nkululeko 0.91.2__tar.gz → 0.91.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. {nkululeko-0.91.2 → nkululeko-0.91.3}/CHANGELOG.md +4 -0
  2. {nkululeko-0.91.2/nkululeko.egg-info → nkululeko-0.91.3}/PKG-INFO +5 -1
  3. nkululeko-0.91.3/nkululeko/autopredict/ap_sid.py +43 -0
  4. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/constants.py +1 -1
  5. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/data/dataset_csv.py +7 -1
  6. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/experiment.py +9 -1
  7. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/plots.py +3 -0
  8. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/segment.py +1 -1
  9. {nkululeko-0.91.2 → nkululeko-0.91.3/nkululeko.egg-info}/PKG-INFO +5 -1
  10. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko.egg-info/SOURCES.txt +1 -0
  11. {nkululeko-0.91.2 → nkululeko-0.91.3}/LICENSE +0 -0
  12. {nkululeko-0.91.2 → nkululeko-0.91.3}/README.md +0 -0
  13. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/aesdd/process_database.py +0 -0
  14. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/androids/process_database.py +0 -0
  15. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/ased/process_database.py +0 -0
  16. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/asvp-esd/process_database.py +0 -0
  17. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/baved/process_database.py +0 -0
  18. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/cafe/process_database.py +0 -0
  19. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/clac/process_database.py +0 -0
  20. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/cmu-mosei/process_database.py +0 -0
  21. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/demos/process_database.py +0 -0
  22. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/ekorpus/process_database.py +0 -0
  23. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emns/process_database.py +0 -0
  24. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emofilm/convert_to_16k.py +0 -0
  25. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emofilm/process_database.py +0 -0
  26. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emorynlp/process_database.py +0 -0
  27. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emov-db/process_database.py +0 -0
  28. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emovo/process_database.py +0 -0
  29. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/emozionalmente/create.py +0 -0
  30. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/enterface/process_database.py +0 -0
  31. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/esd/process_database.py +0 -0
  32. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/gerparas/process_database.py +0 -0
  33. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/iemocap/process_database.py +0 -0
  34. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/jl/process_database.py +0 -0
  35. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/jtes/process_database.py +0 -0
  36. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/meld/process_database.py +0 -0
  37. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/mesd/process_database.py +0 -0
  38. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/mess/process_database.py +0 -0
  39. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/mlendsnd/process_database.py +0 -0
  40. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/msp-improv/process_database2.py +0 -0
  41. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/msp-podcast/process_database.py +0 -0
  42. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/oreau2/process_database.py +0 -0
  43. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/portuguese/process_database.py +0 -0
  44. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/ravdess/process_database.py +0 -0
  45. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/ravdess/process_database_speaker.py +0 -0
  46. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/savee/process_database.py +0 -0
  47. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/shemo/process_database.py +0 -0
  48. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/subesco/process_database.py +0 -0
  49. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/tess/process_database.py +0 -0
  50. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/thorsten-emotional/process_database.py +0 -0
  51. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/urdu/process_database.py +0 -0
  52. {nkululeko-0.91.2 → nkululeko-0.91.3}/data/vivae/process_database.py +0 -0
  53. {nkululeko-0.91.2 → nkululeko-0.91.3}/docs/source/conf.py +0 -0
  54. {nkululeko-0.91.2 → nkululeko-0.91.3}/meta/demos/demo_best_model.py +0 -0
  55. {nkululeko-0.91.2 → nkululeko-0.91.3}/meta/demos/my_experiment.py +0 -0
  56. {nkululeko-0.91.2 → nkululeko-0.91.3}/meta/demos/my_experiment_local.py +0 -0
  57. {nkululeko-0.91.2 → nkululeko-0.91.3}/meta/demos/plot_faster_anim.py +0 -0
  58. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/__init__.py +0 -0
  59. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/aug_train.py +0 -0
  60. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/augment.py +0 -0
  61. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/augmenting/__init__.py +0 -0
  62. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/augmenting/augmenter.py +0 -0
  63. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/augmenting/randomsplicer.py +0 -0
  64. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/augmenting/randomsplicing.py +0 -0
  65. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/augmenting/resampler.py +0 -0
  66. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/__init__.py +0 -0
  67. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_age.py +0 -0
  68. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_arousal.py +0 -0
  69. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_dominance.py +0 -0
  70. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_gender.py +0 -0
  71. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_mos.py +0 -0
  72. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_pesq.py +0 -0
  73. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_sdr.py +0 -0
  74. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_snr.py +0 -0
  75. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_stoi.py +0 -0
  76. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/ap_valence.py +0 -0
  77. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/autopredict/estimate_snr.py +0 -0
  78. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/cacheddataset.py +0 -0
  79. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/data/__init__.py +0 -0
  80. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/data/dataset.py +0 -0
  81. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/demo-ft.py +0 -0
  82. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/demo.py +0 -0
  83. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/demo_feats.py +0 -0
  84. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/demo_predictor.py +0 -0
  85. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/ensemble.py +0 -0
  86. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/explore.py +0 -0
  87. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/export.py +0 -0
  88. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/__init__.py +0 -0
  89. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_agender.py +0 -0
  90. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  91. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_analyser.py +0 -0
  92. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_ast.py +0 -0
  93. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_auddim.py +0 -0
  94. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  95. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_clap.py +0 -0
  96. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_hubert.py +0 -0
  97. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_import.py +0 -0
  98. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_mld.py +0 -0
  99. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_mos.py +0 -0
  100. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  101. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  102. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_praat.py +0 -0
  103. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_snr.py +0 -0
  104. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_spectra.py +0 -0
  105. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  106. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_squim.py +0 -0
  107. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_trill.py +0 -0
  108. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  109. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  110. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_whisper.py +0 -0
  111. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/featureset.py +0 -0
  112. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  113. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  114. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/feature_extractor.py +0 -0
  115. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/file_checker.py +0 -0
  116. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/filter_data.py +0 -0
  117. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/fixedsegment.py +0 -0
  118. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/glob_conf.py +0 -0
  119. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/losses/__init__.py +0 -0
  120. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/losses/loss_ccc.py +0 -0
  121. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/losses/loss_softf1loss.py +0 -0
  122. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/modelrunner.py +0 -0
  123. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/__init__.py +0 -0
  124. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model.py +0 -0
  125. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_bayes.py +0 -0
  126. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_cnn.py +0 -0
  127. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_gmm.py +0 -0
  128. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_knn.py +0 -0
  129. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_knn_reg.py +0 -0
  130. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_lin_reg.py +0 -0
  131. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_mlp.py +0 -0
  132. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_mlp_regression.py +0 -0
  133. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_svm.py +0 -0
  134. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_svr.py +0 -0
  135. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_tree.py +0 -0
  136. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_tree_reg.py +0 -0
  137. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_tuned.py +0 -0
  138. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_xgb.py +0 -0
  139. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/models/model_xgr.py +0 -0
  140. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/multidb.py +0 -0
  141. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/nkuluflag.py +0 -0
  142. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/nkululeko.py +0 -0
  143. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/predict.py +0 -0
  144. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/__init__.py +0 -0
  145. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/defines.py +0 -0
  146. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/latex_writer.py +0 -0
  147. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/report.py +0 -0
  148. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/report_item.py +0 -0
  149. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/reporter.py +0 -0
  150. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/reporting/result.py +0 -0
  151. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/resample.py +0 -0
  152. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/runmanager.py +0 -0
  153. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/scaler.py +0 -0
  154. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/segmenting/__init__.py +0 -0
  155. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  156. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/segmenting/seg_silero.py +0 -0
  157. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/syllable_nuclei.py +0 -0
  158. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/test.py +0 -0
  159. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/test_predictor.py +0 -0
  160. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/test_pretrain.py +0 -0
  161. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/utils/__init__.py +0 -0
  162. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/utils/files.py +0 -0
  163. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/utils/stats.py +0 -0
  164. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko/utils/util.py +0 -0
  165. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko.egg-info/dependency_links.txt +0 -0
  166. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko.egg-info/entry_points.txt +0 -0
  167. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko.egg-info/requires.txt +0 -0
  168. {nkululeko-0.91.2 → nkululeko-0.91.3}/nkululeko.egg-info/top_level.txt +0 -0
  169. {nkululeko-0.91.2 → nkululeko-0.91.3}/pyproject.toml +0 -0
  170. {nkululeko-0.91.2 → nkululeko-0.91.3}/setup.cfg +0 -0
  171. {nkululeko-0.91.2 → nkululeko-0.91.3}/setup.py +0 -0
  172. {nkululeko-0.91.2 → nkululeko-0.91.3}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,10 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.91.3
5
+ --------------
6
+ * some additions for robustness
7
+
4
8
  Version 0.91.2
5
9
  --------------
6
10
  * making lint work by excluding constants from check
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.91.2
3
+ Version: 0.91.3
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.91.3
359
+ --------------
360
+ * some additions for robustness
361
+
358
362
  Version 0.91.2
359
363
  --------------
360
364
  * making lint work by excluding constants from check
@@ -0,0 +1,43 @@
1
+ """"
2
+ A predictor for sid - Speaker ID.
3
+ """
4
+
5
+ from pyannote.audio import Pipeline
6
+
7
+
8
+ import numpy as np
9
+
10
+ import nkululeko.glob_conf as glob_conf
11
+ from nkululeko.feature_extractor import FeatureExtractor
12
+ from nkululeko.utils.util import Util
13
+
14
+
15
+ class SIDPredictor:
16
+ """SIDPredictor.
17
+
18
+ predicting speaker id.
19
+ """
20
+
21
+ def __init__(self, df):
22
+ self.df = df
23
+ self.util = Util("sidPredictor")
24
+ self.pipeline = Pipeline.from_pretrained(
25
+ "pyannote/speaker-diarization-3.1",
26
+ use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE",
27
+ )
28
+
29
+ def predict(self, split_selection):
30
+ self.util.debug(f"estimating PESQ for {split_selection} samples")
31
+ return_df = self.df.copy()
32
+ feats_name = "_".join(ast.literal_eval(glob_conf.config["DATA"]["databases"]))
33
+ self.feature_extractor = FeatureExtractor(
34
+ self.df, ["squim"], feats_name, split_selection
35
+ )
36
+ result_df = self.feature_extractor.extract()
37
+ # replace missing values by 0
38
+ result_df = result_df.fillna(0)
39
+ result_df = result_df.replace(np.nan, 0)
40
+ result_df.replace([np.inf, -np.inf], 0, inplace=True)
41
+ pred_vals = result_df.pesq * 100
42
+ return_df["pesq_pred"] = pred_vals.astype("int") / 100
43
+ return return_df
@@ -1,2 +1,2 @@
1
- VERSION="0.91.2"
1
+ VERSION="0.91.3"
2
2
  SAMPLING_RATE = 16000
@@ -39,6 +39,8 @@ class Dataset_CSV(Dataset):
39
39
  df = audformat.utils.read_csv(data_file)
40
40
  if isinstance(df, pd.Series):
41
41
  df = df.to_frame()
42
+ elif isinstance(df, pd.Index):
43
+ df = pd.DataFrame(index=df)
42
44
  rename_cols = self.util.config_val_data(self.name, "colnames", False)
43
45
  if rename_cols:
44
46
  col_dict = ast.literal_eval(rename_cols)
@@ -78,7 +80,11 @@ class Dataset_CSV(Dataset):
78
80
 
79
81
  self.df = df
80
82
  self.db = None
81
- self.got_target = True
83
+ target = self.util.config_val("DATA", "target", None)
84
+ if target is not None:
85
+ self.got_target = True
86
+ else:
87
+ self.got_target = False
82
88
  self.is_labeled = self.got_target
83
89
  self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
84
90
  is_index = False
@@ -125,7 +125,15 @@ class Experiment:
125
125
  # df = pd.read_csv(storage, header=0, index_col=[0,1,2])
126
126
  # df.index.set_levels(pd.to_timedelta(df.index.levels[1]), level=1)
127
127
  # df.index.set_levels(pd.to_timedelta(df.index.levels[2]), level=2)
128
- df = audformat.utils.read_csv(storage)
128
+ try:
129
+ df = audformat.utils.read_csv(storage)
130
+ except ValueError:
131
+ # split might be empty
132
+ return pd.DataFrame()
133
+ if isinstance(df, pd.Series):
134
+ df = df.to_frame()
135
+ elif isinstance(df, pd.Index):
136
+ df = pd.DataFrame(index=df)
129
137
  df.is_labeled = True if self.target in df else False
130
138
  # print(df.head())
131
139
  return df
@@ -305,6 +305,9 @@ class Plots:
305
305
  except AttributeError as ae:
306
306
  self.util.warn(ae)
307
307
  ax = sns.histplot(df, x="duration", kde=True)
308
+ except ValueError as error:
309
+ self.util.warn(error)
310
+ ax = sns.histplot(df, x="duration", kde=True)
308
311
  min = self.util.to_3_digits(df.duration.min())
309
312
  max = self.util.to_3_digits(df.duration.max())
310
313
  title = f"Duration distr. for {sample_selection} {df.shape[0]}. min={min}, max={max}"
@@ -110,7 +110,7 @@ def main():
110
110
  )
111
111
  print("")
112
112
  # remove encoded labels
113
- target = util.config_val("DATA", "target", "emotion")
113
+ target = util.config_val("DATA", "target", None)
114
114
  if "class_label" in df_seg.columns:
115
115
  df_seg = df_seg.drop(columns=[target])
116
116
  df_seg = df_seg.rename(columns={"class_label": target})
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.91.2
3
+ Version: 0.91.3
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -355,6 +355,10 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.91.3
359
+ --------------
360
+ * some additions for robustness
361
+
358
362
  Version 0.91.2
359
363
  --------------
360
364
  * making lint work by excluding constants from check
@@ -100,6 +100,7 @@ nkululeko/autopredict/ap_gender.py
100
100
  nkululeko/autopredict/ap_mos.py
101
101
  nkululeko/autopredict/ap_pesq.py
102
102
  nkululeko/autopredict/ap_sdr.py
103
+ nkululeko/autopredict/ap_sid.py
103
104
  nkululeko/autopredict/ap_snr.py
104
105
  nkululeko/autopredict/ap_stoi.py
105
106
  nkululeko/autopredict/ap_valence.py
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes