
raise ValueError('The dataset must be a dictionary or pandas DataFrame.')
|
831
|
-
|
832
|
-
# Save the dataset
|
833
|
-
if save_path is not None:
|
834
|
-
self.dataset.to_json(save_path)
|
835
|
-
|
836
|
-
# Add FAISS index
|
837
|
-
self.add_faiss_index(
|
838
|
-
column_name=index_column_name,
|
839
|
-
)
|
840
|
-
|
841
|
-
# Return the dataset
|
842
|
-
return self.dataset
|
843
|
-
|
844
|
-
|
845
|
-
# Search for the most similar elements in the dataset, given a query
|
846
|
-
def search(self,
|
847
|
-
query: str,
|
848
|
-
k: int = 1,
|
849
|
-
index_column_name: str = 'embeddings',
|
850
|
-
) -> pd.DataFrame:
|
851
|
-
"""
|
852
|
-
This function searches for the most similar elements in the dataset, given a query.
|
853
|
-
|
854
|
-
Arguments:
|
855
|
-
query (str): The query.
|
856
|
-
k (int, optional): The number of elements to return (default: 1).
|
857
|
-
index_column_name (str, optional): The name of the column containing the embeddings (default: 'embeddings')
|
858
|
-
|
859
|
-
Returns:
|
860
|
-
pd.DataFrame: The most similar elements in the dataset (text, score, etc.), sorted by score.
|
861
|
-
|
862
|
-
Remarks:
|
863
|
-
The returned elements are dictionaries containing the text and the score.
|
864
|
-
"""
|
865
|
-
|
866
|
-
# Get the embeddings of the query
|
867
|
-
query_embeddings = self.get_query_embeddings([query], embedding_type=self.embedding_type)
|
868
|
-
|
869
|
-
# query_embedding이랑 self.dataset['embeddings'] 값 비교
|
870
|
-
scores = []
|
871
|
-
similar_elts = []
|
872
|
-
for query in query_embeddings:
|
873
|
-
# Search for the most similar elements in the dataset
|
874
|
-
score, similar_elt = self.dataset.get_nearest_examples(
|
875
|
-
index_name=index_column_name,
|
876
|
-
query=query,
|
877
|
-
k=k,
|
878
|
-
)
|
879
|
-
scores.append(score)
|
880
|
-
similar_elts.append(similar_elt)
|
881
|
-
|
589
|
+
return embeddings
|
882
590
|
|
883
|
-
text_list = []
|
884
|
-
for item in similar_elts:
|
885
|
-
for text in item['text']:
|
886
|
-
text_list.append(text)
|
887
|
-
|
888
|
-
flat_list = [sentence for sublist in text_list for sentence in sublist]
|
889
|
-
count = Counter(flat_list)
|
890
|
-
count = dict(count.most_common(5))
|
891
|
-
|
892
|
-
sorted_dict = dict(sorted(count.items(), key=lambda x: x[1], reverse=True))
|
893
|
-
# Convert the results to a pandas DataFrame
|
894
|
-
results_df = pd.DataFrame({'text': sorted_dict.keys() , 'freq': sorted_dict.values()})
|
895
|
-
|
896
|
-
# Return the most similar elements
|
897
|
-
return results_df
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: nltkor
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.20
|
4
4
|
Home-page: https://modi.changwon.ac.kr/air_cwnu/nlp_tool/nltk_ko.git
|
5
5
|
Keywords: string matching,pattern matching,edit distance,string to string correction,string to string matching,Levenshtein edit distance,Hamming distance,Damerau-Levenshtein distance,Jaro-Winkler distance,longest common subsequence,longest common substring,dynamic programming,approximate string matching,semantic similarity,natural language processing,NLP,information retrieval,rouge,sacrebleu,bertscore,bartscore,fasttext,glove,cosine similarity,Smith-Waterman,Needleman-Wunsch,Hirschberg,Karp-Rabin,Knuth-Morris-Pratt,Boyer-Moore
|
6
6
|
Classifier: Programming Language :: Python :: 3.7
|
@@ -1,25 +0,0 @@
|
|
1
|
-
from trie_search import TRIESearch
|
2
|
-
|
3
|
-
root = {}
|
4
|
-
dict_file = '/Users/chanhyeok/Downloads/lexicon.txt'
|
5
|
-
sc = TRIESearch(root)
|
6
|
-
with open(dict_file, 'r') as f:
|
7
|
-
for line in f:
|
8
|
-
if ';;' in line[:2]: continue
|
9
|
-
k, v = line.strip().split('\t')
|
10
|
-
sc.build_trie_search(k, v)
|
11
|
-
# print(root)
|
12
|
-
word = '고용 노동부'
|
13
|
-
values, value_data = sc.trie_search(word, True)
|
14
|
-
print(values, value_data)
|
15
|
-
|
16
|
-
word = '2시뉴스외전'
|
17
|
-
values, value_data = sc.trie_search( word, True)
|
18
|
-
print(values, value_data)
|
19
|
-
word = '2시 뉴스외전'
|
20
|
-
values, value_data = sc.trie_search( word, True)
|
21
|
-
print(values, value_data)
|
22
|
-
|
23
|
-
word = 'gbc'
|
24
|
-
values, value_data = sc.trie_search( word, True)
|
25
|
-
print(values, value_data)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-38.pyc
RENAMED
File without changes
|
{nltkor-1.2.19 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-39.pyc
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|