nltkor 1.2.16__tar.gz → 1.2.18__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. {nltkor-1.2.16 → nltkor-1.2.18}/PKG-INFO +8 -30
  2. {nltkor-1.2.16 → nltkor-1.2.18}/README.md +43 -2
  3. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/__init__.py +1 -1
  4. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/__init__.py +0 -1
  5. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/search/__init__.py +2 -1
  6. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/search/faiss_search.py +9 -9
  7. nltkor-1.2.18/nltkor/search/search_dict.py +95 -0
  8. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/network.c +24404 -27780
  9. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor.egg-info/PKG-INFO +8 -30
  10. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor.egg-info/SOURCES.txt +1 -1
  11. {nltkor-1.2.16 → nltkor-1.2.18}/setup.py +1 -1
  12. nltkor-1.2.16/nltkor/metrics/bleu_tensor.py +0 -20
  13. {nltkor-1.2.16 → nltkor-1.2.18}/LICENSE.txt +0 -0
  14. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/Kor_char.py +0 -0
  15. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/alignment/__init__.py +0 -0
  16. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/cider/__init__.py +0 -0
  17. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/cider/cider.py +0 -0
  18. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/cider/cider_scorer.py +0 -0
  19. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/distance/__init__.py +0 -0
  20. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/distance/wasserstein.py +0 -0
  21. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/etc.py +0 -0
  22. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/lazyimport.py +0 -0
  23. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/make_requirement.py +0 -0
  24. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/bartscore.py +0 -0
  25. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/bertscore.py +0 -0
  26. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/classical.py +0 -0
  27. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/entment.py +0 -0
  28. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/eval.py +0 -0
  29. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/mauve.py +0 -0
  30. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/metrics/mauve_utils.py +0 -0
  31. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/misc/__init__.py +0 -0
  32. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/misc/string2string_basic_functions.py +0 -0
  33. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/misc/string2string_default_tokenizer.py +0 -0
  34. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/misc/string2string_hash_functions.py +0 -0
  35. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/misc/string2string_word_embeddings.py +0 -0
  36. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/search/classical.py +0 -0
  37. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/search/kobert_tokenizer.py +0 -0
  38. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__init__.py +0 -0
  39. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__pycache__/__init__.cpython-38.pyc +0 -0
  40. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__pycache__/__init__.cpython-39.pyc +0 -0
  41. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__pycache__/sejong_download.cpython-38.pyc +0 -0
  42. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__pycache__/sejong_download.cpython-39.pyc +0 -0
  43. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__pycache__/ssem.cpython-38.pyc +0 -0
  44. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/__pycache__/ssem.cpython-39.pyc +0 -0
  45. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/ch.py +0 -0
  46. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/dict_semClassNum.txt +0 -0
  47. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/layer.txt +0 -0
  48. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/sejong_download.py +0 -0
  49. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/sejong/ssem.py +0 -0
  50. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/similarity/__init__.py +0 -0
  51. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/similarity/bartscore____.py +0 -0
  52. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/similarity/bertscore____.py +0 -0
  53. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/similarity/classical.py +0 -0
  54. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/similarity/cosine_similarity.py +0 -0
  55. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/__init__.py +0 -0
  56. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/__pycache__/__init__.cpython-38.pyc +0 -0
  57. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/__pycache__/__init__.cpython-39.pyc +0 -0
  58. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/__pycache__/espresso_tag.cpython-38.pyc +0 -0
