nkululeko 0.93.4__tar.gz → 0.93.6__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. {nkululeko-0.93.4 → nkululeko-0.93.6}/CHANGELOG.md +8 -0
  2. {nkululeko-0.93.4/nkululeko.egg-info → nkululeko-0.93.6}/PKG-INFO +10 -2
  3. {nkululeko-0.93.4 → nkululeko-0.93.6}/README.md +1 -1
  4. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/constants.py +1 -1
  5. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/data/dataset.py +26 -11
  6. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/resample.py +3 -3
  7. {nkululeko-0.93.4 → nkululeko-0.93.6/nkululeko.egg-info}/PKG-INFO +10 -2
  8. {nkululeko-0.93.4 → nkululeko-0.93.6}/LICENSE +0 -0
  9. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/aesdd/process_database.py +0 -0
  10. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/androids/process_database.py +0 -0
  11. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/ased/process_database.py +0 -0
  12. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/asvp-esd/process_database.py +0 -0
  13. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/baved/process_database.py +0 -0
  14. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/cafe/process_database.py +0 -0
  15. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/clac/process_database.py +0 -0
  16. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/cmu-mosei/process_database.py +0 -0
  17. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/demos/process_database.py +0 -0
  18. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/ekorpus/process_database.py +0 -0
  19. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emns/process_database.py +0 -0
  20. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emofilm/convert_to_16k.py +0 -0
  21. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emofilm/process_database.py +0 -0
  22. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emorynlp/process_database.py +0 -0
  23. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emov-db/process_database.py +0 -0
  24. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emovo/process_database.py +0 -0
  25. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/emozionalmente/create.py +0 -0
  26. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/enterface/process_database.py +0 -0
  27. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/esd/process_database.py +0 -0
  28. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/gerparas/process_database.py +0 -0
  29. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/iemocap/process_database.py +0 -0
  30. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/jl/process_database.py +0 -0
  31. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/jtes/process_database.py +0 -0
  32. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/meld/process_database.py +0 -0
  33. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/mesd/process_database.py +0 -0
  34. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/mess/process_database.py +0 -0
  35. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/mlendsnd/process_database.py +0 -0
  36. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/msp-improv/process_database2.py +0 -0
  37. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/msp-podcast/process_database.py +0 -0
  38. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/oreau2/process_database.py +0 -0
  39. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/portuguese/process_database.py +0 -0
  40. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/ravdess/process_database.py +0 -0
  41. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/ravdess/process_database_speaker.py +0 -0
  42. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/savee/process_database.py +0 -0
  43. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/shemo/process_database.py +0 -0
  44. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/subesco/process_database.py +0 -0
  45. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/tess/process_database.py +0 -0
  46. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/thorsten-emotional/process_database.py +0 -0
  47. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/urdu/process_database.py +0 -0
  48. {nkululeko-0.93.4 → nkululeko-0.93.6}/data/vivae/process_database.py +0 -0
  49. {nkululeko-0.93.4 → nkululeko-0.93.6}/docs/source/conf.py +0 -0
  50. {nkululeko-0.93.4 → nkululeko-0.93.6}/meta/demos/demo_best_model.py +0 -0
  51. {nkululeko-0.93.4 → nkululeko-0.93.6}/meta/demos/my_experiment.py +0 -0
  52. {nkululeko-0.93.4 → nkululeko-0.93.6}/meta/demos/my_experiment_local.py +0 -0
  53. {nkululeko-0.93.4 → nkululeko-0.93.6}/meta/demos/plot_faster_anim.py +0 -0
  54. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/__init__.py +0 -0
  55. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/aug_train.py +0 -0
  56. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/augment.py +0 -0
  57. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/augmenting/__init__.py +0 -0
  58. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/augmenting/augmenter.py +0 -0
  59. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/augmenting/randomsplicer.py +0 -0
  60. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/augmenting/randomsplicing.py +0 -0
  61. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/augmenting/resampler.py +0 -0
  62. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/__init__.py +0 -0
  63. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_age.py +0 -0
  64. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_arousal.py +0 -0
  65. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_dominance.py +0 -0
  66. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_gender.py +0 -0
  67. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_mos.py +0 -0
  68. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_pesq.py +0 -0
  69. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_sdr.py +0 -0
  70. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_sid.py +0 -0
  71. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_snr.py +0 -0
  72. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_stoi.py +0 -0
  73. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/ap_valence.py +0 -0
  74. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/autopredict/estimate_snr.py +0 -0
  75. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/cacheddataset.py +0 -0
  76. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/data/__init__.py +0 -0
  77. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/data/dataset_csv.py +0 -0
  78. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/demo-ft.py +0 -0
  79. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/demo.py +0 -0
  80. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/demo_feats.py +0 -0
  81. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/demo_predictor.py +0 -0
  82. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/ensemble.py +0 -0
  83. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/experiment.py +0 -0
  84. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/explore.py +0 -0
  85. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/export.py +0 -0
  86. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/__init__.py +0 -0
  87. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_agender.py +0 -0
  88. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  89. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_analyser.py +0 -0
  90. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_ast.py +0 -0
  91. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_auddim.py +0 -0
  92. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  93. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_clap.py +0 -0
  94. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_hubert.py +0 -0
  95. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_import.py +0 -0
  96. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_mld.py +0 -0
  97. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_mos.py +0 -0
  98. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  99. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  100. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_praat.py +0 -0
  101. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_snr.py +0 -0
  102. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_spectra.py +0 -0
  103. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  104. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_squim.py +0 -0
  105. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_trill.py +0 -0
  106. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  107. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  108. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feats_whisper.py +0 -0
  109. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/featureset.py +0 -0
  110. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  111. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  112. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/feature_extractor.py +0 -0
  113. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/file_checker.py +0 -0
  114. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/filter_data.py +0 -0
  115. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/fixedsegment.py +0 -0
  116. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/glob_conf.py +0 -0
  117. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/losses/__init__.py +0 -0
  118. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/losses/loss_ccc.py +0 -0
  119. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/losses/loss_softf1loss.py +0 -0
  120. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/modelrunner.py +0 -0
  121. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/__init__.py +0 -0
  122. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model.py +0 -0
  123. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_bayes.py +0 -0
  124. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_cnn.py +0 -0
  125. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_gmm.py +0 -0
  126. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_knn.py +0 -0
  127. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_knn_reg.py +0 -0
  128. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_lin_reg.py +0 -0
  129. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_mlp.py +0 -0
  130. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_mlp_regression.py +0 -0
  131. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_svm.py +0 -0
  132. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_svr.py +0 -0
  133. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_tree.py +0 -0
  134. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_tree_reg.py +0 -0
  135. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_tuned.py +0 -0
  136. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_xgb.py +0 -0
  137. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/models/model_xgr.py +0 -0
  138. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/multidb.py +0 -0
  139. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/nkuluflag.py +0 -0
  140. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/nkululeko.py +0 -0
  141. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/plots.py +0 -0
  142. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/predict.py +0 -0
  143. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/__init__.py +0 -0
  144. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/defines.py +0 -0
  145. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/latex_writer.py +0 -0
  146. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/report.py +0 -0
  147. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/report_item.py +0 -0
  148. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/reporter.py +0 -0
  149. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/reporting/result.py +0 -0
  150. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/runmanager.py +0 -0
  151. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/scaler.py +0 -0
  152. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/segment.py +0 -0
  153. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/segmenting/__init__.py +0 -0
  154. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  155. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/segmenting/seg_pyannote.py +0 -0
  156. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/segmenting/seg_silero.py +0 -0
  157. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/syllable_nuclei.py +0 -0
  158. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/test.py +0 -0
  159. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/test_predictor.py +0 -0
  160. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/test_pretrain.py +0 -0
  161. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/utils/__init__.py +0 -0
  162. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/utils/files.py +0 -0
  163. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/utils/stats.py +0 -0
  164. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko/utils/util.py +0 -0
  165. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko.egg-info/SOURCES.txt +0 -0
  166. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko.egg-info/dependency_links.txt +0 -0
  167. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko.egg-info/entry_points.txt +0 -0
  168. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko.egg-info/requires.txt +0 -0
  169. {nkululeko-0.93.4 → nkululeko-0.93.6}/nkululeko.egg-info/top_level.txt +0 -0
  170. {nkululeko-0.93.4 → nkululeko-0.93.6}/pyproject.toml +0 -0
  171. {nkululeko-0.93.4 → nkululeko-0.93.6}/setup.cfg +0 -0
  172. {nkululeko-0.93.4 → nkululeko-0.93.6}/setup.py +0 -0
  173. {nkululeko-0.93.4 → nkululeko-0.93.6}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,14 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.93.6
5
+ --------------
6
+ * added error message and hint for data.target_tables_append
7
+
8
+ Version 0.93.5
9
+ --------------
10
+ * fixed bug in dataset loading
11
+
4
12
  Version 0.93.4
5
13
  --------------
6
14
  * ccc in plots now configurable
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.4
3
+ Version: 0.93.6
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -72,7 +72,7 @@ The idea is to have a framework (based on e.g. sklearn and torch) that can be us
72
72
  * The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
73
73
  * Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
74
74
  * [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
75
- * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-1wtvbxtwz-P5YoRJq8whxKSee86ebhJg). Please click the link if interested in contributing.
75
+ * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
76
76
  * [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
77
77
  * [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
78
78
  * [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.6
359
+ --------------
360
+ * added error message and hint for data.target_tables_append
361
+
362
+ Version 0.93.5
363
+ --------------
364
+ * fixed bug in dataset loading
365
+
358
366
  Version 0.93.4
359
367
  --------------
360
368
  * ccc in plots now configurable
@@ -29,7 +29,7 @@ The idea is to have a framework (based on e.g. sklearn and torch) that can be us
29
29
  * The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
30
30
  * Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
31
31
  * [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
32
- * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-1wtvbxtwz-P5YoRJq8whxKSee86ebhJg). Please click the link if interested in contributing.
32
+ * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
33
33
  * [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
34
34
  * [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
35
35
  * [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
@@ -1,2 +1,2 @@
1
- VERSION="0.93.4"
1
+ VERSION="0.93.6"
2
2
  SAMPLING_RATE = 16000
@@ -4,12 +4,13 @@ import os
4
4
  import os.path
5
5
  from random import sample
6
6
 
7
- import audformat
8
7
  import numpy as np
9
8
  import pandas as pd
10
9
 
11
- import nkululeko.glob_conf as glob_conf
10
+ import audformat
11
+
12
12
  from nkululeko.filter_data import DataFilter
13
+ import nkululeko.glob_conf as glob_conf
13
14
  from nkululeko.plots import Plots
14
15
  from nkululeko.reporting.report_item import ReportItem
15
16
  from nkululeko.utils.util import Util
@@ -32,6 +33,9 @@ class Dataset:
32
33
  self.target = self.util.config_val("DATA", "target", "none")
33
34
  self.plot = Plots()
34
35
  self.limit = int(self.util.config_val_data(self.name, "limit", 0))
36
+ self.target_tables_append = eval(
37
+ self.util.config_val_data(self.name, "target_tables_append", "False")
38
+ )
35
39
  self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
36
40
  self.is_labeled, self.got_speaker, self.got_gender, self.got_age = (
37
41
  False,
@@ -158,14 +162,20 @@ class Dataset:
158
162
  except KeyError:
