nkululeko 0.93.8__tar.gz → 0.93.10__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. {nkululeko-0.93.8 → nkululeko-0.93.10}/CHANGELOG.md +9 -0
  2. {nkululeko-0.93.8/nkululeko.egg-info → nkululeko-0.93.10}/PKG-INFO +10 -1
  3. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/constants.py +1 -1
  4. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_import.py +6 -1
  5. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model.py +1 -0
  6. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_mlp.py +4 -0
  7. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_mlp_regression.py +4 -0
  8. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/reporter.py +12 -0
  9. {nkululeko-0.93.8 → nkululeko-0.93.10/nkululeko.egg-info}/PKG-INFO +10 -1
  10. {nkululeko-0.93.8 → nkululeko-0.93.10}/LICENSE +0 -0
  11. {nkululeko-0.93.8 → nkululeko-0.93.10}/README.md +0 -0
  12. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/aesdd/process_database.py +0 -0
  13. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/androids/process_database.py +0 -0
  14. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/ased/process_database.py +0 -0
  15. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/asvp-esd/process_database.py +0 -0
  16. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/baved/process_database.py +0 -0
  17. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/cafe/process_database.py +0 -0
  18. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/clac/process_database.py +0 -0
  19. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/cmu-mosei/process_database.py +0 -0
  20. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/demos/process_database.py +0 -0
  21. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/ekorpus/process_database.py +0 -0
  22. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emns/process_database.py +0 -0
  23. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emofilm/convert_to_16k.py +0 -0
  24. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emofilm/process_database.py +0 -0
  25. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emorynlp/process_database.py +0 -0
  26. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emov-db/process_database.py +0 -0
  27. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emovo/process_database.py +0 -0
  28. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/emozionalmente/create.py +0 -0
  29. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/enterface/process_database.py +0 -0
  30. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/esd/process_database.py +0 -0
  31. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/gerparas/process_database.py +0 -0
  32. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/iemocap/process_database.py +0 -0
  33. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/jl/process_database.py +0 -0
  34. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/jtes/process_database.py +0 -0
  35. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/meld/process_database.py +0 -0
  36. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/mesd/process_database.py +0 -0
  37. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/mess/process_database.py +0 -0
  38. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/mlendsnd/process_database.py +0 -0
  39. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/msp-improv/process_database2.py +0 -0
  40. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/msp-podcast/process_database.py +0 -0
  41. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/oreau2/process_database.py +0 -0
  42. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/portuguese/process_database.py +0 -0
  43. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/ravdess/process_database.py +0 -0
  44. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/ravdess/process_database_speaker.py +0 -0
  45. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/savee/process_database.py +0 -0
  46. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/shemo/process_database.py +0 -0
  47. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/subesco/process_database.py +0 -0
  48. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/tess/process_database.py +0 -0
  49. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/thorsten-emotional/process_database.py +0 -0
  50. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/urdu/process_database.py +0 -0
  51. {nkululeko-0.93.8 → nkululeko-0.93.10}/data/vivae/process_database.py +0 -0
  52. {nkululeko-0.93.8 → nkululeko-0.93.10}/docs/source/conf.py +0 -0
  53. {nkululeko-0.93.8 → nkululeko-0.93.10}/meta/demos/demo_best_model.py +0 -0
  54. {nkululeko-0.93.8 → nkululeko-0.93.10}/meta/demos/my_experiment.py +0 -0
  55. {nkululeko-0.93.8 → nkululeko-0.93.10}/meta/demos/my_experiment_local.py +0 -0
  56. {nkululeko-0.93.8 → nkululeko-0.93.10}/meta/demos/plot_faster_anim.py +0 -0
  57. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/__init__.py +0 -0
  58. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/aug_train.py +0 -0
  59. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/augment.py +0 -0
  60. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/augmenting/__init__.py +0 -0
  61. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/augmenting/augmenter.py +0 -0
  62. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/augmenting/randomsplicer.py +0 -0
  63. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/augmenting/randomsplicing.py +0 -0
  64. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/augmenting/resampler.py +0 -0
  65. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/__init__.py +0 -0
  66. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_age.py +0 -0
  67. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_arousal.py +0 -0
  68. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_dominance.py +0 -0
  69. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_gender.py +0 -0
  70. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_mos.py +0 -0