  59. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/__pycache__/espresso_tag.cpython-39.pyc +0 -0
  60. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/espresso_tag.py +0 -0
  61. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__init__.py +0 -0
  62. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/__init__.cpython-38.pyc +0 -0
  63. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/__init__.cpython-39.pyc +0 -0
  64. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/attributes.cpython-38.pyc +0 -0
  65. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/attributes.cpython-39.pyc +0 -0
  66. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/config.cpython-38.pyc +0 -0
  67. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/config.cpython-39.pyc +0 -0
  68. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/metadata.cpython-38.pyc +0 -0
  69. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/metadata.cpython-39.pyc +0 -0
  70. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/reader.cpython-38.pyc +0 -0
  71. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/reader.cpython-39.pyc +0 -0
  72. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/taggers.cpython-38.pyc +0 -0
  73. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/taggers.cpython-39.pyc +0 -0
  74. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/utils.cpython-38.pyc +0 -0
  75. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/utils.cpython-39.pyc +0 -0
  76. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/word_dictionary.cpython-38.pyc +0 -0
  77. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/__pycache__/word_dictionary.cpython-39.pyc +0 -0
  78. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/arguments.py +0 -0
  79. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/attributes.py +0 -0
  80. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/config.py +0 -0
  81. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/metadata.py +0 -0
  82. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/__init__.py +0 -0
  83. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/__pycache__/__init__.cpython-38.pyc +0 -0
  84. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/__pycache__/__init__.cpython-39.pyc +0 -0
  85. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-38.pyc +0 -0
  86. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/__pycache__/ner_reader.cpython-39.pyc +0 -0
  87. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/macmorphoreader.py +0 -0
  88. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/ner/ner_reader.py +0 -0
  89. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/network.pyx +0 -0
  90. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/networkconv.pyx +0 -0
  91. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/networkdependencyconv.pyx +0 -0
  92. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/parse/__init__.py +0 -0
  93. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/parse/__pycache__/__init__.cpython-38.pyc +0 -0
  94. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/parse/__pycache__/__init__.cpython-39.pyc +0 -0
  95. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-38.pyc +0 -0
  96. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/parse/__pycache__/parse_reader.cpython-39.pyc +0 -0
  97. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/parse/parse_reader.py +0 -0
  98. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/__init__.py +0 -0
  99. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/__pycache__/__init__.cpython-38.pyc +0 -0
  100. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/__pycache__/__init__.cpython-39.pyc +0 -0
  101. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-38.pyc +0 -0
  102. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/__pycache__/pos_reader.cpython-39.pyc +0 -0
  103. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/macmorphoreader.py +0 -0
  104. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/pos/pos_reader.py +0 -0
  105. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/reader.py +0 -0
  106. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__init__.py +0 -0
  107. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__pycache__/__init__.cpython-38.pyc +0 -0
  108. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__pycache__/__init__.cpython-39.pyc +0 -0
  109. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-38.pyc +0 -0
  110. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__pycache__/srl_reader.cpython-39.pyc +0 -0
  111. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__pycache__/train_srl.cpython-38.pyc +0 -0
  112. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__pycache__/train_srl.cpython-39.pyc +0 -0
  113. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/__srl_reader_.py +0 -0
  114. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/srl_reader.py +0 -0
  115. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/srl/train_srl.py +0 -0
  116. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/taggers.py +0 -0
  117. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/utils.py +0 -0
  118. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/word_dictionary.py +0 -0
  119. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/__init__.py +0 -0
  120. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/__pycache__/__init__.cpython-38.pyc +0 -0
  121. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/__pycache__/__init__.cpython-39.pyc +0 -0
  122. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-38.pyc +0 -0
  123. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/__pycache__/wsd_reader.cpython-39.pyc +0 -0
  124. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/macmorphoreader.py +0 -0
  125. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tag/libs/wsd/wsd_reader.py +0 -0
  126. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tokenize/__init__.py +0 -0
  127. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/tokenize/ko_tokenize.py +0 -0
  128. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor/trans.py +0 -0
  129. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor.egg-info/dependency_links.txt +0 -0
  130. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor.egg-info/requires.txt +0 -0
  131. {nltkor-1.2.16 → nltkor-1.2.18}/nltkor.egg-info/top_level.txt +0 -0
  132. {nltkor-1.2.16 → nltkor-1.2.18}/setup.cfg +0 -0
@@ -1,8 +1,11 @@
1
- Metadata-Version: 2.4
1
+ Metadata-Version: 2.1
2
2
  Name: nltkor
3
- Version: 1.2.16
3
+ Version: 1.2.18
4
+ Summary: UNKNOWN
4
5
  Home-page: https://modi.changwon.ac.kr/air_cwnu/nlp_tool/nltk_ko.git
6
+ License: UNKNOWN
5
7
  Keywords: string matching,pattern matching,edit distance,string to string correction,string to string matching,Levenshtein edit distance,Hamming distance,Damerau-Levenshtein distance,Jaro-Winkler distance,longest common subsequence,longest common substring,dynamic programming,approximate string matching,semantic similarity,natural language processing,NLP,information retrieval,rouge,sacrebleu,bertscore,bartscore,fasttext,glove,cosine similarity,Smith-Waterman,Needleman-Wunsch,Hirschberg,Karp-Rabin,Knuth-Morris-Pratt,Boyer-Moore
8
+ Platform: UNKNOWN
6
9
  Classifier: Programming Language :: Python :: 3.7
7
10
  Classifier: Programming Language :: Python :: 3.8
8
11
  Classifier: Programming Language :: Python :: 3.9
@@ -12,31 +15,6 @@ Classifier: Operating System :: OS Independent
12
15
  Classifier: Typing :: Typed
13
16
  Requires-Python: >=3.7
14
17
  License-File: LICENSE.txt
15
- Requires-Dist: Cython
16
- Requires-Dist: numpy<=1.26.4,>=1.23.5
17
- Requires-Dist: regex
18
- Requires-Dist: tqdm>=4.40.0
19
- Requires-Dist: joblib
20
- Requires-Dist: requests
21
- Requires-Dist: nltk>3.0
22
- Requires-Dist: pyarrow
23
- Requires-Dist: beautifulSoup4
24
- Requires-Dist: faiss-cpu==1.7.3
25
- Requires-Dist: datasets
26
- Requires-Dist: torch
27
- Requires-Dist: dill<0.3.9
28
- Requires-Dist: scikit-learn>=0.22.1
29
- Requires-Dist: transformers==4.42.2
30
- Requires-Dist: protobuf
31
- Requires-Dist: sentencepiece
32
- Requires-Dist: pandas
33
- Requires-Dist: bert_score
34
- Requires-Dist: chardet
35
- Requires-Dist: GPUtil
36
- Requires-Dist: fasttext
37
- Dynamic: classifier
38
- Dynamic: home-page
39
- Dynamic: keywords
40
- Dynamic: license-file
41
- Dynamic: requires-dist
42
- Dynamic: requires-python
18
+
19
+ UNKNOWN
20
+
@@ -8,6 +8,8 @@
8
8
  | 2 | 2024.5.22 | 차정원 | NLTKo 1.1.0 공개 |
9
9
  | 3 | 2025.2.5 | 이예나 | NLTKor 1.2.0 공개<br> bleu tensor 추가, entment 추가, accurancy norm 추가 |
10
10
  | 4 | 2025.4.3 | 이예나 | NLTKor 1.2.10 업데이트<br> espresso 오류 수정 |
11
+ | 5 | 2025.5.21 | 정찬혁 | NLTKor 1.2.18 업데이트<br> TRIE 검색 추가|
12
+
11
13
 
12
14
 
13
15
 
@@ -51,7 +53,7 @@
51
53
  - [5.11 ROUGE](#511-rouge)
52
54
  - [5.12 CIDER](#512-cider)
53
55
  - [5.13 METEOR](#513-meteor)
54
- - [5.14 EntMent](#514-entment)
56
+ - [5.14 EMR(Entity Mention Recall)](#514-emrentity-mention-recall)
55
57
  - [6 확장 평가 함수](#6-확장-평가-함수)
56
58
  - [6.1 MAUVE](#61-mauve)
57
59
  - [6.2 BERT Score](#62-bert-score)
@@ -89,6 +91,7 @@
89
91
  - [12.3 KMP 검색 알고리즘](#123-kmp-검색)
90
92
  - [12.4 Boyer-Moore 검색 알고리즘](#124-boyer-moore-검색)
91
93
  - [12.5 Faiss-Semantic 검색](#125-faiss-semantic-검색)
94
+ - [12.6 TRIE 검색](#126-trie-검색)
92
95
  - [13. 세종전자사전 (ssem)](#13-세종전자사전-ssem)
93
96
  - [13.1 객체 확인 방법](#131-객체-확인-방법)
94
97
  - [13.2 entry 접근법](#132-entry-접근법)
@@ -609,6 +612,7 @@ accuracy = correct / len(examples)
609
612
  print(f"Accuracy: {accuracy * 100:.2f}%")
610
613
  print(f"Time: {sum(inference_times)/len(inference_times)}, memory: {sum(memory_usages)/len(memory_usages)}")
611
614
  ```
615
+ **결과**
612
616
  ```
613
617
  Accuracy: 20.00
614
618
  Time: 0.05374705195426941, memory: 1409.9
@@ -915,10 +919,11 @@ TF-IDF를 n-gram에 대한 가중치로 계산하고 참조 캡션과 생성 캡
915
919
 
916
920
  요약된 텍스트가 참조 문서에 등장하는 중요 개체를 얼마나 잘 유지하고 있는지에 대한 평가 지표이다.
917
921
 
922
+ EMR().entity(원본 텍스트,요약된 텍스트)
918
923
  ```python
919
924
  >>> # -*- coding: utf-8 -*-
920
925
  >>> from nltkor.metrics import EntMent
921
- >>> EntMent().entity("국립창원대학교(총장 박민원)가 사천우주항공캠퍼스 개교와 함께 2025학년도 사천우주항공공학부 입학식을 7일 오전 11시 사천우주항공캠퍼스에서 열었다.이날 행사에는 박민원 총장을 비롯해 국민의힘 서천호 국회의원(사천·남해·하동), 윤영빈 우주항공청장, 박동식 사천시장, 김규헌 사천시의회 의장, 지역 유관기관 관계자들과 신입생 및 가족들이 참석했다. 글로컬대학30사업 선정에 따라 국립창원대와 통합을 추진 중인 경남도립거창대학, 경남도립남해대학 관계자도 함께 자리했다.행사는 1부 현판 제막식과 2부 입학식으로 진행됐으며, 박동식 사천시장은 신입생들에게 축하 선물로 금배지를 전달했고, 박민원 총장은 캠퍼스 설립에 기여한 유공자들에게 표창장을 수여했다.","국립창원대학교는 4월 7일 사천우주항공캠퍼스에서 2025학년도 사천우주항공공학부 입학식을 개최했다. 이날 행사에는 박민원 총장, 서천호 국회의원, 윤영빈 우주항공청장, 박동식 사천시장 등 주요 인사와 신입생 및 가족들이 참석했으며, 글로컬대학30사업과 관련된 거창대학·남해대학 관계자들도 함께했다. 행사는 현판 제막식과 입학식으로 나뉘어 진행되었고, 신입생들에게는 금배지가, 캠퍼스 설립 유공자들에게는 표창장이 수여되었다.")
926
+ >>> EMR().entity("국립창원대학교(총장 박민원)가 사천우주항공캠퍼스 개교와 함께 2025학년도 사천우주항공공학부 입학식을 7일 오전 11시 사천우주항공캠퍼스에서 열었다.이날 행사에는 박민원 총장을 비롯해 국민의힘 서천호 국회의원(사천·남해·하동), 윤영빈 우주항공청장, 박동식 사천시장, 김규헌 사천시의회 의장, 지역 유관기관 관계자들과 신입생 및 가족들이 참석했다. 글로컬대학30사업 선정에 따라 국립창원대와 통합을 추진 중인 경남도립거창대학, 경남도립남해대학 관계자도 함께 자리했다.행사는 1부 현판 제막식과 2부 입학식으로 진행됐으며, 박동식 사천시장은 신입생들에게 축하 선물로 금배지를 전달했고, 박민원 총장은 캠퍼스 설립에 기여한 유공자들에게 표창장을 수여했다.","국립창원대학교는 4월 7일 사천우주항공캠퍼스에서 2025학년도 사천우주항공공학부 입학식을 개최했다. 이날 행사에는 박민원 총장, 서천호 국회의원, 윤영빈 우주항공청장, 박동식 사천시장 등 주요 인사와 신입생 및 가족들이 참석했으며, 글로컬대학30사업과 관련된 거창대학·남해대학 관계자들도 함께했다. 행사는 현판 제막식과 입학식으로 나뉘어 진행되었고, 신입생들에게는 금배지가, 캠퍼스 설립 유공자들에게는 표창장이 수여되었다.")
922
927
  Downloading Espresso5 model...
923
928
  0.8888888888888888
924
929
  ```
@@ -1664,6 +1669,42 @@ Adding FAISS index...
1664
1669
  4 피아노 연주는 나를 편안하게 해줍니다. [-0.242319867, 0.6492734551, -1.4172941446, 0.... 34.069862
1665
1670
  ```
1666
1671
 
1672
+ #### 12.6 TRIE 검색
1673
+ - 텍스트 파일에 word가 포함되어 있는지 판단한다.
1674
+
1675
+ ```python
1676
+ root = {}
1677
+ dict_file = '텍스트 파일 경로'
1678
+ sc = SearchDic(root)
1679
+ with open(dict_file, 'r') as f:
1680
+ for line in f:
1681
+ if ';;' in line[:2]: continue
1682
+ k, v = line.strip().split('\t')
1683
+ sc.build_search_dict(k, v)
1684
+ # print(root)
1685
+ word = '고용 노동부'
1686
+ values, value_data = sc.search_dict(word, True)
1687
+ print(values, value_data)
1688
+
1689
+ word = '2시뉴스외전'
1690
+ values, value_data = sc.search_dict(word, True)
1691
+ print(values, value_data)
1692
+ word = '2시 뉴스외전'
1693
+ values, value_data = sc.search_dict(word, True)
1694
+ print(values, value_data)
1695
+
1696
+ word = 'gbc'
1697
+ values, value_data = sc.search_dict(word, True)
1698
+ print(values, value_data)
1699
+ ```
1700
+ **결과**
1701
+ ```
1702
+ ['고용 노동부'] ['NN']
1703
+ ['2시뉴스외전'] ['NN']
1704
+ ['2시 뉴스외전'] ['NN']
1705
+ ['bc'] ['ND']
1706
+ ```
1707
+
1667
1708
  ### 13. 세종전자사전 (ssem)
1668
1709
 
1669
1710
  우선 해당 기능을 사용하기 전에 인자 포맷에 대해 설명한다. 인자는 **entrys, entry, sense** 함수에서 사용한다. 인자 포맷을 설명하기 위해 예제는 체언의 '눈'과 용언의 '감다'를 이용하였다.
@@ -13,4 +13,4 @@ from nltkor import trans
13
13
  from nltkor import Kor_char
14
14
  from nltkor import etc
15
15
 
16
- __version__ = '1.2.16'
16
+ __version__ = '1.2.18'
@@ -53,7 +53,6 @@ from nltkor.metrics.eval import StringMetric
53
53
  """
54
54
  from nltkor.metrics.classical import DefaultMetric
55
55
  from nltkor.metrics.entment import EMR
56
- from nltkor.metrics.bleu_tensor import *
57
56
  #DefaultMetric = lazy_import.lazy_callable("nltkor.metrics.classical.DefaultMetric")
58
57
  #Mauve = lazy_import.lazy_callable("nltkor.metrics.mauve.Mauve")
59
58
  from nltkor.metrics.mauve import Mauve
@@ -7,4 +7,5 @@ from .classical import (
7
7
  BoyerMooreSearch,
8
8
  )
9
9
  from .faiss_search import FaissSearch
10
- from .kobert_tokenizer import KoBERTTokenizer
10
+ from .kobert_tokenizer import KoBERTTokenizer
11
+ from .search_dict import SearchDic
@@ -78,10 +78,10 @@ class FaissSearch:
78
78
  return FaissSearch_SenEmbed(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
79
79
  elif mode == 'word':
80
80
  return FaissSearch_WordEmbed(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
81
- elif mode == 'splade':
82
- return FaissSearch_Splade(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
81
+ elif mode == 'sparse':
82
+ return FaissSearch_Sparse(model_name_or_path=model_name_or_path, embedding_type=embedding_type)
83
83
  else:
84
- raise ValueError("choice 'sentence' or 'word' or 'splade'")
84
+ raise ValueError("choice 'sentence' or 'word' or 'sparse'")
85
85
 
86
86
 
87
87
 
@@ -233,7 +233,7 @@ class FaissSearch_SenEmbed:
233
233
 
234
234
  # Get the embeddings
235
235
  with torch.no_grad():
236
- embeddings = self.model(**encoded_text)
236
+ embeddings = self.model(encoded_text['input_ids'])
237
237
 
238
238
  # Get the proper embedding type
239
239
  if embedding_type == 'last_hidden_state':
@@ -426,7 +426,7 @@ class FaissSearch_SenEmbed:
426
426
 
427
427
  # Return the dataset
428
428
  return self.dataset
429
-
429
+
430
430
 
431
431
  # Search for the most similar elements in the dataset, given a query
432
432
  def search(self,
@@ -465,6 +465,7 @@ class FaissSearch_SenEmbed:
465
465
  # Add the scores
466
466
  results_df['score'] = scores
467
467
 
468
+
468
469
  # Sort the results by score
469
470
  results_df.sort_values("score", ascending=True, inplace=True)
470
471
 
@@ -473,8 +474,7 @@ class FaissSearch_SenEmbed:
473
474
 
474
475
 
475
476
 
476
- # FAISS Splade + ICT library wrapper class
477
- class FaissSearch_Splade(FaissSearch_SenEmbed):
477
+ class FaissSearch_Sparse(FaissSearch_SenEmbed):
478
478
  def __init__(self,
479
479
  model_name_or_path: str = 'klue/bert-base',
480
480
  tokenizer_name_or_path: str = 'klue/bert-base',
@@ -580,14 +580,14 @@ class FaissSearch_Splade(FaissSearch_SenEmbed):
580
580
 
581
581
  # Get the embeddings
582
582
  with torch.no_grad():
583
- embeddings = self.model(**encoded_text)
583
+ embeddings = self.model(encoded_text['input_ids'])
584
584
 
585
585
  # Get the last hidden state
586
586
  embeddings = embeddings['logits']
587
587
 
588
588
  embeddings = torch.sum(torch.log(1+torch.relu(embeddings)) * encoded_text['attention_mask'].unsqueeze(-1), dim=1)
589
589
  e_norm = torch.nn.functional.normalize(embeddings, p=2, dim=1, eps=1e-8)
590
-
590
+
591
591
  # Return the embeddings
592
592
  return e_norm
593
593
 
@@ -0,0 +1,95 @@
1
+ import re, os, sys
2
+ import pandas as pd
3
+ import numpy as np
4
+ import json
5
+ import argparse
6
+
7
+ class SearchDic :
8
+ def __init__ (self,root) :
9
+ self.root = root
10
+
11
+ def build_search_dict(self, word, data) -> dict:
12
+ current_dict = self.root
13
+ _end_word_ = '$$'
14
+ for letter in word:
15
+
16
+ current_dict = current_dict.setdefault(letter, {})
17
+ current_dict = current_dict.setdefault(_end_word_, data)
18
+
19
+
20
+
21
+
22
+ def search_dict(self, word, space_flag=False):
23
+ '''
24
+ TRIE 탐색
25
+ space_flag: if True then including space, otherwise do not including space
26
+ '''
27
+
28
+ values = list()
29
+ value_data = list()
30
+ if not word: return self.root.keys()
31
+
32
+ current_dict = self.root
33
+ _end_word_ = '$$'
34
+ SPACE = ' '
35
+ s = 0
36
+ for i, letter in enumerate(word):
37
+ #print(i, s, '>', letter, values, value_data, current_dict)
38
+ if letter in current_dict:
39
+ #print('\t', letter, values, value_data, current_dict)
40
+ current_dict = current_dict[letter]
41
+ if _end_word_ in current_dict :
42
+ values.append(word[s:i+1])
43
+ value_data.append(current_dict[_end_word_])
44
+ elif space_flag and letter != SPACE and SPACE in current_dict:
45
+ look_ahead_dict = current_dict[SPACE]
46
+ # print('\t==', i, letter, values, look_ahead_dict)
47
+ if letter in look_ahead_dict:
48
+ current_dict = look_ahead_dict[letter]
49
+ elif space_flag and letter == SPACE:
50
+ # print('\t##', i, letter, word[i+1], values)
51
+ continue
52
+ else:
53
+ # print('\t@@', i, letter, values)
54
+ s = i+1
55
+ current_dict = self.root
56
+ else:
57
+ if values: return values, value_data
58
+ else: return list(word), value_data
59
+
60
+
61
+ def save_dict(self, file_path):
62
+ # root dictionary를 pickle 파일로 저장
63
+ with open(file_path, 'wb') as f:
64
+ pickle.dump(self.root, f)
65
+
66
+ def load_dict(self,file_path) -> dict:
67
+ # pickle 퍄일을 읽어들인다.
68
+ with open(file_path, 'rb') as f:
69
+ return pickle.load(f)
70
+ if __name__ == "__main__":
71
+ root = {}
72
+ dict_file = '텍스트파일경로'
73
+ sc = SearchDic(root)
74
+ with open(dict_file, 'r') as f:
75
+ for line in f:
76
+ if ';;' in line[:2]: continue
77
+ k, v = line.strip().split('\t')
78
+ sc.build_search_dict(k, v)
79
+ # print(root)
80
+ word = '고용 노동부'
81
+ values, value_data = sc.search_dict(word, True)
82
+ print(values, value_data)
83
+
84
+ word = '2시뉴스외전'
85
+ values, value_data = sc.search_dict( word, True)
86
+ print(values, value_data)
87
+ word = '2시 뉴스외전'
88
+ values, value_data = sc.search_dict( word, True)
89
+ print(values, value_data)
90
+
91
+ word = 'gbc'
92
+ values, value_data = sc.search_dict( word, True)
93
+ print(values, value_data)
94
+
95
+