nkululeko 0.93.9__tar.gz → 0.93.11__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. {nkululeko-0.93.9 → nkululeko-0.93.11}/CHANGELOG.md +9 -0
  2. {nkululeko-0.93.9/nkululeko.egg-info → nkululeko-0.93.11}/PKG-INFO +10 -1
  3. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/constants.py +1 -1
  4. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_import.py +6 -1
  5. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model.py +1 -0
  6. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/plots.py +1 -2
  7. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/reporter.py +12 -0
  8. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/segment.py +6 -6
  9. {nkululeko-0.93.9 → nkululeko-0.93.11/nkululeko.egg-info}/PKG-INFO +10 -1
  10. {nkululeko-0.93.9 → nkululeko-0.93.11}/LICENSE +0 -0
  11. {nkululeko-0.93.9 → nkululeko-0.93.11}/README.md +0 -0
  12. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/aesdd/process_database.py +0 -0
  13. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/androids/process_database.py +0 -0
  14. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/ased/process_database.py +0 -0
  15. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/asvp-esd/process_database.py +0 -0
  16. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/baved/process_database.py +0 -0
  17. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/cafe/process_database.py +0 -0
  18. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/clac/process_database.py +0 -0
  19. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/cmu-mosei/process_database.py +0 -0
  20. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/demos/process_database.py +0 -0
  21. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/ekorpus/process_database.py +0 -0
  22. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emns/process_database.py +0 -0
  23. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emofilm/convert_to_16k.py +0 -0
  24. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emofilm/process_database.py +0 -0
  25. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emorynlp/process_database.py +0 -0
  26. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emov-db/process_database.py +0 -0
  27. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emovo/process_database.py +0 -0
  28. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/emozionalmente/create.py +0 -0
  29. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/enterface/process_database.py +0 -0
  30. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/esd/process_database.py +0 -0
  31. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/gerparas/process_database.py +0 -0
  32. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/iemocap/process_database.py +0 -0
  33. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/jl/process_database.py +0 -0
  34. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/jtes/process_database.py +0 -0
  35. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/meld/process_database.py +0 -0
  36. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/mesd/process_database.py +0 -0
  37. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/mess/process_database.py +0 -0
  38. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/mlendsnd/process_database.py +0 -0
  39. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/msp-improv/process_database2.py +0 -0
  40. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/msp-podcast/process_database.py +0 -0
  41. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/oreau2/process_database.py +0 -0
  42. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/portuguese/process_database.py +0 -0
  43. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/ravdess/process_database.py +0 -0
  44. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/ravdess/process_database_speaker.py +0 -0
  45. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/savee/process_database.py +0 -0
  46. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/shemo/process_database.py +0 -0
  47. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/subesco/process_database.py +0 -0
  48. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/tess/process_database.py +0 -0
  49. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/thorsten-emotional/process_database.py +0 -0
  50. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/urdu/process_database.py +0 -0
  51. {nkululeko-0.93.9 → nkululeko-0.93.11}/data/vivae/process_database.py +0 -0
  52. {nkululeko-0.93.9 → nkululeko-0.93.11}/docs/source/conf.py +0 -0
  53. {nkululeko-0.93.9 → nkululeko-0.93.11}/meta/demos/demo_best_model.py +0 -0
  54. {nkululeko-0.93.9 → nkululeko-0.93.11}/meta/demos/my_experiment.py +0 -0
  55. {nkululeko-0.93.9 → nkululeko-0.93.11}/meta/demos/my_experiment_local.py +0 -0
  56. {nkululeko-0.93.9 → nkululeko-0.93.11}/meta/demos/plot_faster_anim.py +0 -0
  57. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/__init__.py +0 -0
  58. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/aug_train.py +0 -0
  59. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/augment.py +0 -0
  60. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/augmenting/__init__.py +0 -0
  61. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/augmenting/augmenter.py +0 -0
  62. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/augmenting/randomsplicer.py +0 -0
  63. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/augmenting/randomsplicing.py +0 -0
  64. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/augmenting/resampler.py +0 -0
  65. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/__init__.py +0 -0
  66. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_age.py +0 -0
  67. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_arousal.py +0 -0
  68. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_dominance.py +0 -0
  69. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_gender.py +0 -0
  70. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_mos.py +0 -0
  71. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_pesq.py +0 -0
  72. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_sdr.py +0 -0
  73. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_sid.py +0 -0
  74. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_snr.py +0 -0
  75. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_stoi.py +0 -0
  76. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/ap_valence.py +0 -0
  77. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/autopredict/estimate_snr.py +0 -0
  78. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/cacheddataset.py +0 -0
  79. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/data/__init__.py +0 -0
  80. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/data/dataset.py +0 -0
  81. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/data/dataset_csv.py +0 -0
  82. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/demo-ft.py +0 -0
  83. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/demo.py +0 -0
  84. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/demo_feats.py +0 -0
  85. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/demo_predictor.py +0 -0
  86. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/ensemble.py +0 -0
  87. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/experiment.py +0 -0
  88. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/explore.py +0 -0
  89. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/export.py +0 -0
  90. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/__init__.py +0 -0
  91. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_agender.py +0 -0
  92. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  93. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_analyser.py +0 -0
  94. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_ast.py +0 -0
  95. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_auddim.py +0 -0
  96. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  97. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_clap.py +0 -0
  98. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_hubert.py +0 -0
  99. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_mld.py +0 -0
  100. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_mos.py +0 -0
  101. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  102. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  103. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_praat.py +0 -0
  104. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_snr.py +0 -0
  105. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_spectra.py +0 -0
  106. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  107. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_squim.py +0 -0
  108. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_trill.py +0 -0
  109. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  110. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  111. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feats_whisper.py +0 -0
  112. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/featureset.py +0 -0
  113. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  114. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  115. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/feature_extractor.py +0 -0
  116. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/file_checker.py +0 -0
  117. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/filter_data.py +0 -0
  118. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/fixedsegment.py +0 -0
  119. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/glob_conf.py +0 -0
  120. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/losses/__init__.py +0 -0
  121. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/losses/loss_ccc.py +0 -0
  122. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/losses/loss_softf1loss.py +0 -0
  123. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/modelrunner.py +0 -0
  124. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/__init__.py +0 -0
  125. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_bayes.py +0 -0
  126. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_cnn.py +0 -0
  127. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_gmm.py +0 -0
  128. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_knn.py +0 -0
  129. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_knn_reg.py +0 -0
  130. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_lin_reg.py +0 -0
  131. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_mlp.py +0 -0
  132. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_mlp_regression.py +0 -0
  133. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_svm.py +0 -0
  134. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_svr.py +0 -0
  135. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_tree.py +0 -0
  136. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_tree_reg.py +0 -0
  137. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_tuned.py +0 -0
  138. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_xgb.py +0 -0
  139. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/models/model_xgr.py +0 -0
  140. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/multidb.py +0 -0
  141. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/nkuluflag.py +0 -0
  142. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/nkululeko.py +0 -0
  143. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/predict.py +0 -0
  144. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/__init__.py +0 -0
  145. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/defines.py +0 -0
  146. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/latex_writer.py +0 -0
  147. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/report.py +0 -0
  148. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/report_item.py +0 -0
  149. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/reporting/result.py +0 -0
  150. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/resample.py +0 -0
  151. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/runmanager.py +0 -0
  152. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/scaler.py +0 -0
  153. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/segmenting/__init__.py +0 -0
  154. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  155. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/segmenting/seg_pyannote.py +0 -0
  156. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/segmenting/seg_silero.py +0 -0
  157. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/syllable_nuclei.py +0 -0
  158. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/test.py +0 -0
  159. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/test_predictor.py +0 -0
  160. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/test_pretrain.py +0 -0
  161. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/utils/__init__.py +0 -0
  162. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/utils/files.py +0 -0
  163. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/utils/stats.py +0 -0
  164. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko/utils/util.py +0 -0
  165. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko.egg-info/SOURCES.txt +0 -0
  166. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko.egg-info/dependency_links.txt +0 -0
  167. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko.egg-info/entry_points.txt +0 -0
  168. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko.egg-info/requires.txt +0 -0
  169. {nkululeko-0.93.9 → nkululeko-0.93.11}/nkululeko.egg-info/top_level.txt +0 -0
  170. {nkululeko-0.93.9 → nkululeko-0.93.11}/pyproject.toml +0 -0
  171. {nkululeko-0.93.9 → nkululeko-0.93.11}/setup.cfg +0 -0
  172. {nkululeko-0.93.9 → nkululeko-0.93.11}/setup.py +0 -0
  173. {nkululeko-0.93.9 → nkululeko-0.93.11}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,15 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.93.11
5
+ --------------
6
+ * bugfix: silero segmenter assigned file duration values
7
+
8
+ Version 0.93.10
9
+ --------------
10
+ * added nan check for imported features
11
+ * added LOGO result output
12
+
4
13
  Version 0.93.9
5
14
  --------------
6
15
  * added manual seed to torch models
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.9
3
+ Version: 0.93.11
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.11
357
+ --------------
358
+ * bugfix: silero segmenter assigned file duration values
359
+
360
+ Version 0.93.10
361
+ --------------
362
+ * added nan check for imported features
363
+ * added LOGO result output
364
+
356
365
  Version 0.93.9
357
366
  --------------
358
367
  * added manual seed to torch models
@@ -1,2 +1,2 @@
1
- VERSION="0.93.9"
1
+ VERSION="0.93.11"
2
2
  SAMPLING_RATE = 16000
@@ -30,7 +30,7 @@ class ImportSet(Featureset):
30
30
  "feature type == import needs import_file = ['file1', 'filex']"
31
31
  )
32
32
  except SyntaxError:
33
- if type(feat_import_files) == str:
33
+ if type(feat_import_files) is str:
34
34
  feat_import_files = [feat_import_files]
35
35
  else:
36
36
  self.util.error(f"import_file is wrong: {feat_import_files}")
@@ -40,6 +40,11 @@ class ImportSet(Featureset):
40
40
  if not os.path.isfile(feat_import_file):
41
41
  self.util.error(f"no import file: {feat_import_file}")
42
42
  df = audformat.utils.read_csv(feat_import_file)
43
+ if df.isnull().values.any():
44
+ self.util.warn(
45
+ f"imported features contain {df.isna().sum()} NAN, filling with zero."
46
+ )
47
+ df = df.fillna(0)
43
48
  df = self.util.make_segmented_index(df)
44
49
  df = df[df.index.isin(self.data_df.index)]
45
50
  if import_files_append:
@@ -171,6 +171,7 @@ class Model:
171
171
  f"LOGO: {self.logo} folds: mean {results.mean():.3f}, std:"
172
172
  f" {results.std():.3f}"
173
173
  )
174
+ report.print_logo(results)
174
175
 
175
176
  def train(self):
176
177
  """Train the model."""
@@ -628,8 +628,7 @@ class Plots:
628
628
  # one up because of the runs
629
629
  fig_dir = self.util.get_path("fig_dir") + "../"
630
630
  exp_name = self.util.get_exp_name(only_data=True)
631
- format = self.util.config_val("PLOT", "format", "png")
632
- filename = f"{fig_dir}{exp_name}EXPL_tree-plot.{format}"
631
+ filename = f"{fig_dir}{exp_name}EXPL_tree-plot.{self.format}"
633
632
  fig = ax.figure
634
633
  fig.savefig(filename)
635
634
  fig.clear()
@@ -380,6 +380,18 @@ class Reporter:
380
380
  def set_filename_add(self, my_string):
381
381
  self.filenameadd = f"_{my_string}"
382
382
 
383
+ def print_logo(self, results):
384
+ res_dir = self.util.get_path("res_dir")
385
+ result_str = f"LOGO results: [{','.join(results.astype(str))}]"
386
+ file_name = f"{res_dir}/logo_results.txt"
387
+ with open(file_name, "w") as text_file:
388
+ text_file.write(
389
+ f"LOGO: mean {results.mean():.3f}, std: " + f"{results.std():.3f}"
390
+ )
391
+ text_file.write("\n")
392
+ text_file.write(result_str)
393
+ self.util.debug(result_str)
394
+
383
395
  def print_results(self, epoch=None):
384
396
  if epoch is None:
385
397
  epoch = self.epoch
@@ -62,6 +62,11 @@ def main():
62
62
  expr.fill_train_and_tests()
63
63
  util.debug(f"train shape : {expr.df_train.shape}, test shape:{expr.df_test.shape}")
64
64
 
65
+ def calc_dur(x):
66
+ starts = x[1]
67
+ ends = x[2]
68
+ return (ends - starts).total_seconds()
69
+
65
70
  # segment
66
71
  segmented_file = util.config_val("SEGMENT", "result", "segmented.csv")
67
72
 
@@ -104,16 +109,11 @@ def main():
104
109
  df_seg = df_seg.drop(columns=[target])
105
110
  df_seg = df_seg.rename(columns={"class_label": target})
106
111
  # save file
112
+ df_seg["duration"] = df_seg.index.to_series().map(lambda x: calc_dur(x))
107
113
  df_seg.to_csv(f"{expr.data_dir}/{segmented_file}")
108
114
 
109
- def calc_dur(x):
110
- starts = x[1]
111
- ends = x[2]
112
- return (ends - starts).total_seconds()
113
-
114
115
  if "duration" not in df.columns:
115
116
  df["duration"] = df.index.to_series().map(lambda x: calc_dur(x))
116
- df_seg["duration"] = df_seg.index.to_series().map(lambda x: calc_dur(x))
117
117
  num_before = df.shape[0]
118
118
  num_after = df_seg.shape[0]
119
119
  util.debug(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.9
3
+ Version: 0.93.11
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.11
357
+ --------------
358
+ * bugfix: silero segmenter assigned file duration values
359
+
360
+ Version 0.93.10
361
+ --------------
362
+ * added nan check for imported features
363
+ * added LOGO result output
364
+
356
365
  Version 0.93.9
357
366
  --------------
358
367
  * added manual seed to torch models
File without changes
File without changes
File without changes
File without changes
File without changes