nkululeko 0.93.4__tar.gz → 0.93.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (173) hide show
  1. {nkululeko-0.93.4 → nkululeko-0.93.5}/CHANGELOG.md +4 -0
  2. {nkululeko-0.93.4/nkululeko.egg-info → nkululeko-0.93.5}/PKG-INFO +5 -1
  3. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/constants.py +1 -1
  4. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/data/dataset.py +12 -3
  5. {nkululeko-0.93.4 → nkululeko-0.93.5/nkululeko.egg-info}/PKG-INFO +5 -1
  6. {nkululeko-0.93.4 → nkululeko-0.93.5}/LICENSE +0 -0
  7. {nkululeko-0.93.4 → nkululeko-0.93.5}/README.md +0 -0
  8. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/aesdd/process_database.py +0 -0
  9. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/androids/process_database.py +0 -0
  10. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/ased/process_database.py +0 -0
  11. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/asvp-esd/process_database.py +0 -0
  12. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/baved/process_database.py +0 -0
  13. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/cafe/process_database.py +0 -0
  14. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/clac/process_database.py +0 -0
  15. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/cmu-mosei/process_database.py +0 -0
  16. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/demos/process_database.py +0 -0
  17. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/ekorpus/process_database.py +0 -0
  18. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emns/process_database.py +0 -0
  19. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emofilm/convert_to_16k.py +0 -0
  20. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emofilm/process_database.py +0 -0
  21. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emorynlp/process_database.py +0 -0
  22. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emov-db/process_database.py +0 -0
  23. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emovo/process_database.py +0 -0
  24. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/emozionalmente/create.py +0 -0
  25. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/enterface/process_database.py +0 -0
  26. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/esd/process_database.py +0 -0
  27. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/gerparas/process_database.py +0 -0
  28. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/iemocap/process_database.py +0 -0
  29. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/jl/process_database.py +0 -0
  30. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/jtes/process_database.py +0 -0
  31. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/meld/process_database.py +0 -0
  32. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/mesd/process_database.py +0 -0
  33. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/mess/process_database.py +0 -0
  34. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/mlendsnd/process_database.py +0 -0
  35. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/msp-improv/process_database2.py +0 -0
  36. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/msp-podcast/process_database.py +0 -0
  37. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/oreau2/process_database.py +0 -0
  38. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/portuguese/process_database.py +0 -0
  39. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/ravdess/process_database.py +0 -0
  40. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/ravdess/process_database_speaker.py +0 -0
  41. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/savee/process_database.py +0 -0
  42. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/shemo/process_database.py +0 -0
  43. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/subesco/process_database.py +0 -0
  44. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/tess/process_database.py +0 -0
  45. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/thorsten-emotional/process_database.py +0 -0
  46. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/urdu/process_database.py +0 -0
  47. {nkululeko-0.93.4 → nkululeko-0.93.5}/data/vivae/process_database.py +0 -0
  48. {nkululeko-0.93.4 → nkululeko-0.93.5}/docs/source/conf.py +0 -0
  49. {nkululeko-0.93.4 → nkululeko-0.93.5}/meta/demos/demo_best_model.py +0 -0
  50. {nkululeko-0.93.4 → nkululeko-0.93.5}/meta/demos/my_experiment.py +0 -0
  51. {nkululeko-0.93.4 → nkululeko-0.93.5}/meta/demos/my_experiment_local.py +0 -0
  52. {nkululeko-0.93.4 → nkululeko-0.93.5}/meta/demos/plot_faster_anim.py +0 -0
  53. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/__init__.py +0 -0
  54. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/aug_train.py +0 -0
  55. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/augment.py +0 -0
  56. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/augmenting/__init__.py +0 -0
  57. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/augmenting/augmenter.py +0 -0
  58. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/augmenting/randomsplicer.py +0 -0
  59. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/augmenting/randomsplicing.py +0 -0
  60. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/augmenting/resampler.py +0 -0
  61. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/__init__.py +0 -0
  62. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_age.py +0 -0
  63. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_arousal.py +0 -0
  64. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_dominance.py +0 -0
  65. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_gender.py +0 -0
  66. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_mos.py +0 -0
  67. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_pesq.py +0 -0
  68. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_sdr.py +0 -0
  69. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_sid.py +0 -0
  70. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_snr.py +0 -0
  71. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_stoi.py +0 -0
  72. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/ap_valence.py +0 -0
  73. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/autopredict/estimate_snr.py +0 -0
  74. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/cacheddataset.py +0 -0
  75. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/data/__init__.py +0 -0
  76. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/data/dataset_csv.py +0 -0
  77. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/demo-ft.py +0 -0
  78. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/demo.py +0 -0
  79. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/demo_feats.py +0 -0
  80. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/demo_predictor.py +0 -0
  81. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/ensemble.py +0 -0
  82. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/experiment.py +0 -0
  83. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/explore.py +0 -0
  84. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/export.py +0 -0
  85. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/__init__.py +0 -0
  86. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_agender.py +0 -0
  87. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  88. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_analyser.py +0 -0
  89. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_ast.py +0 -0
  90. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_auddim.py +0 -0
  91. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  92. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_clap.py +0 -0
  93. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_hubert.py +0 -0
  94. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_import.py +0 -0
  95. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_mld.py +0 -0
  96. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_mos.py +0 -0
  97. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  98. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  99. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_praat.py +0 -0
  100. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_snr.py +0 -0
  101. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_spectra.py +0 -0
  102. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  103. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_squim.py +0 -0
  104. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_trill.py +0 -0
  105. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  106. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  107. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feats_whisper.py +0 -0
  108. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/featureset.py +0 -0
  109. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  110. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  111. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/feature_extractor.py +0 -0
  112. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/file_checker.py +0 -0
  113. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/filter_data.py +0 -0
  114. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/fixedsegment.py +0 -0
  115. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/glob_conf.py +0 -0
  116. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/losses/__init__.py +0 -0
  117. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/losses/loss_ccc.py +0 -0
  118. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/losses/loss_softf1loss.py +0 -0
  119. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/modelrunner.py +0 -0
  120. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/__init__.py +0 -0
  121. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model.py +0 -0
  122. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_bayes.py +0 -0
  123. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_cnn.py +0 -0
  124. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_gmm.py +0 -0
  125. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_knn.py +0 -0
  126. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_knn_reg.py +0 -0
  127. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_lin_reg.py +0 -0
  128. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_mlp.py +0 -0
  129. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_mlp_regression.py +0 -0
  130. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_svm.py +0 -0
  131. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_svr.py +0 -0
  132. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_tree.py +0 -0
  133. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_tree_reg.py +0 -0
  134. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_tuned.py +0 -0
  135. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_xgb.py +0 -0
  136. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/models/model_xgr.py +0 -0
  137. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/multidb.py +0 -0
  138. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/nkuluflag.py +0 -0
  139. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/nkululeko.py +0 -0
  140. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/plots.py +0 -0
  141. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/predict.py +0 -0
  142. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/__init__.py +0 -0
  143. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/defines.py +0 -0
  144. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/latex_writer.py +0 -0
  145. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/report.py +0 -0
  146. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/report_item.py +0 -0
  147. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/reporter.py +0 -0
  148. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/reporting/result.py +0 -0
  149. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/resample.py +0 -0
  150. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/runmanager.py +0 -0
  151. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/scaler.py +0 -0
  152. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/segment.py +0 -0
  153. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/segmenting/__init__.py +0 -0
  154. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  155. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/segmenting/seg_pyannote.py +0 -0
  156. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/segmenting/seg_silero.py +0 -0
  157. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/syllable_nuclei.py +0 -0
  158. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/test.py +0 -0
  159. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/test_predictor.py +0 -0
  160. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/test_pretrain.py +0 -0
  161. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/utils/__init__.py +0 -0
  162. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/utils/files.py +0 -0
  163. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/utils/stats.py +0 -0
  164. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko/utils/util.py +0 -0
  165. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko.egg-info/SOURCES.txt +0 -0
  166. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko.egg-info/dependency_links.txt +0 -0
  167. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko.egg-info/entry_points.txt +0 -0
  168. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko.egg-info/requires.txt +0 -0
  169. {nkululeko-0.93.4 → nkululeko-0.93.5}/nkululeko.egg-info/top_level.txt +0 -0
  170. {nkululeko-0.93.4 → nkululeko-0.93.5}/pyproject.toml +0 -0
  171. {nkululeko-0.93.4 → nkululeko-0.93.5}/setup.cfg +0 -0
  172. {nkululeko-0.93.4 → nkululeko-0.93.5}/setup.py +0 -0
  173. {nkululeko-0.93.4 → nkululeko-0.93.5}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,10 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.93.5
5
+ --------------
6
+ * fixed bug in dataset loading
7
+
4
8
  Version 0.93.4
5
9
  --------------
6
10
  * ccc in plots now configurable
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.4
3
+ Version: 0.93.5
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,10 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.5
359
+ --------------
360
+ * fixed bug in dataset loading
361
+
358
362
  Version 0.93.4
359
363
  --------------
360
364
  * ccc in plots now configurable
@@ -1,2 +1,2 @@
1
- VERSION="0.93.4"
1
+ VERSION="0.93.5"
2
2
  SAMPLING_RATE = 16000
@@ -4,12 +4,13 @@ import os
4
4
  import os.path
5
5
  from random import sample
6
6
 
7
- import audformat
8
7
  import numpy as np
9
8
  import pandas as pd
10
9
 
11
- import nkululeko.glob_conf as glob_conf
10
+ import audformat
11
+
12
12
  from nkululeko.filter_data import DataFilter
13
+ import nkululeko.glob_conf as glob_conf
13
14
  from nkululeko.plots import Plots
14
15
  from nkululeko.reporting.report_item import ReportItem
15
16
  from nkululeko.utils.util import Util
@@ -32,6 +33,9 @@ class Dataset:
32
33
  self.target = self.util.config_val("DATA", "target", "none")
33
34
  self.plot = Plots()
34
35
  self.limit = int(self.util.config_val_data(self.name, "limit", 0))
36
+ self.target_tables_append = eval(
37
+ self.util.config_val_data(self.name, "target_tables_append", "False")
38
+ )
35
39
  self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
36
40
  self.is_labeled, self.got_speaker, self.got_gender, self.got_age = (
37
41
  False,
@@ -321,7 +325,12 @@ class Dataset:
321
325
  for column in source_df.columns:
322
326
  if column not in [self.target, "age", "speaker", "gender"]:
323
327
  df_local[column] = source_df[column]
324
- df = pd.concat([df, df_local])
328
+ # ensure segmented index
329
+ df_local = self.util.make_segmented_index(df_local)
330
+ if self.target_tables_append:
331
+ df = pd.concat([df, df_local], axis=0)
332
+ else:
333
+ df = pd.concat([df, df_local], axis=1)
325
334
  return df, is_labeled, got_speaker, got_gender, got_age
326
335
 
327
336
  def split(self):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.93.4
3
+ Version: 0.93.5
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,10 @@ If you use it, please mention the Nkululeko paper:
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.93.5
359
+ --------------
360
+ * fixed bug in dataset loading
361
+
358
362
  Version 0.93.4
359
363
  --------------
360
364
  * ccc in plots now configurable
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes