nkululeko 0.95.2__py3-none-any.whl → 0.95.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -428,9 +428,17 @@ class Reporter:
428
428
  target_names=labels,
429
429
  output_dict=True,
430
430
  )
431
+ # in case we hade numbers before
432
+ s_labels = [str(x) for x in labels]
431
433
  # print classifcation report in console
434
+ class_report_str = classification_report(
435
+ self.truths,
436
+ self.preds,
437
+ target_names=s_labels,
438
+ digits=4,
439
+ )
432
440
  self.util.debug(
433
- f"\n {classification_report(self.truths, self.preds, target_names=labels, digits=4)}"
441
+ f"\n {class_report_str}"
434
442
  )
435
443
  except ValueError as e:
436
444
  self.util.debug(
@@ -1,4 +1,4 @@
1
- # test.py
1
+ # testing.py
2
2
  # Just use a database as test
3
3
 
4
4
  import argparse
@@ -11,7 +11,6 @@ from nkululeko.utils.util import Util
11
11
 
12
12
 
13
13
  def do_it(config_file, outfile):
14
-
15
14
  # test if the configuration file exists
16
15
  if not os.path.isfile(config_file):
17
16
  print(f"ERROR: no such file: {config_file}")
@@ -43,7 +42,9 @@ def do_it(config_file, outfile):
43
42
 
44
43
 
45
44
  def main(src_dir):
46
- parser = argparse.ArgumentParser(description="Call the nkululeko TEST framework.")
45
+ parser = argparse.ArgumentParser(
46
+ description="Call the nkululeko TESTING framework."
47
+ )
47
48
  parser.add_argument("--config", default="exp.ini", help="The base configuration")
48
49
  parser.add_argument(
49
50
  "--outfile",
@@ -1,4 +1,4 @@
1
- """test_predictor.py.
1
+ """testing_predictor.py
2
2
 
3
3
  Predict targets from a model and save as csv file.
4
4
 
@@ -24,7 +24,7 @@ class TestPredictor:
24
24
  self.orig_df = orig_df
25
25
  self.label_encoder = labenc
26
26
  self.target = glob_conf.config["DATA"]["target"]
27
- self.util = Util("test_predictor")
27
+ self.util = Util("testing_predictor")
28
28
  # Construct full path to results directory
29
29
  res_dir = self.util.get_res_dir()
30
30
  if os.path.isabs(name):
@@ -1,4 +1,4 @@
1
- # test_pretrain.py
1
+ # testing_pretrain.py
2
2
  import argparse
3
3
  import configparser
4
4
  import json
@@ -32,7 +32,7 @@ def doit(config_file):
32
32
 
33
33
  # create a new experiment
34
34
  expr = exp.Experiment(config)
35
- module = "test_pretrain"
35
+ module = "testing_pretrain"
36
36
  expr.set_module(module)
37
37
  util = Util(module)
38
38
  util.debug(
@@ -151,7 +151,6 @@ def doit(config_file):
151
151
  # training
152
152
 
153
153
  def data_collator(data):
154
-
155
154
  files = [d["file"] for d in data]
156
155
  starts = [d["start"] for d in data]
157
156
  ends = [d["end"] for d in data]
@@ -190,7 +189,6 @@ def doit(config_file):
190
189
  return batch
191
190
 
192
191
  def compute_metrics(p: transformers.EvalPrediction):
193
-
194
192
  truth_gender = p.label_ids[:, 0].astype(int)
195
193
  preds = p.predictions
196
194
  preds_gender = np.argmax(preds, axis=1)
@@ -222,7 +220,6 @@ def doit(config_file):
222
220
  inputs,
223
221
  return_outputs=False,
224
222
  ):
225
-
226
223
  targets = inputs.pop("labels").squeeze()
227
224
  targets_gender = targets.type(torch.long)
228
225
 
nkululeko/utils/util.py CHANGED
@@ -333,13 +333,13 @@ class Util:
333
333
  if self.logger is not None:
334
334
  self.logger.warning(f"WARNING: {self.caller}: {message}")
335
335
  else:
336
- print(f"WARNING: {message}")
336
+ print(f"WARNING: {message}", flush=True)
337
337
 
338
338
  def debug(self, message):
339
339
  if self.logger is not None:
340
340
  self.logger.debug(f"DEBUG: {self.caller}: {message}")
341
341
  else:
342
- print(f"DEBUG: {message}")
342
+ print(f"DEBUG: {message}", flush=True)
343
343
 
344
344
  def set_config_val(self, section, key, value):
345
345
  try:
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nkululeko
3
- Version: 0.95.2
3
+ Version: 0.95.4
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
7
- Author-email: Felix Burkhardt <fxburk@gmail.com>
7
+ Author-email: Felix Burkhardt <fxburk@gmail.com>, Bagus Tris Atmaja <btatmaja@gmail.com>
8
8
  License: MIT
9
9
  Project-URL: Homepage, https://github.com/felixbur/nkululeko
10
10
  Project-URL: Repository, https://github.com/felixbur/nkululeko
@@ -4,13 +4,13 @@ nkululeko/aug_train.py,sha256=wpiHCJ7zsW38kumg3ypwXZe2HQrhUblAnv7P2QeJnAc,3525
4
4
  nkululeko/augment.py,sha256=3RzaxB3gRxovgJVjHXi0glprW01J7RaHhUkqotW2T3U,2955
5
5
  nkululeko/balance.py,sha256=r7opXbrqAipm2euPPaOmLlA5J10p2bHQgO5kWk2x9ro,8702
6
6
  nkululeko/cacheddataset.py,sha256=XFpWZmbJRg0pvhnIgYf0TkclxllD-Fctu-Ol0PF_00c,969
7
- nkululeko/constants.py,sha256=Y72AuIN-vPMiSM6a5x7LgZsG66VfmX8oZ3Lu5ZeMdgs,39
7
+ nkululeko/constants.py,sha256=u8bMKuY-Q7h0cU3-6sJXTegsz1gg3HcXCXsf1Xl1xeA,39
8
8
  nkululeko/demo-ft.py,sha256=iD9Pzp9QjyAv31q1cDZ75vPez7Ve8A4Cfukv5yfZdrQ,770
9
9
  nkululeko/demo.py,sha256=tu7Al2l5MCLVegkDC-NE2wcuc_YE7NRbgOlPW3yhGEs,4940
10
10
  nkululeko/demo_feats.py,sha256=BvZjeNFTlERIRlq34OHM4Z96jdDQAhB01BGQAUcX9dM,2026
11
11
  nkululeko/demo_predictor.py,sha256=lDF-xOxRdEAclOmbepAYg-BQXQdGkHfq2n74PTIoop8,4872
12
12
  nkululeko/ensemble.py,sha256=71V-rre61H3J4sh7lu-OTo4I2_g7mm_rQxwW1ARDHgY,12782
13
- nkululeko/experiment.py,sha256=hdFvRA7EoQz10nId9MwcbYOTz2ifYeGrFKVJOv9a88Q,38394
13
+ nkululeko/experiment.py,sha256=BAc220lktt_tvifl-m-ZIPO7Nwi-HzDBNyTfjPDbQkE,38397
14
14
  nkululeko/explore.py,sha256=aDVHwuo-lkih7VZrbb_zFKg5fowSrAIcx0V9wf0SRGo,4175
15
15
  nkululeko/export.py,sha256=U-V4acxtuL6qKt6oAsVcM5TTeWogYUJ3GU-lA6rq6d4,4336
16
16
  nkululeko/feature_extractor.py,sha256=CsKmBoxwNClRGu20ox_eCxMG4u_1OH8Y83FYw7GfUwA,4230
@@ -18,11 +18,12 @@ nkululeko/file_checker.py,sha256=xJY0Q6w47pnmgJVK5rcAKPYBrCpV7eBT4_3YBzTx-H8,345
18
18
  nkululeko/filter_data.py,sha256=4sGrKvMZ_hLnJPrHm_CqjDPKIRV8REWoT7nfSYGXbwo,7305
19
19
  nkululeko/fixedsegment.py,sha256=Tb92QiuiyMsOO3WRWwuGjZGibS8hbHHCrcWAXGk7g04,2868
20
20
  nkululeko/glob_conf.py,sha256=NLFh-1_I0Wdfo2EnSq1Oppx23AX6jAUpgFbk2zqZJ24,659
21
- nkululeko/modelrunner.py,sha256=OFN18uG84iJyjNVWjcvDpqbcBrmylziXCakUTNE2-ZQ,10530
21
+ nkululeko/modelrunner.py,sha256=YdyiBjPQqpq6fdVbnzA29dPVx_gU7gpYuW48nV4CsfQ,10757
22
22
  nkululeko/multidb.py,sha256=sO6OwJn8sn1-C-ig3thsIL8QMWHdV9SnJhDodKjeKrI,6876
23
- nkululeko/nkuluflag.py,sha256=PGWSmZz-PiiHLgcZJAoGOI_Y-sZDVI1ksB8p5r7riWM,3725
23
+ nkululeko/nkuluflag.py,sha256=_83LqLr2bSHjnVJuPeSAHCIyuiIbRxgpFKW6CwanWFM,3728
24
24
  nkululeko/nkululeko.py,sha256=6ALPMMIz6l0O3IRaP0q4b59ZUxpfzNqLQUqZMf5t3Zo,1976
25
- nkululeko/optim.py,sha256=dYKj69fyeqijEY9huIBEJQh1CoFSPxTdbVekv9lQ_Gk,36706