159
163
  # just a try...
160
164
  pass
161
- if got_target2:
162
- df[self.target] = df_target[self.target]
163
- if got_speaker2:
164
- df["speaker"] = df_target["speaker"]
165
- if got_gender2:
166
- df["gender"] = df_target["gender"]
167
- if got_age2:
168
- df["age"] = df_target["age"].astype(int)
165
+ try:
166
+ if got_target2:
167
+ df[self.target] = df_target[self.target]
168
+ if got_speaker2:
169
+ df["speaker"] = df_target["speaker"]
170
+ if got_gender2:
171
+ df["gender"] = df_target["gender"]
172
+ if got_age2:
173
+ df["age"] = df_target["age"].astype(int)
174
+ except ValueError as ve:
175
+ self.util.error(
176
+ f"{ve}\nYou might need to set "
177
+ + "data.target_tables_append = True"
178
+ )
169
179
  # copy other column
170
180
  for column in df_target.columns:
171
181
  if column not in [self.target, "age", "speaker", "gender"]:
@@ -321,7 +331,12 @@ class Dataset:
321
331
  for column in source_df.columns:
322
332
  if column not in [self.target, "age", "speaker", "gender"]:
323
333
  df_local[column] = source_df[column]
324
- df = pd.concat([df, df_local])
334
+ # ensure segmented index
335
+ df_local = self.util.make_segmented_index(df_local)
336
+ if self.target_tables_append:
337
+ df = pd.concat([df, df_local], axis=0)
338
+ else:
339
+ df = pd.concat([df, df_local], axis=1)
325
340
  return df, is_labeled, got_speaker, got_gender, got_age
326
341
 
327
342
  def split(self):
@@ -1,5 +1,4 @@
1
- """
2
- Resample audio files or INI files (train, test, all) to change the sampling rate.
1
+ """Resample audio files or INI files (train, test, all) to change the sampling rate.
3
2
 
4
3
  This script provides a command-line interface to resample audio files or INI files
5
4
  containing train, test, and all data. It supports resampling a single file, a
@@ -27,9 +26,10 @@ import argparse
27
26
  import configparser
28
27
  import os
29
28
 
30
- import audformat
31
29
  import pandas as pd
32
30
 
31
+ import audformat
32
+
33
33
  from nkululeko.augmenting.resampler import Resampler
34
34
  from nkululeko.constants import VERSION
35
35
  from nkululeko.experiment import Experiment
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.4
3
+ Version: 0.93.6
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -72,7 +72,7 @@ The idea is to have a framework (based on e.g. sklearn and torch) that can be us
72
72
  * The latest features can be seen in [the ini-file](./ini_file.md) options that are used to control Nkululeko
73
73
  * Below is a [Hello World example](#helloworld) that should set you up fastly, also on [Google Colab](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
74
74
  * [Here's a blog post on how to set up nkululeko on your computer.](http://blog.syntheticspeech.de/2021/08/30/how-to-set-up-your-first-nkululeko-project/)
75
- * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-1wtvbxtwz-P5YoRJq8whxKSee86ebhJg). Please click the link if interested in contributing.
75
+ * [Here is a slack channel to discuss issues related to nkululeko](https://join.slack.com/t/nkululekoworkspace/shared_invite/zt-2v3q3yfzk-XfNGoqLfp3ts9KfCZpfTyg). Please click the link if interested in contributing.
76
76
  * [Here's a slide presentation about nkululeko](docs/nkululeko.pdf)
77
77
  * [Here's a video presentation about nkululeko](https://www.youtube.com/playlist?list=PLRceVavtxLg0y2jiLmpnUfiMtfvkK912D)
78
78
  * [Here's the 2022 LREC article on nkululeko](http://felix.syntheticspeech.de/publications/Nkululeko_LREC.pdf)
@@ -355,6 +355,14 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.6
359
+ --------------
360
+ * added error message and hint for data.target_tables_append
361
+
362
+ Version 0.93.5
363
+ --------------
364
+ * fixed bug in dataset loading
365
+
358
366
  Version 0.93.4
359
367
  --------------
360
368
  * ccc in plots now configurable
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes