nkululeko 0.91.1__tar.gz → 0.91.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. {nkululeko-0.91.1 → nkululeko-0.91.3}/CHANGELOG.md +9 -0
  2. {nkululeko-0.91.1/nkululeko.egg-info → nkululeko-0.91.3}/PKG-INFO +12 -3
  3. {nkululeko-0.91.1 → nkululeko-0.91.3}/README.md +2 -2
  4. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/ravdess/process_database.py +0 -12
  5. nkululeko-0.91.3/nkululeko/autopredict/ap_sid.py +43 -0
  6. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/constants.py +1 -1
  7. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/data/dataset_csv.py +7 -1
  8. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/experiment.py +9 -1
  9. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/plots.py +3 -0
  10. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/segment.py +1 -1
  11. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/test_pretrain.py +0 -1
  12. {nkululeko-0.91.1 → nkululeko-0.91.3/nkululeko.egg-info}/PKG-INFO +12 -3
  13. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko.egg-info/SOURCES.txt +1 -0
  14. {nkululeko-0.91.1 → nkululeko-0.91.3}/LICENSE +0 -0
  15. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/aesdd/process_database.py +0 -0
  16. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/androids/process_database.py +0 -0
  17. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/ased/process_database.py +0 -0
  18. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/asvp-esd/process_database.py +0 -0
  19. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/baved/process_database.py +0 -0
  20. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/cafe/process_database.py +0 -0
  21. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/clac/process_database.py +0 -0
  22. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/cmu-mosei/process_database.py +0 -0
  23. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/demos/process_database.py +0 -0
  24. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/ekorpus/process_database.py +0 -0
  25. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emns/process_database.py +0 -0
  26. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emofilm/convert_to_16k.py +0 -0
  27. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emofilm/process_database.py +0 -0
  28. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emorynlp/process_database.py +0 -0
  29. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emov-db/process_database.py +0 -0
  30. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emovo/process_database.py +0 -0
  31. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/emozionalmente/create.py +0 -0
  32. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/enterface/process_database.py +0 -0
  33. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/esd/process_database.py +0 -0
  34. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/gerparas/process_database.py +0 -0
  35. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/iemocap/process_database.py +0 -0
  36. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/jl/process_database.py +0 -0
  37. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/jtes/process_database.py +0 -0
  38. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/meld/process_database.py +0 -0
  39. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/mesd/process_database.py +0 -0
  40. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/mess/process_database.py +0 -0
  41. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/mlendsnd/process_database.py +0 -0
  42. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/msp-improv/process_database2.py +0 -0
  43. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/msp-podcast/process_database.py +0 -0
  44. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/oreau2/process_database.py +0 -0
  45. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/portuguese/process_database.py +0 -0
  46. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/ravdess/process_database_speaker.py +0 -0
  47. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/savee/process_database.py +0 -0
  48. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/shemo/process_database.py +0 -0
  49. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/subesco/process_database.py +0 -0
  50. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/tess/process_database.py +0 -0
  51. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/thorsten-emotional/process_database.py +0 -0
  52. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/urdu/process_database.py +0 -0
  53. {nkululeko-0.91.1 → nkululeko-0.91.3}/data/vivae/process_database.py +0 -0
  54. {nkululeko-0.91.1 → nkululeko-0.91.3}/docs/source/conf.py +0 -0
  55. {nkululeko-0.91.1 → nkululeko-0.91.3}/meta/demos/demo_best_model.py +0 -0
  56. {nkululeko-0.91.1 → nkululeko-0.91.3}/meta/demos/my_experiment.py +0 -0
  57. {nkululeko-0.91.1 → nkululeko-0.91.3}/meta/demos/my_experiment_local.py +0 -0
  58. {nkululeko-0.91.1 → nkululeko-0.91.3}/meta/demos/plot_faster_anim.py +0 -0
  59. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/__init__.py +0 -0
  60. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/aug_train.py +0 -0
  61. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/augment.py +0 -0
  62. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/augmenting/__init__.py +0 -0
  63. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/augmenting/augmenter.py +0 -0
  64. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/augmenting/randomsplicer.py +0 -0
  65. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/augmenting/randomsplicing.py +0 -0
  66. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/augmenting/resampler.py +0 -0
  67. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/__init__.py +0 -0
  68. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_age.py +0 -0
  69. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_arousal.py +0 -0
  70. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_dominance.py +0 -0
  71. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_gender.py +0 -0
  72. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_mos.py +0 -0
  73. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_pesq.py +0 -0
  74. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_sdr.py +0 -0
  75. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_snr.py +0 -0
  76. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_stoi.py +0 -0
  77. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/ap_valence.py +0 -0
  78. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/autopredict/estimate_snr.py +0 -0
  79. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/cacheddataset.py +0 -0
  80. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/data/__init__.py +0 -0
  81. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/data/dataset.py +0 -0
  82. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/demo-ft.py +0 -0
  83. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/demo.py +0 -0
  84. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/demo_feats.py +0 -0
  85. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/demo_predictor.py +0 -0
  86. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/ensemble.py +0 -0
  87. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/explore.py +0 -0
  88. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/export.py +0 -0
  89. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/__init__.py +0 -0
  90. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_agender.py +0 -0
  91. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  92. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_analyser.py +0 -0
  93. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_ast.py +0 -0
  94. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_auddim.py +0 -0
  95. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  96. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_clap.py +0 -0
