nkululeko 0.93.11__tar.gz → 0.93.13__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. {nkululeko-0.93.11 → nkululeko-0.93.13}/CHANGELOG.md +10 -2
  2. nkululeko-0.93.13/PKG-INFO +39 -0
  3. {nkululeko-0.93.11 → nkululeko-0.93.13}/README.md +1 -1
  4. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/constants.py +1 -1
  5. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/data/dataset.py +2 -0
  6. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_analyser.py +4 -2
  7. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_wav2vec2.py +1 -0
  8. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/plots.py +4 -1
  9. nkululeko-0.93.13/nkululeko.egg-info/PKG-INFO +39 -0
  10. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko.egg-info/SOURCES.txt +1 -3
  11. {nkululeko-0.93.11 → nkululeko-0.93.13}/setup.cfg +0 -2
  12. nkululeko-0.93.11/PKG-INFO +0 -1487
  13. nkululeko-0.93.11/data/androids/process_database.py +0 -94
  14. nkululeko-0.93.11/nkululeko.egg-info/PKG-INFO +0 -1487
  15. nkululeko-0.93.11/venv/bin/activate_this.py +0 -32
  16. {nkululeko-0.93.11 → nkululeko-0.93.13}/LICENSE +0 -0
  17. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/aesdd/process_database.py +0 -0
  18. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/ased/process_database.py +0 -0
  19. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/asvp-esd/process_database.py +0 -0
  20. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/baved/process_database.py +0 -0
  21. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/cafe/process_database.py +0 -0
  22. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/clac/process_database.py +0 -0
  23. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/cmu-mosei/process_database.py +0 -0
  24. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/demos/process_database.py +0 -0
  25. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/ekorpus/process_database.py +0 -0
  26. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emns/process_database.py +0 -0
  27. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emofilm/convert_to_16k.py +0 -0
  28. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emofilm/process_database.py +0 -0
  29. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emorynlp/process_database.py +0 -0
  30. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emov-db/process_database.py +0 -0
  31. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emovo/process_database.py +0 -0
  32. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/emozionalmente/create.py +0 -0
  33. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/enterface/process_database.py +0 -0
  34. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/esd/process_database.py +0 -0
  35. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/gerparas/process_database.py +0 -0
  36. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/iemocap/process_database.py +0 -0
  37. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/jl/process_database.py +0 -0
  38. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/jtes/process_database.py +0 -0
  39. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/meld/process_database.py +0 -0
  40. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/mesd/process_database.py +0 -0
  41. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/mess/process_database.py +0 -0
  42. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/mlendsnd/process_database.py +0 -0
  43. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/msp-improv/process_database2.py +0 -0
  44. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/msp-podcast/process_database.py +0 -0
  45. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/oreau2/process_database.py +0 -0
  46. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/portuguese/process_database.py +0 -0
  47. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/ravdess/process_database.py +0 -0
  48. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/ravdess/process_database_speaker.py +0 -0
  49. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/savee/process_database.py +0 -0
  50. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/shemo/process_database.py +0 -0
  51. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/subesco/process_database.py +0 -0
  52. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/tess/process_database.py +0 -0
  53. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/thorsten-emotional/process_database.py +0 -0
  54. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/urdu/process_database.py +0 -0
  55. {nkululeko-0.93.11 → nkululeko-0.93.13}/data/vivae/process_database.py +0 -0
  56. {nkululeko-0.93.11 → nkululeko-0.93.13}/docs/source/conf.py +0 -0
  57. {nkululeko-0.93.11 → nkululeko-0.93.13}/meta/demos/demo_best_model.py +0 -0
  58. {nkululeko-0.93.11 → nkululeko-0.93.13}/meta/demos/my_experiment.py +0 -0
  59. {nkululeko-0.93.11 → nkululeko-0.93.13}/meta/demos/my_experiment_local.py +0 -0
  60. {nkululeko-0.93.11 → nkululeko-0.93.13}/meta/demos/plot_faster_anim.py +0 -0
  61. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/__init__.py +0 -0
  62. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/aug_train.py +0 -0
  63. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/augment.py +0 -0
  64. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/augmenting/__init__.py +0 -0
  65. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/augmenting/augmenter.py +0 -0
  66. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/augmenting/randomsplicer.py +0 -0
  67. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/augmenting/randomsplicing.py +0 -0
  68. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/augmenting/resampler.py +0 -0
  69. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/__init__.py +0 -0
  70. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_age.py +0 -0
  71. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_arousal.py +0 -0
  72. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_dominance.py +0 -0
  73. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_gender.py +0 -0
  74. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_mos.py +0 -0
  75. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_pesq.py +0 -0
  76. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_sdr.py +0 -0
  77. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_sid.py +0 -0
  78. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_snr.py +0 -0
  79. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_stoi.py +0 -0
  80. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/ap_valence.py +0 -0
  81. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/autopredict/estimate_snr.py +0 -0
  82. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/cacheddataset.py +0 -0
  83. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/data/__init__.py +0 -0
  84. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/data/dataset_csv.py +0 -0
  85. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/demo-ft.py +0 -0
  86. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/demo.py +0 -0
  87. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/demo_feats.py +0 -0
  88. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/demo_predictor.py +0 -0
  89. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/ensemble.py +0 -0
  90. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/experiment.py +0 -0
  91. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/explore.py +0 -0
  92. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/export.py +0 -0
  93. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/__init__.py +0 -0
  94. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_agender.py +0 -0
  95. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  96. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_ast.py +0 -0
  97. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_auddim.py +0 -0
  98. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  99. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_clap.py +0 -0
  100. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_hubert.py +0 -0
  101. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_import.py +0 -0
  102. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_mld.py +0 -0
  103. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_mos.py +0 -0
  104. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  105. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  106. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_praat.py +0 -0
  107. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_snr.py +0 -0
  108. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_spectra.py +0 -0
  109. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  110. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_squim.py +0 -0
  111. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_trill.py +0 -0
  112. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  113. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feats_whisper.py +0 -0
  114. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/featureset.py +0 -0
  115. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  116. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  117. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/feature_extractor.py +0 -0
  118. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/file_checker.py +0 -0
  119. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/filter_data.py +0 -0
  120. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/fixedsegment.py +0 -0
  121. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/glob_conf.py +0 -0
  122. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/losses/__init__.py +0 -0
  123. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/losses/loss_ccc.py +0 -0
  124. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/losses/loss_softf1loss.py +0 -0
  125. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/modelrunner.py +0 -0
  126. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/__init__.py +0 -0
  127. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model.py +0 -0
  128. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_bayes.py +0 -0
  129. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_cnn.py +0 -0
  130. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_gmm.py +0 -0
  131. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_knn.py +0 -0
  132. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_knn_reg.py +0 -0
  133. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_lin_reg.py +0 -0
  134. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_mlp.py +0 -0
  135. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_mlp_regression.py +0 -0
  136. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_svm.py +0 -0
  137. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_svr.py +0 -0
  138. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_tree.py +0 -0
  139. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_tree_reg.py +0 -0
  140. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_tuned.py +0 -0
  141. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_xgb.py +0 -0
  142. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/models/model_xgr.py +0 -0
  143. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/multidb.py +0 -0
  144. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/nkuluflag.py +0 -0
  145. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/nkululeko.py +0 -0
  146. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/predict.py +0 -0
  147. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/__init__.py +0 -0
  148. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/defines.py +0 -0
  149. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/latex_writer.py +0 -0
  150. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/report.py +0 -0
  151. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/report_item.py +0 -0
  152. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/reporter.py +0 -0
  153. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/reporting/result.py +0 -0
  154. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/resample.py +0 -0
  155. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/runmanager.py +0 -0
  156. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/scaler.py +0 -0
  157. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/segment.py +0 -0
  158. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/segmenting/__init__.py +0 -0
  159. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  160. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/segmenting/seg_pyannote.py +0 -0
  161. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/segmenting/seg_silero.py +0 -0
  162. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/syllable_nuclei.py +0 -0
  163. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/test.py +0 -0
  164. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/test_predictor.py +0 -0
  165. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/test_pretrain.py +0 -0
  166. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/utils/__init__.py +0 -0
  167. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/utils/files.py +0 -0
  168. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/utils/stats.py +0 -0
  169. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko/utils/util.py +0 -0
  170. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko.egg-info/dependency_links.txt +0 -0
  171. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko.egg-info/entry_points.txt +0 -0
  172. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko.egg-info/requires.txt +0 -0
  173. {nkululeko-0.93.11 → nkululeko-0.93.13}/nkululeko.egg-info/top_level.txt +0 -0
  174. {nkululeko-0.93.11 → nkululeko-0.93.13}/pyproject.toml +0 -0
  175. {nkululeko-0.93.11 → nkululeko-0.93.13}/setup.py +0 -0
@@ -1,12 +1,20 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.93.13 (24-01-27)
5
+ --------------------------
6
+ * plot: replaced "class_label" by target name for continuous distributions
7
+
8
+ Version 0.93.12
9
+ ---------------
10
+ * bugfix: map_continuous_to_cat crashed on empty data
11
+
4
12
  Version 0.93.11
5
- --------------
13
+ ---------------
6
14
  * bugfix: silero segmenter assigned file duration values
7
15
 
8
16
  Version 0.93.10
9
- --------------
17
+ ---------------
10
18
  * added nan check for imported features
11
19
  * added LOGO result output
12
20
 
@@ -0,0 +1,39 @@
1
+ Metadata-Version: 2.2
2
+ Name: nkululeko
3
+ Version: 0.93.13
4
+ Summary: Machine learning audio prediction experiments based on templates
5
+ Home-page: https://github.com/felixbur/nkululeko
6
+ Author: Felix Burkhardt
7
+ Author-email: fxburk@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Topic :: Scientific/Engineering
13
+ Requires-Python: >=3.9
14
+ License-File: LICENSE
15
+ Requires-Dist: audeer
16
+ Requires-Dist: audformat
17
+ Requires-Dist: audinterface
18
+ Requires-Dist: audiofile
19
+ Requires-Dist: audiomentations
20
+ Requires-Dist: audmetric
21
+ Requires-Dist: audonnx
22
+ Requires-Dist: confidence_intervals
23
+ Requires-Dist: datasets
24
+ Requires-Dist: imageio
25
+ Requires-Dist: matplotlib
26
+ Requires-Dist: numpy
27
+ Requires-Dist: opensmile
28
+ Requires-Dist: pandas
29
+ Requires-Dist: praat-parselmouth
30
+ Requires-Dist: scikit_learn
31
+ Requires-Dist: scipy
32
+ Requires-Dist: seaborn
33
+ Requires-Dist: sounddevice
34
+ Requires-Dist: torch
35
+ Requires-Dist: torchvision
36
+ Requires-Dist: transformers
37
+ Requires-Dist: umap-learn
38
+ Requires-Dist: xgboost
39
+ Requires-Dist: pylatex
@@ -22,7 +22,7 @@
22
22
  ## Overview
23
23
  A project to detect speaker characteristics by machine learning experiments with a high-level interface.
24
24
 
25
- The idea is to have a framework (based on e.g. sklearn and torch) that can be used to rapidly and automatically analyse audio data and explore machine learning models based on that data.
25
+ The idea is to have a framework (based on e.g. sklearn and torch) that can be used to rapidly and automatically analyse audio data and explore machine learning models based on that data.
26
26
 
27
27
  * NEW with nkululeko: [Ensemble learning](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
28
28
  * NEW: [Finetune transformer-models](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
@@ -1,2 +1,2 @@
1
- VERSION="0.93.11"
1
+ VERSION="0.93.13"
2
2
  SAMPLING_RATE = 16000
@@ -676,6 +676,8 @@ class Dataset:
676
676
 
677
677
  def map_continuous_classification(self, df):
678
678
  """Map labels to bins for continuous data that should be classified"""
679
+ if df.empty:
680
+ return
679
681
  if self.check_continuous_classification():
680
682
  self.util.debug(f"{self.name}: binning continuous variable to categories")
681
683
  cat_vals = self.util.continuous_to_categorical(df[self.target])
@@ -4,8 +4,10 @@ import ast
4
4
  import matplotlib.pyplot as plt
5
5
  import pandas as pd
6
6
  from sklearn.inspection import permutation_importance
7
- from sklearn.linear_model import LinearRegression, LogisticRegression
8
- from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
7
+ from sklearn.linear_model import LinearRegression
8
+ from sklearn.linear_model import LogisticRegression
9
+ from sklearn.tree import DecisionTreeClassifier
10
+ from sklearn.tree import DecisionTreeRegressor
9
11
 
10
12
  import nkululeko.glob_conf as glob_conf
11
13
  from nkululeko.plots import Plots
@@ -49,6 +49,7 @@ class Wav2vec2(Featureset):
49
49
  hidden_layer = int(self.util.config_val("FEATS", "wav2vec2.layer", "0"))
50
50
  config.num_hidden_layers = layer_num - hidden_layer
51
51
  self.util.debug(f"using hidden layer #{config.num_hidden_layers}")
52
+
52
53
  self.processor = Wav2Vec2FeatureExtractor.from_pretrained(model_path)
53
54
  self.model = Wav2Vec2Model.from_pretrained(model_path, config=config).to(
54
55
  self.device
@@ -297,6 +297,9 @@ class Plots:
297
297
  if cat_col == "class_label":
298
298
  plot_df = plot_df.rename(columns={cat_col: self.target})
299
299
  cat_col = self.target
300
+ elif cont_col == "class_label":
301
+ plot_df = plot_df.rename(columns={cont_col: self.target})
302
+ cont_col = self.target
300
303
  dist_type = self.util.config_val("EXPL", "dist_type", "kde")
301
304
  cats, cat_str, es = su.get_effect_size(plot_df, cat_col, cont_col)
302
305
  model_type = self.util.get_model_type()
@@ -327,7 +330,7 @@ class Plots:
327
330
  if col2 == "class_label":
328
331
  plot_df = plot_df.rename(columns={col2: self.target})
329
332
  col2 = self.target
330
- if col1 == "class_label":
333
+ elif col1 == "class_label":
331
334
  plot_df = plot_df.rename(columns={col1: self.target})
332
335
  col1 = self.target
333
336
  crosstab = pd.crosstab(index=plot_df[col1], columns=plot_df[col2])
@@ -0,0 +1,39 @@
1
+ Metadata-Version: 2.2
2
+ Name: nkululeko
3
+ Version: 0.93.13
4
+ Summary: Machine learning audio prediction experiments based on templates
5
+ Home-page: https://github.com/felixbur/nkululeko
6
+ Author: Felix Burkhardt
7
+ Author-email: fxburk@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Classifier: Development Status :: 3 - Alpha
12
+ Classifier: Topic :: Scientific/Engineering
13
+ Requires-Python: >=3.9
14
+ License-File: LICENSE
15
+ Requires-Dist: audeer
16
+ Requires-Dist: audformat
17
+ Requires-Dist: audinterface
18
+ Requires-Dist: audiofile
19
+ Requires-Dist: audiomentations
20
+ Requires-Dist: audmetric
21
+ Requires-Dist: audonnx
22
+ Requires-Dist: confidence_intervals
23
+ Requires-Dist: datasets
24
+ Requires-Dist: imageio
25
+ Requires-Dist: matplotlib
26
+ Requires-Dist: numpy
27
+ Requires-Dist: opensmile
28
+ Requires-Dist: pandas
29
+ Requires-Dist: praat-parselmouth
30
+ Requires-Dist: scikit_learn
31
+ Requires-Dist: scipy
32
+ Requires-Dist: seaborn
33
+ Requires-Dist: sounddevice
34
+ Requires-Dist: torch
35
+ Requires-Dist: torchvision
36
+ Requires-Dist: transformers
37
+ Requires-Dist: umap-learn
38
+ Requires-Dist: xgboost
39
+ Requires-Dist: pylatex
@@ -5,7 +5,6 @@ pyproject.toml
5
5
  setup.cfg
6
6
  setup.py
7
7
  data/aesdd/process_database.py
8
- data/androids/process_database.py
9
8
  data/ased/process_database.py
10
9
  data/asvp-esd/process_database.py
11
10
  data/baved/process_database.py
@@ -168,5 +167,4 @@ nkululeko/segmenting/seg_silero.py
168
167
  nkululeko/utils/__init__.py
169
168
  nkululeko/utils/files.py
170
169
  nkululeko/utils/stats.py
171
- nkululeko/utils/util.py
172
- venv/bin/activate_this.py
170
+ nkululeko/utils/util.py
@@ -4,8 +4,6 @@ author = Felix Burkhardt
4
4
  author_email = fxburk@gmail.com
5
5
  description = Machine learning audio prediction experiments based on templates
6
6
  version = attr: nkululeko.__version__
7
- long_description = file: README.md, CHANGELOG.md
8
- long_description_content_type = text/markdown
9
7
  url = https://github.com/felixbur/nkululeko
10
8
  classifiers =
11
9
  Programming Language :: Python :: 3