nkululeko 0.96.1__py3-none-any.whl → 0.96.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nkululeko/constants.py CHANGED
@@ -1,2 +1,2 @@
1
- VERSION="0.96.1"
1
+ VERSION="0.96.2"
2
2
  SAMPLING_RATE = 16000
nkululeko/experiment.py CHANGED
@@ -300,43 +300,34 @@ class Experiment:
300
300
  else:
301
301
  if not self.test_empty:
302
302
  if self.df_test.is_labeled:
303
- test_cats = self.df_test[self.target].unique()
303
+ # get printable string of categories and their counts
304
+ test_cats = self.df_test[self.target].value_counts().to_string()
304
305
  else:
305
306
  # if there is no target, copy a dummy label
306
307
  self.df_test = self._add_random_target(self.df_test).astype(
307
308
  "str"
308
309
  )
309
310
  if not self.train_empty:
310
- train_cats = self.df_train[self.target].unique()
311
+ train_cats = self.df_train[self.target].value_counts().to_string()
311
312
  if self.split3 and not self.dev_empty:
312
- dev_cats = self.df_dev[self.target].unique()
313
+ dev_cats = self.df_dev[self.target].value_counts().to_string()
313
314
  # encode the labels as numbers
314
315
  self.label_encoder = LabelEncoder()
315
316
  glob_conf.set_label_encoder(self.label_encoder)
316
317
  if not self.train_empty:
317
- if isinstance(train_cats, np.ndarray):
318
- self.util.debug(f"Categories train (nd.array): {train_cats}")
319
- else:
320
- self.util.debug(f"Categories train (list): {list(train_cats)}")
321
-
318
+ self.util.debug(f"Categories train: {train_cats}")
322
319
  self.df_train[self.target] = self.label_encoder.fit_transform(
323
320
  self.df_train[self.target]
324
321
  )
325
322
  if not self.test_empty:
326
323
  if self.df_test.is_labeled:
327
- if isinstance(test_cats, np.ndarray):
328
- self.util.debug(f"Categories test (nd.array): {test_cats}")
329
- else:
330
- self.util.debug(f"Categories test (list): {list(test_cats)}")
324
+ self.util.debug(f"Categories test: {test_cats}")
331
325
  if not self.train_empty:
332
326
  self.df_test[self.target] = self.label_encoder.transform(
333
327
  self.df_test[self.target]
334
328
  )
335
329
  if self.split3 and not self.dev_empty:
336
- if isinstance(dev_cats, np.ndarray):
337
- self.util.debug(f"Categories dev (nd.array): {dev_cats}")
338
- else:
339
- self.util.debug(f"Categories dev (list): {list(dev_cats)}")
330
+ self.util.debug(f"Categories dev: {dev_cats}")
340
331
  if not self.train_empty:
341
332
  self.df_dev[self.target] = self.label_encoder.transform(
342
333
  self.df_dev[self.target]
@@ -241,9 +241,7 @@ class Reporter:
241
241
  epoch (int, optional): Number of epoch. Defaults to None.
242
242
  """
243
243
  if not self.util.exp_is_classification():
244
- self._plot_scatter(
245
- self.truths, self.preds, plot_name.replace("cnf", "scatter"), epoch
246
- )
244
+ self._plot_scatter(self.truths, self.preds, f"{plot_name}_scatter", epoch)
247
245
  self.continuous_to_categorical()
248
246
  self._plot_confmat(self.truths, self.preds, plot_name, epoch)
249
247
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nkululeko
3
- Version: 0.96.1
3
+ Version: 0.96.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -4,13 +4,13 @@ nkululeko/aug_train.py,sha256=wpiHCJ7zsW38kumg3ypwXZe2HQrhUblAnv7P2QeJnAc,3525
4
4
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
5
5
  nkululeko/balance.py,sha256=r7opXbrqAipm2euPPaOmLlA5J10p2bHQgO5kWk2x9ro,8702
6
6
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
7
- nkululeko/constants.py,sha256=SGFx3gfUvHqg9Qr8X6a1NxL8ovndS4SAEy6Seh65maE,39
7
+ nkululeko/constants.py,sha256=lkRjjFyoitxuFHxXM_fdWt4aNcex2BxnWkZsSE7eEXQ,39
8
8
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
9
9
  nkululeko/demo.py,sha256=tu7Al2l5MCLVegkDC-NE2wcuc_YE7NRbgOlPW3yhGEs,4940
10
10
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
11
11
  nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
12
12
  nkululeko/ensemble.py,sha256=71V-rre61H3J4sh7lu-OTo4I2_g7mm_rQxwW1ARDHgY,12782
13
- nkululeko/experiment.py,sha256=TG9G9kSETT_R8d92aRKMMsb0HRGyM_GBFHBsU9A6ppw,38633
13
+ nkululeko/experiment.py,sha256=GhUP8ogqBsmgbWcTWxxnq9mHPSNN1KNK9hN4fDGuG34,38233
14
14
  nkululeko/explore.py,sha256=PjNcLuPdvWqCqYXUvGhd0hBijIhzdyi3ED1RF6o5Gjk,4212
15
15
  nkululeko/export.py,sha256=U-V4acxtuL6qKt6oAsVcM5TTeWogYUJ3GU-lA6rq6d4,4336
16
16
  nkululeko/feature_extractor.py,sha256=d3G42OOh315Aho-yLaFT739U0UI8otiB1I4ZksK8kfg,4238
@@ -123,7 +123,7 @@ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z
123
123
  nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
124
124
  nkululeko/reporting/report.py,sha256=B5eoIKMz46VKDBsi7M9u_iegzAD-E3eGCmolzSFjZ3c,1118
125
125
  nkululeko/reporting/report_item.py,sha256=drkknsyFhGviaPJNmPQtCXJmRhTSSfjNcJt0Bls6JAA,533
126
- nkululeko/reporting/reporter.py,sha256=usmc2GsqGua40p8AbV08oAcZdvoelP72vsG1xS1NzOQ,22051
126
+ nkululeko/reporting/reporter.py,sha256=QjrcdnpmVyFNUp844RZaYiv0XQb63ouD4K5Urv0Uuco,22008
127
127
  nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
128
128
  nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
129
129
  nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
@@ -137,9 +137,9 @@ nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
137
137
  nkululeko/utils/stats.py,sha256=3Fyx8q8BSKYmiufT6OkRug9RATWmGrr9BaX_y8jziWo,3074
138
138
  nkululeko/utils/unzip.py,sha256=G68f5120TjwACZC3bQcneMniddnwubPbBdMc2L5KBOo,1206
139
139
  nkululeko/utils/util.py,sha256=s7Hd7Ju1r3_WCw8gLD9YK4O6k3S_WhFcN2-XZBSctSM,18705
140
- nkululeko-0.96.1.dist-info/licenses/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
141
- nkululeko-0.96.1.dist-info/METADATA,sha256=y6Yr1jPBXvOEyS8VZiFa_as56oS8_h0Z-fYAkoBdky8,21998
142
- nkululeko-0.96.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
143
- nkululeko-0.96.1.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
144
- nkululeko-0.96.1.dist-info/top_level.txt,sha256=bf1k1YKkqcXemNX_cUgoyKqQ3_GVErPqAY-53J36jkM,19
145
- nkululeko-0.96.1.dist-info/RECORD,,
140
+ nkululeko-0.96.2.dist-info/licenses/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
141
+ nkululeko-0.96.2.dist-info/METADATA,sha256=zwsFC2hvN5qrbbI65FlnvnbrK-jbi5_0d54b23dECpQ,21998
142
+ nkululeko-0.96.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
143
+ nkululeko-0.96.2.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
144
+ nkululeko-0.96.2.dist-info/top_level.txt,sha256=bf1k1YKkqcXemNX_cUgoyKqQ3_GVErPqAY-53J36jkM,19
145
+ nkululeko-0.96.2.dist-info/RECORD,,