25
+ nkululeko/optim.py,sha256=Pn_02irXYJJmNG1yWA9GImHirpbXXywV61MalZb2wVA,1658
26
+ nkululeko/optimizationrunner.py,sha256=UfWU_gOPaHUVjvYaw3AoF9HoDGYxIjbCyTGmi1PVu3s,44283
26
27
  nkululeko/plots.py,sha256=lUxgyoriYTwdpHZvBBQ4e41v77deQrt0PcRDLJWijys,27503
27
28
  nkululeko/predict.py,sha256=PWv1Pc39lrxqqIWrYszVk5SL37dDL93CHgcruItNID8,2211
28
29
  nkululeko/resample.py,sha256=rn3-M1A-iwVGibfQNGyeYNa7briD24lIN9Szq_1uTJo,5194
@@ -30,9 +31,9 @@ nkululeko/runmanager.py,sha256=YtGQP0UyyQTKkilncB1XYM-T8oatzGcZEOcj5SorjJw,8902
30
31
  nkululeko/scaler.py,sha256=a4lKwWT436TV4VEvqtP1uQ58Yz67XVHr1HjO5gp3xLI,5109
31
32
  nkululeko/segment.py,sha256=7UrJEwdLmh9wDL5iBwpdJyJm9dwSxidHrHt-_D2qtxw,4949
32
33
  nkululeko/syllable_nuclei.py,sha256=5w_naKxNxz66a_qLkraemi2fggM-gWesiiBPS47iFcE,9931
33
- nkululeko/test.py,sha256=1w624vo5KTzmFC8BUStGlLDmIEAFuJUz7J0W-gp7AxI,1677
34
- nkululeko/test_predictor.py,sha256=i8vSaB8OOrdELoDttQVMs2Bc-fUOi2C5ANqnt32K3Zk,3064
35
- nkululeko/test_pretrain.py,sha256=6FZeETlWzg9Cq_sn3BFKhfH91jW26nAIDm1bJkInNNA,8463
34
+ nkululeko/testing.py,sha256=KQK_ftTAxfhhP7vtid-Wft3trRjGcPv7_D72a0w6QIE,1696
35
+ nkululeko/testing_predictor.py,sha256=xzEWpzb2oAF1nHQUFZrN2b1_2IlNWACLWWMJ2VcD7YE,3069
36
+ nkululeko/testing_pretrain.py,sha256=LASDEgkKSZoE-MEQMbkFrwX9nT28SnD0nPKBb3dgmAA,8466
36
37
  nkululeko/augmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
38
  nkululeko/augmenting/augmenter.py,sha256=TUUznEz0pe9DSMC9r7LoBckuvsJTprvypeV5-8zLn20,2846
38
39
  nkululeko/augmenting/randomsplicer.py,sha256=TQTy4RBt6XbWiuUu5Ic913DMvmwTUwEufldBJjo7i1s,2801
@@ -57,7 +58,7 @@ nkululeko/autopredict/whisper_transcriber.py,sha256=DWDvpRaV5KmUF18ojPEvxnVXm_h_
57
58
  nkululeko/autopredict/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
59
  nkululeko/autopredict/tests/test_whisper_transcriber.py,sha256=ilas6j3OUvq_xnQCRZgytQCtyrpNU6tvG5a8kPvVKBQ,5085
59
60
  nkululeko/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
- nkululeko/data/dataset.py,sha256=JLbBYGniUrjwxs-HtbIyhqO3Cv-ELfpmlq7jzij4dBc,41759
61
+ nkululeko/data/dataset.py,sha256=9qOIPseb__2NXoRye--X-PbwqGwYZKgJ9NP4UB24x2E,42468
61
62
  nkululeko/data/dataset_csv.py,sha256=AIbtB6pGk5BSQGIgfokZ7tEGFjmuOq5w2XumRSimVWs,4833
62
63
  nkululeko/feat_extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
64
  nkululeko/feat_extract/feats_agender.py,sha256=onfAQ6-xx_mFMJXEF1IX8cHBmGtGeX6weJmxbkfh1_o,3184
@@ -101,7 +102,7 @@ nkululeko/models/model_knn.py,sha256=ByQlHIU_fNtSCGCvsrMEoLVJ9q2hUC4edtpp5rVS1B8
101
102
  nkululeko/models/model_knn_reg.py,sha256=kaVP1xGNgktUGuQARi7uoJ0hmdPGHDpv2ugDesYN7RU,611
102
103
  nkululeko/models/model_lin_reg.py,sha256=xqvf-06LhBkjHRdyXFqcYD8ozYPoAsZfGqfNEtuFQLc,423
103
104
  nkululeko/models/model_mlp.py,sha256=E1gtBAGkrt5gUWCqyk3Qm7m_S1-SeJ8P7AzgHjKQ4J4,10739
104
- nkululeko/models/model_mlp_regression.py,sha256=j8Y1nRHU9YJSQuBKpZb-JL-5seHGr6N5OX1biKj3Xa0,10297
105
+ nkululeko/models/model_mlp_regression.py,sha256=Yl5RN7VQSuRjDcutUpxqoRON_u3tPiPCn9wSDkMD-Lg,10437
105
106
  nkululeko/models/model_svm.py,sha256=zP8ykLhCZTYvwSqw06XHuzq9qMBtsiYpxjUpWDAnMyA,995
106
107
  nkululeko/models/model_svr.py,sha256=FEwYRdgqwgGhZdkpRnT7Ef12lklWi6GZL28PyV99xWs,726
107
108
  nkululeko/models/model_tree.py,sha256=6L3PD3aIiiQz1RPWS6z3Edx4f0gnR7AOfBKOJzf0BNU,433
@@ -119,7 +120,7 @@ nkululeko/reporting/defines.py,sha256=0vh-Tlx4fAPpk1o6mP_4x3EkIoqzYMr38IZnj-JM5z
119
120
  nkululeko/reporting/latex_writer.py,sha256=NGwSIfd4nfslDkNUOSZSdqY_VDLA8634thyhe-vj1bY,1824
120
121
  nkululeko/reporting/report.py,sha256=B5eoIKMz46VKDBsi7M9u_iegzAD-E3eGCmolzSFjZ3c,1118
121
122
  nkululeko/reporting/report_item.py,sha256=drkknsyFhGviaPJNmPQtCXJmRhTSSfjNcJt0Bls6JAA,533
122
- nkululeko/reporting/reporter.py,sha256=e-piNtnv0QUWKs9Ha_d4CzgqJxPBG9XBm3Ru8y0ot-U,20896
123
+ nkululeko/reporting/reporter.py,sha256=awBaewERa8xSQtZ0c1KVAQhV77L-BvXSDyU959hQ6qU,21150
123
124
  nkululeko/reporting/result.py,sha256=G63a2tHCwHhM6NBJgYzsWKWJm4Yu3r4hsCHA2Km7eHU,1073
124
125
  nkululeko/segmenting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
125
126
  nkululeko/segmenting/seg_inaspeechsegmenter.py,sha256=b3t0zdpJYofKWMyKRMtMMX91xeR-k8d5pbnNaQHcsOE,1902
@@ -132,10 +133,10 @@ nkululeko/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
132
133
  nkululeko/utils/files.py,sha256=SrrYaU7AB80MZHiV1jcB0h_zigvYLYgSVNTXV4ao38g,4593
133
134
  nkululeko/utils/stats.py,sha256=3Fyx8q8BSKYmiufT6OkRug9RATWmGrr9BaX_y8jziWo,3074
134
135
  nkululeko/utils/unzip.py,sha256=G68f5120TjwACZC3bQcneMniddnwubPbBdMc2L5KBOo,1206
135
- nkululeko/utils/util.py,sha256=o62TZRcxO1VflINai6ojEzSmcbXIFInNLGogSbqJgiA,18561
136
- nkululeko-0.95.2.dist-info/licenses/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
137
- nkululeko-0.95.2.dist-info/METADATA,sha256=kmIo69SGcBnb9cDhMiU8Pon3Ozkv7z0AO9ye7uWI--A,21958
138
- nkululeko-0.95.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
139
- nkululeko-0.95.2.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
140
- nkululeko-0.95.2.dist-info/top_level.txt,sha256=bf1k1YKkqcXemNX_cUgoyKqQ3_GVErPqAY-53J36jkM,19
141
- nkululeko-0.95.2.dist-info/RECORD,,
136
+ nkululeko/utils/util.py,sha256=yHgzfj-8ncgCvyrrrH_NDWCh6VmhAqVYY6Vlgyg-c6E,18585
137
+ nkululeko-0.95.4.dist-info/licenses/LICENSE,sha256=0zGP5B_W35yAcGfHPS18Q2B8UhvLRY3dQq1MhpsJU_U,1076
138
+ nkululeko-0.95.4.dist-info/METADATA,sha256=c2xHfbeVNHKmSud9GAzIWJu-i1emPLDp7HQq08jVt6g,21998
139
+ nkululeko-0.95.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
140
+ nkululeko-0.95.4.dist-info/entry_points.txt,sha256=lNTkFEdh6Kjo5o95ZAWf_0Lq-4ztGoAoMVSDuPtuyS0,442
141
+ nkululeko-0.95.4.dist-info/top_level.txt,sha256=bf1k1YKkqcXemNX_cUgoyKqQ3_GVErPqAY-53J36jkM,19
142
+ nkululeko-0.95.4.dist-info/RECORD,,