  71. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_pesq.py +0 -0
  72. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_sdr.py +0 -0
  73. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_sid.py +0 -0
  74. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_snr.py +0 -0
  75. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_stoi.py +0 -0
  76. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/ap_valence.py +0 -0
  77. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/autopredict/estimate_snr.py +0 -0
  78. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/cacheddataset.py +0 -0
  79. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/data/__init__.py +0 -0
  80. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/data/dataset.py +0 -0
  81. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/data/dataset_csv.py +0 -0
  82. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/demo-ft.py +0 -0
  83. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/demo.py +0 -0
  84. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/demo_feats.py +0 -0
  85. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/demo_predictor.py +0 -0
  86. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/ensemble.py +0 -0
  87. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/experiment.py +0 -0
  88. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/explore.py +0 -0
  89. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/export.py +0 -0
  90. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/__init__.py +0 -0
  91. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_agender.py +0 -0
  92. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  93. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_analyser.py +0 -0
  94. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_ast.py +0 -0
  95. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_auddim.py +0 -0
  96. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  97. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_clap.py +0 -0
  98. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_hubert.py +0 -0
  99. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_mld.py +0 -0
  100. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_mos.py +0 -0
  101. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  102. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  103. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_praat.py +0 -0
  104. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_snr.py +0 -0
  105. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_spectra.py +0 -0
  106. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  107. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_squim.py +0 -0
  108. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_trill.py +0 -0
  109. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  110. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  111. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feats_whisper.py +0 -0
  112. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/featureset.py +0 -0
  113. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  114. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  115. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/feature_extractor.py +0 -0
  116. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/file_checker.py +0 -0
  117. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/filter_data.py +0 -0
  118. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/fixedsegment.py +0 -0
  119. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/glob_conf.py +0 -0
  120. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/losses/__init__.py +0 -0
  121. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/losses/loss_ccc.py +0 -0
  122. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/losses/loss_softf1loss.py +0 -0
  123. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/modelrunner.py +0 -0
  124. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/__init__.py +0 -0
  125. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_bayes.py +0 -0
  126. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_cnn.py +0 -0
  127. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_gmm.py +0 -0
  128. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_knn.py +0 -0
  129. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_knn_reg.py +0 -0
  130. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_lin_reg.py +0 -0
  131. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_svm.py +0 -0
  132. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_svr.py +0 -0
  133. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_tree.py +0 -0
  134. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_tree_reg.py +0 -0
  135. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_tuned.py +0 -0
  136. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_xgb.py +0 -0
  137. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/models/model_xgr.py +0 -0
  138. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/multidb.py +0 -0
  139. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/nkuluflag.py +0 -0
  140. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/nkululeko.py +0 -0
  141. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/plots.py +0 -0
  142. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/predict.py +0 -0
  143. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/__init__.py +0 -0
  144. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/defines.py +0 -0
  145. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/latex_writer.py +0 -0
  146. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/report.py +0 -0
  147. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/report_item.py +0 -0
  148. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/reporting/result.py +0 -0
  149. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/resample.py +0 -0
  150. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/runmanager.py +0 -0
  151. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/scaler.py +0 -0
  152. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/segment.py +0 -0
  153. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/segmenting/__init__.py +0 -0
  154. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  155. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/segmenting/seg_pyannote.py +0 -0
  156. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/segmenting/seg_silero.py +0 -0
  157. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/syllable_nuclei.py +0 -0
  158. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/test.py +0 -0
  159. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/test_predictor.py +0 -0
  160. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/test_pretrain.py +0 -0
  161. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/utils/__init__.py +0 -0
  162. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/utils/files.py +0 -0
  163. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/utils/stats.py +0 -0
  164. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko/utils/util.py +0 -0
  165. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko.egg-info/SOURCES.txt +0 -0
  166. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko.egg-info/dependency_links.txt +0 -0
  167. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko.egg-info/entry_points.txt +0 -0
  168. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko.egg-info/requires.txt +0 -0
  169. {nkululeko-0.93.8 → nkululeko-0.93.10}/nkululeko.egg-info/top_level.txt +0 -0
  170. {nkululeko-0.93.8 → nkululeko-0.93.10}/pyproject.toml +0 -0
  171. {nkululeko-0.93.8 → nkululeko-0.93.10}/setup.cfg +0 -0
  172. {nkululeko-0.93.8 → nkululeko-0.93.10}/setup.py +0 -0
  173. {nkululeko-0.93.8 → nkululeko-0.93.10}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,15 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.93.10
5
+ --------------
6
+ * added nan check for imported features
7
+ * added LOGO result output
8
+
9
+ Version 0.93.9
10
+ --------------
11
+ * added manual seed to torch models
12
+
4
13
  Version 0.93.8
5
14
  --------------
6
15
  * fixed bugs in plot
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.8
3
+ Version: 0.93.10
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.10
357
+ --------------
358
+ * added nan check for imported features
359
+ * added LOGO result output
360
+
361
+ Version 0.93.9
362
+ --------------
363
+ * added manual seed to torch models
364
+
356
365
  Version 0.93.8
357
366
  --------------
358
367
  * fixed bugs in plot
@@ -1,2 +1,2 @@
1
- VERSION="0.93.8"
1
+ VERSION="0.93.10"
2
2
  SAMPLING_RATE = 16000
@@ -30,7 +30,7 @@ class ImportSet(Featureset):
30
30
  "feature type == import needs import_file = ['file1', 'filex']"
31
31
  )
32
32
  except SyntaxError:
33
- if type(feat_import_files) == str:
33
+ if type(feat_import_files) is str:
34
34
  feat_import_files = [feat_import_files]
35
35
  else:
36
36
  self.util.error(f"import_file is wrong: {feat_import_files}")
@@ -40,6 +40,11 @@ class ImportSet(Featureset):
40
40
  if not os.path.isfile(feat_import_file):
41
41
  self.util.error(f"no import file: {feat_import_file}")
42
42
  df = audformat.utils.read_csv(feat_import_file)
43
+ if df.isnull().values.any():
44
+ self.util.warn(
45
+ f"imported features contain {df.isna().sum()} NAN, filling with zero."
46
+ )
47
+ df = df.fillna(0)
43
48
  df = self.util.make_segmented_index(df)
44
49
  df = df[df.index.isin(self.data_df.index)]
45
50
  if import_files_append:
@@ -171,6 +171,7 @@ class Model:
171
171
  f"LOGO: {self.logo} folds: mean {results.mean():.3f}, std:"
172
172
  f" {results.std():.3f}"
173
173
  )
174
+ report.print_logo(results)
174
175
 
175
176
  def train(self):
176
177
  """Train the model."""
@@ -31,6 +31,10 @@ class MLPModel(Model):
31
31
  super().set_model_type("ann")
32
32
  self.name = "mlp"
33
33
  self.target = glob_conf.config["DATA"]["target"]
34
+ manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
35
+ if manual_seed:
36
+ self.util.debug(f"seeding random to {23}")
37
+ torch.manual_seed(23)
34
38
  labels = glob_conf.labels
35
39
  self.class_num = len(labels)
36
40
  # set up loss criterion
@@ -36,6 +36,10 @@ class MLP_Reg_model(Model):
36
36
  else:
37
37
  self.util.error(f"unknown loss function: {criterion}")
38
38
  self.util.debug(f"training model with {criterion} loss function")
39
+ manual_seed = eval(self.util.config_val("MODEL", "manual_seed", "True"))
40
+ if manual_seed:
41
+ self.util.debug(f"seeding random to {23}")
42
+ torch.manual_seed(23)
39
43
  # set up the model
40
44
  cuda = "cuda" if torch.cuda.is_available() else "cpu"
41
45
  self.device = self.util.config_val("MODEL", "device", cuda)
@@ -380,6 +380,18 @@ class Reporter:
380
380
  def set_filename_add(self, my_string):
381
381
  self.filenameadd = f"_{my_string}"
382
382
 
383
+ def print_logo(self, results):
384
+ res_dir = self.util.get_path("res_dir")
385
+ result_str = f"LOGO results: [{','.join(results.astype(str))}]"
386
+ file_name = f"{res_dir}/logo_results.txt"
387
+ with open(file_name, "w") as text_file:
388
+ text_file.write(
389
+ f"LOGO: mean {results.mean():.3f}, std: " + f"{results.std():.3f}"
390
+ )
391
+ text_file.write("\n")
392
+ text_file.write(result_str)
393
+ self.util.debug(result_str)
394
+
383
395
  def print_results(self, epoch=None):
384
396
  if epoch is None:
385
397
  epoch = self.epoch
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.8
3
+ Version: 0.93.10
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -353,6 +353,15 @@ If you use it, please mention the Nkululeko paper:
353
353
  Changelog
354
354
  =========
355
355
 
356
+ Version 0.93.10
357
+ --------------
358
+ * added nan check for imported features
359
+ * added LOGO result output
360
+
361
+ Version 0.93.9
362
+ --------------
363
+ * added manual seed to torch models
364
+
356
365
  Version 0.93.8
357
366
  --------------
358
367
  * fixed bugs in plot
File without changes
File without changes
File without changes
File without changes
File without changes