nltkor 1.2.18__tar.gz → 1.2.20__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (131) hide show
  1. {nltkor-1.2.18 → nltkor-1.2.20}/PKG-INFO +30 -8
  2. {nltkor-1.2.18 → nltkor-1.2.20}/README.md +110 -39
  3. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/__init__.py +1 -1
  4. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/search/__init__.py +1 -1
  5. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/search/faiss_search.py +7 -314
  6. nltkor-1.2.18/nltkor/search/search_dict.py → nltkor-1.2.20/nltkor/search/trie_search.py +10 -10
  7. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/network.c +125 -125
  8. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor.egg-info/PKG-INFO +30 -8
  9. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor.egg-info/SOURCES.txt +1 -1
  10. {nltkor-1.2.18 → nltkor-1.2.20}/setup.py +1 -1
  11. {nltkor-1.2.18 → nltkor-1.2.20}/LICENSE.txt +0 -0
  12. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/Kor_char.py +0 -0
  13. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/alignment/__init__.py +0 -0
  14. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/cider/__init__.py +0 -0
  15. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/cider/cider.py +0 -0
  16. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/cider/cider_scorer.py +0 -0
  17. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/distance/__init__.py +0 -0
  18. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/distance/wasserstein.py +0 -0
  19. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/etc.py +0 -0
  20. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/lazyimport.py +0 -0
  21. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/make_requirement.py +0 -0
  22. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/__init__.py +0 -0
  23. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/bartscore.py +0 -0
  24. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/bertscore.py +0 -0
  25. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/classical.py +0 -0
  26. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/entment.py +0 -0
  27. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/eval.py +0 -0
  28. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/mauve.py +0 -0
  29. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/metrics/mauve_utils.py +0 -0
  30. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/misc/__init__.py +0 -0
  31. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/misc/string2string_basic_functions.py +0 -0
  32. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/misc/string2string_default_tokenizer.py +0 -0
  33. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/misc/string2string_hash_functions.py +0 -0
  34. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/misc/string2string_word_embeddings.py +0 -0
  35. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/search/classical.py +0 -0
  36. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/search/kobert_tokenizer.py +0 -0
  37. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__init__.py +0 -0
  38. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__pycache__/__init__.cpython-38.pyc +0 -0
  39. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__pycache__/__init__.cpython-39.pyc +0 -0
  40. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__pycache__/sejong_download.cpython-38.pyc +0 -0
  41. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__pycache__/sejong_download.cpython-39.pyc +0 -0
  42. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__pycache__/ssem.cpython-38.pyc +0 -0
  43. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/__pycache__/ssem.cpython-39.pyc +0 -0
  44. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/ch.py +0 -0
  45. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/dict_semClassNum.txt +0 -0
  46. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/layer.txt +0 -0
  47. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/sejong_download.py +0 -0
  48. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/sejong/ssem.py +0 -0
  49. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/similarity/__init__.py +0 -0
  50. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/similarity/bartscore____.py +0 -0
  51. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/similarity/bertscore____.py +0 -0
  52. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/similarity/classical.py +0 -0
  53. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/similarity/cosine_similarity.py +0 -0
  54. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/__init__.py +0 -0
  55. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/__pycache__/__init__.cpython-38.pyc +0 -0
  56. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/__pycache__/__init__.cpython-39.pyc +0 -0
  57. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/__pycache__/espresso_tag.cpython-38.pyc +0 -0
  58. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/__pycache__/espresso_tag.cpython-39.pyc +0 -0
  59. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/espresso_tag.py +0 -0
  60. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__init__.py +0 -0
  61. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/__init__.cpython-38.pyc +0 -0
  62. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/__init__.cpython-39.pyc +0 -0
  63. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/attributes.cpython-38.pyc +0 -0
  64. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/attributes.cpython-39.pyc +0 -0
  65. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/config.cpython-38.pyc +0 -0
  66. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/config.cpython-39.pyc +0 -0
  67. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/metadata.cpython-38.pyc +0 -0
  68. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/metadata.cpython-39.pyc +0 -0
  69. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/reader.cpython-38.pyc +0 -0
  70. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/reader.cpython-39.pyc +0 -0
  71. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/taggers.cpython-38.pyc +0 -0
  72. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/taggers.cpython-39.pyc +0 -0
  73. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/utils.cpython-38.pyc +0 -0
  74. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/utils.cpython-39.pyc +0 -0
  75. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/word_dictionary.cpython-38.pyc +0 -0
  76. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/__pycache__/word_dictionary.cpython-39.pyc +0 -0
  77. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/arguments.py +0 -0
  78. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/attributes.py +0 -0
  79. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/config.py +0 -0
  80. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/metadata.py +0 -0
  81. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/__init__.py +0 -0
  82. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/__init__.cpython-38.pyc +0 -0
  83. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/__init__.cpython-39.pyc +0 -0
  84. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-38.pyc +0 -0
  85. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-39.pyc +0 -0
  86. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/macmorphoreader.py +0 -0
  87. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/ner/ner_reader.py +0 -0
  88. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/network.pyx +0 -0
  89. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/networkconv.pyx +0 -0
  90. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/networkdependencyconv.pyx +0 -0
  91. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/parse/__init__.py +0 -0
  92. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/__init__.cpython-38.pyc +0 -0
  93. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/__init__.cpython-39.pyc +0 -0
  94. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-38.pyc +0 -0
  95. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-39.pyc +0 -0
  96. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/parse/parse_reader.py +0 -0
  97. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/__init__.py +0 -0
  98. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/__init__.cpython-38.pyc +0 -0
  99. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/__init__.cpython-39.pyc +0 -0
  100. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-38.pyc +0 -0
  101. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-39.pyc +0 -0
  102. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/macmorphoreader.py +0 -0
  103. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/pos/pos_reader.py +0 -0
  104. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/reader.py +0 -0
  105. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__init__.py +0 -0
  106. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/__init__.cpython-38.pyc +0 -0
  107. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/__init__.cpython-39.pyc +0 -0
  108. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-38.pyc +0 -0
  109. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-39.pyc +0 -0
  110. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/train_srl.cpython-38.pyc +0 -0
  111. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__pycache__/train_srl.cpython-39.pyc +0 -0
  112. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/__srl_reader_.py +0 -0
  113. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/srl_reader.py +0 -0
  114. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/srl/train_srl.py +0 -0
  115. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/taggers.py +0 -0
  116. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/utils.py +0 -0
  117. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/word_dictionary.py +0 -0
  118. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__init__.py +0 -0
  119. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/__init__.cpython-38.pyc +0 -0
  120. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/__init__.cpython-39.pyc +0 -0
  121. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-38.pyc +0 -0
  122. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-39.pyc +0 -0
  123. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/macmorphoreader.py +0 -0
  124. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tag/libs/wsd/wsd_reader.py +0 -0
  125. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tokenize/__init__.py +0 -0
  126. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/tokenize/ko_tokenize.py +0 -0
  127. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor/trans.py +0 -0
  128. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor.egg-info/dependency_links.txt +0 -0
  129. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor.egg-info/requires.txt +0 -0
  130. {nltkor-1.2.18 → nltkor-1.2.20}/nltkor.egg-info/top_level.txt +0 -0
  131. {nltkor-1.2.18 → nltkor-1.2.20}/setup.cfg +0 -0
@@ -1,11 +1,8 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: nltkor
3
- Version: 1.2.18
4
- Summary: UNKNOWN
3
+ Version: 1.2.20
5
4
  Home-page: https://modi.changwon.ac.kr/air_cwnu/nlp_tool/nltk_ko.git
6
- License: UNKNOWN
7
5
  Keywords: string matching,pattern matching,edit distance,string to string correction,string to string matching,Levenshtein edit distance,Hamming distance,Damerau-Levenshtein distance,Jaro-Winkler distance,longest common subsequence,longest common substring,dynamic programming,approximate string matching,semantic similarity,natural language processing,NLP,information retrieval,rouge,sacrebleu,bertscore,bartscore,fasttext,glove,cosine similarity,Smith-Waterman,Needleman-Wunsch,Hirschberg,Karp-Rabin,Knuth-Morris-Pratt,Boyer-Moore
8
- Platform: UNKNOWN
9
6
  Classifier: Programming Language :: Python :: 3.7
10
7
  Classifier: Programming Language :: Python :: 3.8
11
8
  Classifier: Programming Language :: Python :: 3.9
@@ -15,6 +12,31 @@ Classifier: Operating System :: OS Independent
15
12
  Classifier: Typing :: Typed
16
13
  Requires-Python: >=3.7
17
14
  License-File: LICENSE.txt
18
-
19
- UNKNOWN
20
-
15
+ Requires-Dist: Cython
16
+ Requires-Dist: numpy<=1.26.4,>=1.23.5
17
+ Requires-Dist: regex
18
+ Requires-Dist: tqdm>=4.40.0
19
+ Requires-Dist: joblib
20
+ Requires-Dist: requests
21
+ Requires-Dist: nltk>3.0
22
+ Requires-Dist: pyarrow
23
+ Requires-Dist: beautifulSoup4
24
+ Requires-Dist: faiss-cpu==1.7.3
25
+ Requires-Dist: datasets
26
+ Requires-Dist: torch
27
+ Requires-Dist: dill<0.3.9
28
+ Requires-Dist: scikit-learn>=0.22.1
29
+ Requires-Dist: transformers==4.42.2
30
+ Requires-Dist: protobuf
31
+ Requires-Dist: sentencepiece
32
+ Requires-Dist: pandas
33
+ Requires-Dist: bert_score
34
+ Requires-Dist: chardet
35
+ Requires-Dist: GPUtil
36
+ Requires-Dist: fasttext
37
+ Dynamic: classifier
38
+ Dynamic: home-page
39
+ Dynamic: keywords
40
+ Dynamic: license-file
41
+ Dynamic: requires-dist
42
+ Dynamic: requires-python
@@ -110,18 +110,13 @@ NLTKor는 한국어를 위한 NLTK이며 기존의 영어에서 사용하는 Wor
110
110
 
111
111
  ## 2. 사용 환경
112
112
 
113
- - 운영체제 : ubuntu 18.04, ubuntu 22.04, MacOS
113
+ - 운영체제 : ubuntu 18.04, ubuntu 22.04, MacOS, Windows
114
114
  - 언어 : `python3.8`, `python3.9`, `python3.10`, `python3.11`
115
115
  - 라이브러리 : nltk>=1.1.3, numpy==1.23, faiss-cpu=1.7.3 **※ 해당 NLTKor는 영어 NLTK를 별도로 인스톨해야 함.**
116
116
 
117
117
  **주의사항**
118
118
 
119
- - Espresso5의 EspressoTagger의 사용가능 환경은 다음과 같다.
120
-
121
- | OS | python | 아키텍처 |
122
- | ------ | ----------------------------------------- | ------------- |
123
- | Mac | python3.8 | arm64 |
124
- | ubuntu | python3.8 python3.9 python3.10 python3.11 | arm64, x86_64 |
119
+ - Windows 환경에서 python 3.9~3.11을 사용할 경우 fasttext 라이브러리가 지원되지 않습니다. 대신 fasttext-wheel 라이브러리를 사용해야 합니다(pip install fasttext-wheel).
125
120
 
126
121
  ### 2.1 라이브러리 설치
127
122
 
@@ -1533,21 +1528,33 @@ P to Q2 : 0.1981
1533
1528
  ```
1534
1529
 
1535
1530
  #### 12.5 Faiss-Semantic 검색
1536
-
1537
- - **init**(model_name_or_path: str = 'facebook/bart-large', tokenizer_name_or_path: str = 'facebook/bart-large', device: str = 'cpu') None : FaissSearh를 초기화 합니다.
1538
- - add_faiss_index(column_name: str = 'embeddings', metric_type: int | None = None, batch_size: int = 8, \*\*kwargs)→ None : FAISS index를 dataset에 추가합니다.
1539
- - get_embeddings(text: str | List[str], embedding_type: str = 'last_hidden_state', batch_size: int = 8, num_workers: int = 4)→ Tensor : 텍스트를 임베딩합니다.
1540
- - get_last_hidden_state(embeddings: Tensor)→ Tensor : 임베딩된 텍스트의 last hidden state를 반환합니다.
1541
- - get_mean_pooling(embeddings: Tensor)→ Tensor : 입력 임베딩의 mean pooling을 반환합니다.
1542
- - initialize_corpus(corpus: Dict[str, List[str]] | DataFrame | Dataset, section: str = 'text', index_column_name: str = 'embeddings', embedding_type: str = 'last_hidden_state', batch_size: int | None = None, num_workers: int | None = None, save_path: str | None = None)→ Dataset : 데이터셋을 초기화합니다.
1543
- - load_dataset_from_json(json_path: str)→ Dataset : json 파일에서 데이터셋을 로드합니다.
1544
- - load_faiss_index(index_name: str, file_path: str, device: str = 'cpu')→ None : FAISS index로드합니다.
1545
- - save_faiss_index(index_name: str, file_path: str)→ None : 특정한 파일 경로로 FAISS index를 저장합니다.
1546
- - search(query: str, k: int = 1, index_column_name: str = 'embeddings')→ DataFrame : 데이터셋에서 쿼리를 검색합니다.
1531
+ - class FaissSearch
1532
+ - **__new__**(mode = None, model_name_or_path: str = 'klue/bert-base', tokneizer_name_or_path: str = 'klue/bert-base', device: str = 'cpu') -> None : mode에 따라 이용할 class로 이동합니다.
1533
+ - mode = dense(dense | sparse)
1534
+
1535
+ - class FaissSearch_Dense : 기존 Faiss를 이용한 검색
1536
+ - **init**(model_name_or_path: str = 'klue/bert-base', tokenizer_name_or_path: str = 'klue/bert-base', device: str = 'cpu')→ None : FaissSearh_Dense를 초기화 합니다.
1537
+ - add_faiss_index(column_name: str = 'embeddings', metric_type: int | None = None, batch_size: int = 8, \*\*kwargs)→ None : FAISS index를 dataset에 추가합니다.
1538
+ - get_embeddings(text: str | List[str], embedding_type: str = 'last_hidden_state', batch_size: int = 8, num_workers: int = 4)→ Tensor : 텍스트를 임베딩합니다.
1539
+ - get_last_hidden_state(embeddings: Tensor)→ Tensor : 임베딩된 텍스트의 last hidden state반환합니다.
1540
+ - get_mean_pooling(embeddings: Tensor)→ Tensor : 입력 임베딩의 mean pooling을 반환합니다.
1541
+ - initialize_corpus(corpus: Dict[str, List[str]] | DataFrame | Dataset, section: str = 'text', index_column_name: str = 'embeddings', embedding_type: str = 'last_hidden_state', batch_size: int | None = None, num_workers: int | None = None, save_path: str | None = None)→ Dataset : 데이터셋을 초기화합니다.
1542
+ - load_dataset_from_json(json_path: str)→ Dataset : json 파일에서 데이터셋을 로드합니다.
1543
+ - load_faiss_index(index_name: str, file_path: str, device: str = 'cpu')→ None : FAISS index를 로드합니다.
1544
+ - save_faiss_index(index_name: str, file_path: str)→ None : 특정한 파일 경로로 FAISS index를 저장합니다.
1545
+ - search(query: str, k: int = 1, index_column_name: str = 'embeddings')→ DataFrame : 데이터셋에서 쿼리를 검색합니다.
1546
+
1547
+ - class FaissSearch_Sparse(FaissSearch_Dense) : 학습가능한 sparse representation을 이용하는 모델을 위한 faiss
1548
+ - **init**(model_name_or_path: str = 'klue/bert-base', tokenizer_name_or_path: str = 'klue/bert-base', device: str = 'cpu') -> None : FaissSearch_Sparse를 초기화합니다.
1549
+ - get_embeddings(text: str | List[str], embedding_type: str = 'last_hidden_state', batch_size: int = 8, num_workers: int = 4) -> Tensor : 텍스트를 임베딩합니다.
1550
+
1551
+ <br>
1552
+
1553
+ - mode = 'dense' : 원본 faiss를 실행합니다.
1547
1554
 
1548
1555
  ```python
1549
- >>> from nltkor.search import FaissSearch
1550
- >>> faiss = FaissSearch(model_name_or_path = 'facebook/bart-large')
1556
+ >>> from nltkor.search.faiss_search import FaissSearch
1557
+ >>> faiss = FaissSearch(model_name_or_path = 'klue/bert-base', mode='dense')
1551
1558
  >>> corpus = {
1552
1559
  'text': [
1553
1560
  "오늘은 날씨가 매우 덥습니다.",
@@ -1583,29 +1590,93 @@ P to Q2 : 0.1981
1583
1590
  ],
1584
1591
  }
1585
1592
  >>> faiss.initialize_corpus(corpus=corpus, section='text', embedding_type='mean_pooling')
1586
- >>> query = "오늘은 날시가 매우 춥다."
1593
+ >>> query = "오늘은 날씨가 매우 춥다."
1587
1594
  >>> top_k = 5
1588
1595
  >>> result = faiss.search(query, top_k)
1589
1596
  >>> print(result)
1590
- text embeddings score
1591
- 0 오늘은 날씨가 매우 덥습니다. [-0.2576247453689575, 0.47791656851768494, -1.... 14.051050
1592
- 1 한국 음식 중에서 떡볶이가 제일 맛있습니다. [-0.2623925805091858, 0.46345704793930054, -1.... 28.752083
1593
- 2 요즘 드라마를 많이 시청하고 있어요. [-0.2683958113193512, 0.6801461577415466, -1.1... 29.339230
1594
- 3 다음 주에 시험이 있어서 공부해야 해요. [-0.20012563467025757, 0.5758355855941772, -1.... 31.358824
1595
- 4 피아노 연주는 나를 편안하게 해줍니다. [-0.24231986701488495, 0.6492734551429749, -1.... 34.069862
1597
+
1598
+
1599
+ text embeddings score
1600
+ 0 오늘은 날씨가 매우 덥습니다. [-0.06737425178289413, -0.6356450319290161, -0... 52.453941
1601
+ 1 휴대폰 없이 하루를 보내는 것이 쉽지 않아요. [0.09126424789428711, -0.011225797235965729, -... 168.310577
1602
+ 2 내일은 친구와 영화를 보러 갈 거예요. [-0.21793286502361298, -0.2237573117017746, 0.... 181.051544
1603
+ 3 요리를 만들면 집안이 좋아보입니다. [0.7215852737426758, -0.426792711019516, -0.07... 203.423340
1604
+ 4 스포츠를 하면 건강에 좋습니다. [0.1290944665670395, -0.6169838905334473, -0.2... 205.527954
1605
+
1606
+ ```
1607
+
1608
+ <br>
1609
+
1610
+ - mode = 'sparse' : 학습가능한 sparse representation을 이용한 모델을 위한 faiss 코드를 실행합니다.
1611
+
1612
+ ```python
1613
+ >>> from nltkor.search.faiss_search import FaissSearch
1614
+ >>> model_name_or_path = 'klue/bert-base'
1615
+ >>> faiss = FaissSearch(model_name_or_path=model_name_or_path, mode='sparse')
1616
+ >>> corpus = {
1617
+ 'text': [
1618
+ "오늘은 날씨가 매우 덥습니다.",
1619
+ "저는 음악을 듣는 것을 좋아합니다.",
1620
+ "한국 음식 중에서 떡볶이가 제일 맛있습니다.",
1621
+ "도서관에서 책을 읽는 건 좋은 취미입니다.",
1622
+ "내일은 친구와 영화를 보러 갈 거예요.",
1623
+ "여름 휴가 때 해변에 가서 수영하고 싶어요.",
1624
+ "한국의 문화는 다양하고 흥미로워요.",
1625
+ "피아노 연주는 나를 편안하게 해줍니다.",
1626
+ "공원에서 산책하면 스트레스가 풀립니다.",
1627
+ "요즘 드라마를 많이 시청하고 있어요.",
1628
+ "커피가 일상에서 필수입니다.",
1629
+ "새로운 언어를 배우는 것은 어려운 일이에요.",
1630
+ "가을에 단풍 구경을 가고 싶어요.",
1631
+ "요리를 만들면 집안이 좋아보입니다.",
1632
+ "휴대폰 없이 하루를 보내는 것이 쉽지 않아요.",
1633
+ "스포츠를 하면 건강에 좋습니다.",
1634
+ "고양이와 개 중에 어떤 동물을 좋아하세요?"
1635
+ "천천히 걸어가면서 풍경을 감상하는 것이 좋아요.",
1636
+ "일주일에 한 번은 가족과 모임을 가요.",
1637
+ "공부할 때 집중력을 높이는 방법이 있을까요?",
1638
+ "봄에 꽃들이 피어날 때가 기대되요.",
1639
+ "여행 가방을 챙기고 싶어서 설레여요.",
1640
+ "사진 찍는 걸 좋아하는데, 카메라가 필요해요.",
1641
+ "다음 주에 시험이 있어서 공부해야 해요.",
1642
+ "운동을 하면 몸이 가벼워집니다.",
1643
+ "좋은 책을 읽으면 마음이 풍요로워져요.",
1644
+ "새로운 음악을 발견하면 기분이 좋아져요.",
1645
+ "미술 전시회에 가면 예술을 감상할 수 있어요.",
1646
+ "친구들과 함께 시간을 보내는 건 즐거워요.",
1647
+ "자전거 타면 바람을 맞으면서 즐거워집니다."
1648
+ ],
1649
+ }
1650
+ >>> faiss.initialize_corpus(corpus=corpus, section='text', embedding_type='last_hidden_state')
1651
+ >>> query = "오늘은 날씨가 매우 춥다."
1652
+ >>> top_k = 5
1653
+ >>> result = faiss.search(query=query, k=top_k)
1654
+ >>> print(result)
1655
+
1656
+ text embeddings score
1657
+ 0 오늘은 날씨가 매우 덥습니다. [0.0, 0.055695388466119766, 0.0, 0.0, 0.0, 0.0... 0.130759
1658
+ 1 휴대폰 없이 하루를 보내는 것이 쉽지 않아요. [0.0, 0.06064636632800102, 0.0, 0.0, 0.0, 0.03... 0.418491
1659
+ 2 내일은 친구와 영화를 보러 갈 거예요. [0.0, 0.0474698506295681, 0.0, 0.0, 0.0, 0.039... 0.435895
1660
+ 3 가을에 단풍 구경을 가고 싶어요. [0.0, 0.05392831563949585, 0.0, 0.0, 0.0, 0.05... 0.488796
1661
+ 4 스포츠를 하면 건강에 좋습니다. [0.0, 0.05404529720544815, 0.0, 0.0, 0.0, 0.04... 0.496646
1662
+
1596
1663
  ```
1597
1664
 
1665
+ <br>
1666
+
1667
+
1598
1668
  - faiss 검색을 매번 initialize 하지 않고, 미리 initialize 해놓은 후 검색을 수행할 수 있습니다.
1599
1669
 
1670
+
1600
1671
  **사용법 & 결과**
1601
1672
 
1602
1673
  ```python
1603
- >>> from nltkor.search import FaissSearch
1674
+ >>> from nltkor.search.faiss_search import FaissSearch
1604
1675
 
1605
1676
  # if you use model and tokenizer in local
1606
1677
  # faiss = FaissSearch(model_name_or_path = '~/test_model/trained_model/', tokenizer_name_or_path = '~/test_model/trained_model/')
1607
1678
 
1608
- >>> faiss = FaissSearch(model_name_or_path = 'facebook/bart-large')
1679
+ >>> faiss = FaissSearch(model_name_or_path = 'klue/bert-base', mode='dense')
1609
1680
  >>> corpus = {
1610
1681
  'text': [
1611
1682
  "오늘은 날씨가 매우 덥습니다.",
@@ -1646,12 +1717,12 @@ P to Q2 : 0.1981
1646
1717
  - `initialize_corpus()` 메소드 실행시 `save_path`를 지정하면, 해당 경로에 임베딩된 Dataset이 json형식으로 저장됩니다.
1647
1718
 
1648
1719
  ```python
1649
- >>> from nltkor.search import FaissSearch
1720
+ >>> from nltkor.search.faiss_search import FaissSearch
1650
1721
 
1651
- >>> faiss = FaissSearch(model_name_or_path = 'facebook/bart-large')
1722
+ >>> faiss = FaissSearch(model_name_or_path = 'klue/bert-base', mode='dense')
1652
1723
  >>> faiss.load_dataset_from_json('./test.json')
1653
1724
  >>> faiss.embedding_type = 'mean_pooling' # initalize_corpus() 메소드 실행시 지정한 embedding_type과 동일하게 지정해야 합니다.
1654
- >>> faiss,add_faiss_index(colum_name = 'embeddings')
1725
+ >>> faiss.add_faiss_index(colum_name = 'embeddings')
1655
1726
  >>> query = '오늘은 날씨가 매우 춥다.'
1656
1727
  >>> top_k = 5
1657
1728
  >>> result = faiss.search(query=query, top_k=top_k)
@@ -1674,27 +1745,27 @@ Adding FAISS index...
1674
1745
 
1675
1746
  ```python
1676
1747
  root = {}
1677
- dict_file = '텍스트 파일 경로'
1678
- sc = SearchDic(root)
1748
+ dict_file = '텍스트파일 경로'
1749
+ sc = TRIESearch(root)
1679
1750
  with open(dict_file, 'r') as f:
1680
1751
  for line in f:
1681
1752
  if ';;' in line[:2]: continue
1682
1753
  k, v = line.strip().split('\t')
1683
- sc.build_search_dict(k, v)
1754
+ sc.build_trie_search(k, v)
1684
1755
  # print(root)
1685
1756
  word = '고용 노동부'
1686
- values, value_data = sc.search_dict(word, True)
1757
+ values, value_data = sc.trie_search(word, True)
1687
1758
  print(values, value_data)
1688
1759
 
1689
1760
  word = '2시뉴스외전'
1690
- values, value_data = sc.search_dict(word, True)
1761
+ values, value_data = sc.trie_search( word, True)
1691
1762
  print(values, value_data)
1692
1763
  word = '2시 뉴스외전'
1693
- values, value_data = sc.search_dict(word, True)
1764
+ values, value_data = sc.trie_search( word, True)
1694
1765
  print(values, value_data)
1695
1766
 
1696
1767
  word = 'gbc'
1697
- values, value_data = sc.search_dict(word, True)
1768
+ values, value_data = sc.trie_search( word, True)
1698
1769
  print(values, value_data)
1699
1770
  ```
1700
1771
  **결과**
@@ -13,4 +13,4 @@ from nltkor import trans
13
13
  from nltkor import Kor_char
14
14
  from nltkor import etc
15
15
 
16
- __version__ = '1.2.18'
16
+ __version__ = '1.2.20'
@@ -8,4 +8,4 @@ from .classical import (
8
8
  )
9
9
  from .faiss_search import FaissSearch
10
10
  from .kobert_tokenizer import KoBERTTokenizer
11
- from .search_dict import SearchDic
11
+ from .trie_search import TRIESearch
@@ -68,24 +68,22 @@ except ImportError:
68
68
 
69
69
  class FaissSearch:
70
70
  def __new__(cls,
71
- mode = None,
71
+ mode = 'dense',
72
72
  model_name_or_path: str = 'klue/bert-base',
73
73
  tokenizer_name_or_path: str = 'klue/bert-base',
74
74
  embedding_type: str = 'last_hidden_state',
75
75
  device: str = 'cpu'
76
76
  ) -> None:
77
- if mode == 'sentence':
78
- return FaissSearch_SenEmbed(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
79
- elif mode == 'word':
80
- return FaissSearch_WordEmbed(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
77
+ if mode == 'dense':
78
+ return FaissSearch_Dense(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
81
79
  elif mode == 'sparse':
82
80
  return FaissSearch_Sparse(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
83
81
  else:
84
- raise ValueError("choice 'sentence' or 'word' or 'sparse'")
82
+ raise ValueError("choice 'dense' or 'sparse'.")
85
83
 
86
84
 
87
85
 
88
- class FaissSearch_SenEmbed:
86
+ class FaissSearch_Dense:
89
87
  def __init__(self,
90
88
  model_name_or_path: str = 'klue/bert-base',
91
89
  tokenizer_name_or_path: str = 'klue/bert-base',
@@ -474,7 +472,7 @@ class FaissSearch_SenEmbed:
474
472
 
475
473
 
476
474
 
477
- class FaissSearch_Sparse(FaissSearch_SenEmbed):
475
+ class FaissSearch_Sparse(FaissSearch_Dense):
478
476
  def __init__(self,
479
477
  model_name_or_path: str = 'klue/bert-base',
480
478
  tokenizer_name_or_path: str = 'klue/bert-base',
@@ -586,312 +584,7 @@ class FaissSearch_Sparse(FaissSearch_SenEmbed):
586
584
  embeddings = embeddings['logits']
587
585
 
588
586
  embeddings = torch.sum(torch.log(1+torch.relu(embeddings)) * encoded_text['attention_mask'].unsqueeze(-1), dim=1)
589
- e_norm = torch.nn.functional.normalize(embeddings, p=2, dim=1, eps=1e-8)
590
587
 
591
588
  # Return the embeddings
592
- return e_norm
593
-
594
-
595
-
596
- # FAISS word embedding library wrapper class
597
- class FaissSearch_WordEmbed(FaissSearch_SenEmbed):
598
- def __init__(self,
599
- model_name_or_path: str = 'klue/bert-base',
600
- tokenizer_name_or_path: str = 'klue/bert-base',
601
- embedding_type: str = 'last_hidden_state',
602
- device: str = 'cpu',
603
- ) -> None:
604
- r"""
605
- This function initializes the wrapper for the FAISS library, which is used to perform semantic search.
606
-
607
-
608
- .. attention::
609
-
610
- * If you use this class, please make sure to cite the following paper:
611
-
612
- .. code-block:: latex
613
-
614
- @article{johnson2019billion,
615
- title={Billion-scale similarity search with {GPUs}},
616
- author={Johnson, Jeff and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
617
- journal={IEEE Transactions on Big Data},
618
- volume={7},
619
- number={3},
620
- pages={535--547},
621
- year={2019},
622
- publisher={IEEE}
623
- }
624
-
625
- * The code is based on the following GitHub repository:
626
- https://github.com/facebookresearch/faiss
627
-
628
- Arguments:
629
- model_name_or_path (str, optional): The name or path of the model to use. Defaults to 'facebook/bart-large'.
630
- tokenizer_name_or_path (str, optional): The name or path of the tokenizer to use. Defaults to 'facebook/bart-large'.
631
- device (str, optional): The device to use. Defaults to 'cpu'.
632
-
633
- Returns:
634
- None
635
- """
636
-
637
- # Set the device
638
- self.device = device
639
-
640
- # If the tokenizer is not specified, use the model name or path
641
- if tokenizer_name_or_path is None:
642
- tokenizer_name_or_path = model_name_or_path
643
-
644
- # Load the tokenizer
645
- if tokenizer_name_or_path == 'skt/kobert-base-v1':
646
- # self.tokenizer = KoBERTTokenizer.from_pretrained(tokenizer_name_or_path)
647
- self.tokenizer = XLNetTokenizer.from_pretrained(tokenizer_name_or_path)
648
- else:
649
- self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path)
650
-
651
- # Load the model
652
- self.model = AutoModel.from_pretrained(model_name_or_path).to(self.device)
653
-
654
-
655
- # Set the model to evaluation mode (since we do not need the gradients)
656
- self.model.eval()
657
-
658
- # Initialize the dataset
659
- self.dataset = None
660
-
661
-
662
- # Get the embeddings (new code)
663
- def get_doc_embeddings(self,
664
- #text: Union[str, List[str]],
665
- text=None,
666
- embedding_type: str = 'last_hidden_state',
667
- batch_size: int = 8,
668
- num_workers: int = 4,
669
- ) -> torch.Tensor:
670
- """
671
- This function returns the embeddings of the input text.
672
-
673
- Arguments:
674
- text (Union[str, List[str]]): The input text.
675
- embedding_type (str, optional): The type of embedding to use. Defaults to 'last_hidden_state'.
676
- batch_size (int, optional): The batch size to use. Defaults to 8.
677
- num_workers (int, optional): The number of workers to use. Defaults to 4.
678
-
679
- Returns:
680
- torch.Tensor: The embeddings.
681
-
682
- Raises:
683
- ValueError: If the embedding type is invalid.
684
- """
685
-
686
- # Check if the embedding type is valid
687
- if embedding_type not in ['last_hidden_state', 'mean_pooling']:
688
- raise ValueError(f'Invalid embedding type: {embedding_type}. Only "last_hidden_state" and "mean_pooling" are supported.')
689
-
690
- ids_dict = {}
691
- # Tokenize the input text
692
- for sentence in text['text']:
693
- encoded_text = self.tokenizer(
694
- sentence,
695
- padding=False,
696
- truncation=True,
697
- return_tensors='pt',
698
- add_special_tokens=False
699
- )
700
- # Move the input text to the device
701
- encoded_text = encoded_text.to(self.device)
702
- token_ids_list = encoded_text['input_ids'].tolist()
703
- token_ids_list = token_ids_list[0]
704
- for ids in token_ids_list:
705
- if ids not in ids_dict.keys():
706
- ids_dict[ids] = [sentence]
707
- else:
708
- if text not in ids_dict[ids]:
709
- ids_dict[ids].append(sentence)
710
- # Get the embeddings
711
- embedding_dict = {}
712
- self.model.eval()
713
- for key, value in ids_dict.items():
714
- embed = self.model(torch.tensor([[key]]), output_hidden_states=True).hidden_states[-1][:,0,:].detach()
715
- embedding_dict[embed] = value
716
-
717
- # Return the embeddings
718
- return embedding_dict
719
-
720
-
721
- # Get the embeddings (new code)
722
- def get_query_embeddings(self,
723
- text: Union[str, List[str]],
724
- embedding_type: str = 'last_hidden_state',
725
- batch_size: int = 8,
726
- num_workers: int = 4,
727
- ) -> torch.Tensor:
728
- """
729
- This function returns the embeddings of the input text.
730
-
731
- Arguments:
732
- text (Union[str, List[str]]): The input text.
733
- embedding_type (str, optional): The type of embedding to use. Defaults to 'last_hidden_state'.
734
- batch_size (int, optional): The batch size to use. Defaults to 8.
735
- num_workers (int, optional): The number of workers to use. Defaults to 4.
736
-
737
- Returns:
738
- torch.Tensor: The embeddings.
739
-
740
- Raises:
741
- ValueError: If the embedding type is invalid.
742
- """
743
-
744
- # Check if the embedding type is valid
745
- if embedding_type not in ['last_hidden_state', 'mean_pooling']:
746
- raise ValueError(f'Invalid embedding type: {embedding_type}. Only "last_hidden_state" and "mean_pooling" are supported.')
747
-
748
- # Tokenize the input text
749
- encoded_text = self.tokenizer(
750
- text,
751
- padding=False,
752
- truncation=True,
753
- return_tensors='pt',
754
- add_special_tokens=False,
755
- )
756
-
757
- # Move the input text to the device
758
- encoded_text = encoded_text.to(self.device)
759
-
760
- token_ids_list = encoded_text['input_ids'].tolist()
761
- token_ids_list = token_ids_list[0]
762
- tensor_list = [torch.tensor([[value]]) for value in token_ids_list]
763
-
764
- # Get the embeddings
765
- embeds = []
766
- self.model.eval()
767
- for index, tensor in enumerate(tensor_list):
768
- embed = self.model(tensor, output_hidden_states=True).hidden_states[-1][:,0,:].detach().cpu().numpy()
769
- embeds.append(embed)
770
-
771
- # Return the embeddings
772
- return embeds
773
-
774
-
775
- # Initialize the corpus using a dictionary or pandas DataFrame or HuggingFace Datasets object
776
- def initialize_corpus(self,
777
- corpus: Union[Dict[str, List[str]], pd.DataFrame, Dataset],
778
- section: str = 'text',
779
- index_column_name: str = 'embeddings',
780
- embedding_type: str = 'last_hidden_state',
781
- batch_size: Optional[int] = None,
782
- num_workers: Optional[int] = None,
783
- save_path: Optional[str] = None,
784
- ) -> Dataset:
785
- """
786
- This function initializes a dataset using a dictionary or pandas DataFrame or HuggingFace Datasets object.
787
-
788
- Arguments:
789
- dataset_dict (Dict[str, List[str]]): The dataset dictionary.
790
- section (str): The section of the dataset to use whose embeddings will be used for semantic search (e.g., 'text', 'title', etc.) (default: 'text').
791
- index_column_name (str): The name of the column containing the embeddings (default: 'embeddings')
792
- embedding_type (str): The type of embedding to use (default: 'last_hidden_state').
793
- batch_size (int, optional): The batch size to use (default: 8).
794
- max_length (int, optional): The maximum length of the input sequences.
795
- num_workers (int, optional): The number of workers to use.
796
- save_path (Optional[str], optional): The path to save the dataset (default: None).
797
-
798
- Returns:
799
- Dataset: The dataset object (HuggingFace Datasets).
800
-
801
- Raises:
802
- ValueError: If the dataset is not a dictionary or pandas DataFrame or HuggingFace Datasets object.
803
- """
804
-
805
- # corpus = { 'text': [...] } -> form_dict
806
-
807
- # Set the embedding_type
808
- self.embedding_type = embedding_type
809
-
810
- # get embedding dict
811
- embedding_dict = self.get_doc_embeddings(text=corpus, embedding_type=self.embedding_type)
812
-
813
- data = {
814
- 'text' : embedding_dict.values(),
815
- 'embeddings': []
816
- }
817
-
818
- for embed in embedding_dict.keys():
819
- embed_list = embed.tolist()
820
- data['embeddings'].append(embed_list[0])
821
-
822
-
823
- if isinstance(data, dict):
824
- self.dataset = Dataset.from_dict(data)
825
- elif isinstance(data, pd.DataFrame):
826
- self.dataset = Dataset.from_pandas(data)
827
- elif isinstance(data, Dataset):
828
- self.dataset = corpus
829
- else:
830
- raise ValueError('The dataset must be a dictionary or pandas DataFrame.')
831
-
832
- # Save the dataset
833
- if save_path is not None:
834
- self.dataset.to_json(save_path)
835
-
836
- # Add FAISS index
837
- self.add_faiss_index(
838
- column_name=index_column_name,
839
- )
840
-
841
- # Return the dataset
842
- return self.dataset
843
-
844
-
845
- # Search for the most similar elements in the dataset, given a query
846
- def search(self,
847
- query: str,
848
- k: int = 1,
849
- index_column_name: str = 'embeddings',
850
- ) -> pd.DataFrame:
851
- """
852
- This function searches for the most similar elements in the dataset, given a query.
853
-
854
- Arguments:
855
- query (str): The query.
856
- k (int, optional): The number of elements to return (default: 1).
857
- index_column_name (str, optional): The name of the column containing the embeddings (default: 'embeddings')
858
-
859
- Returns:
860
- pd.DataFrame: The most similar elements in the dataset (text, score, etc.), sorted by score.
861
-
862
- Remarks:
863
- The returned elements are dictionaries containing the text and the score.
864
- """
865
-
866
- # Get the embeddings of the query
867
- query_embeddings = self.get_query_embeddings([query], embedding_type=self.embedding_type)
868
-
869
- # query_embedding이랑 self.dataset['embeddings'] 값 비교
870
- scores = []
871
- similar_elts = []
872
- for query in query_embeddings:
873
- # Search for the most similar elements in the dataset
874
- score, similar_elt = self.dataset.get_nearest_examples(
875
- index_name=index_column_name,
876
- query=query,
877
- k=k,
878
- )
879
- scores.append(score)
880
- similar_elts.append(similar_elt)
881
-
589
+ return embeddings
882
590
 
883
- text_list = []
884
- for item in similar_elts:
885
- for text in item['text']:
886
- text_list.append(text)
887
-
888
- flat_list = [sentence for sublist in text_list for sentence in sublist]
889
- count = Counter(flat_list)
890
- count = dict(count.most_common(5))
891
-
892
- sorted_dict = dict(sorted(count.items(), key=lambda x: x[1], reverse=True))
893
- # Convert the results to a pandas DataFrame
894
- results_df = pd.DataFrame({'text': sorted_dict.keys() , 'freq': sorted_dict.values()})
895
-
896
- # Return the most similar elements
897
- return results_df