  97. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_hubert.py +0 -0
  98. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_import.py +0 -0
  99. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_mld.py +0 -0
  100. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_mos.py +0 -0
  101. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  102. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  103. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_praat.py +0 -0
  104. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_snr.py +0 -0
  105. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_spectra.py +0 -0
  106. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  107. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_squim.py +0 -0
  108. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_trill.py +0 -0
  109. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  110. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  111. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feats_whisper.py +0 -0
  112. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/featureset.py +0 -0
  113. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  114. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feat_extract/transformer_feature_extractor.py +0 -0
  115. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/feature_extractor.py +0 -0
  116. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/file_checker.py +0 -0
  117. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/filter_data.py +0 -0
  118. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/fixedsegment.py +0 -0
  119. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/glob_conf.py +0 -0
  120. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/losses/__init__.py +0 -0
  121. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/losses/loss_ccc.py +0 -0
  122. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/losses/loss_softf1loss.py +0 -0
  123. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/modelrunner.py +0 -0
  124. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/__init__.py +0 -0
  125. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model.py +0 -0
  126. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_bayes.py +0 -0
  127. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_cnn.py +0 -0
  128. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_gmm.py +0 -0
  129. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_knn.py +0 -0
  130. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_knn_reg.py +0 -0
  131. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_lin_reg.py +0 -0
  132. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_mlp.py +0 -0
  133. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_mlp_regression.py +0 -0
  134. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_svm.py +0 -0
  135. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_svr.py +0 -0
  136. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_tree.py +0 -0
  137. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_tree_reg.py +0 -0
  138. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_tuned.py +0 -0
  139. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_xgb.py +0 -0
  140. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/models/model_xgr.py +0 -0
  141. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/multidb.py +0 -0
  142. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/nkuluflag.py +0 -0
  143. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/nkululeko.py +0 -0
  144. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/predict.py +0 -0
  145. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/__init__.py +0 -0
  146. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/defines.py +0 -0
  147. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/latex_writer.py +0 -0
  148. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/report.py +0 -0
  149. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/report_item.py +0 -0
  150. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/reporter.py +0 -0
  151. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/reporting/result.py +0 -0
  152. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/resample.py +0 -0
  153. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/runmanager.py +0 -0
  154. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/scaler.py +0 -0
  155. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/segmenting/__init__.py +0 -0
  156. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  157. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/segmenting/seg_silero.py +0 -0
  158. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/syllable_nuclei.py +0 -0
  159. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/test.py +0 -0
  160. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/test_predictor.py +0 -0
  161. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/utils/__init__.py +0 -0
  162. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/utils/files.py +0 -0
  163. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/utils/stats.py +0 -0
  164. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko/utils/util.py +0 -0
  165. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko.egg-info/dependency_links.txt +0 -0
  166. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko.egg-info/entry_points.txt +0 -0
  167. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko.egg-info/requires.txt +0 -0
  168. {nkululeko-0.91.1 → nkululeko-0.91.3}/nkululeko.egg-info/top_level.txt +0 -0
  169. {nkululeko-0.91.1 → nkululeko-0.91.3}/pyproject.toml +0 -0
  170. {nkululeko-0.91.1 → nkululeko-0.91.3}/setup.cfg +0 -0
  171. {nkululeko-0.91.1 → nkululeko-0.91.3}/setup.py +0 -0
  172. {nkululeko-0.91.1 → nkululeko-0.91.3}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,15 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.91.3
5
+ --------------
6
+ * some additions for robustness
7
+
8
+ Version 0.91.2
9
+ --------------
10
+ * making lint work by excluding constants from check
11
+
12
+ Version 0.91.1
4
13
  --------------
5
14
  * minor refactoring in ensemble module
6
15
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.91.1
3
+ Version: 0.91.3
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -200,7 +200,7 @@ All of them take *--config <my_config.ini>* as an argument.
200
200
 
201
201
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
202
202
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
203
- * *configurations*: which experiments to combine
203
+ * *--config*: which experiments (INI files) to combine
204
204
  * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
205
205
  * *--threshold*: uncertainty threshold (1.0 means no threshold)
206
206
  * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
@@ -261,7 +261,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
261
261
  * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
262
262
  * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
263
263
  * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
264
- * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
264
+ * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
265
265
  * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
266
266
  * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
267
267
  * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
@@ -355,6 +355,15 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.91.3
359
+ --------------
360
+ * some additions for robustness
361
+
362
+ Version 0.91.2
363
+ --------------
364
+ * making lint work by excluding constants from check
365
+
366
+ Version 0.91.1
358
367
  --------------
359
368
  * minor refactoring in ensemble module
360
369
 
@@ -157,7 +157,7 @@ All of them take *--config <my_config.ini>* as an argument.
157
157
 
158
158
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
159
159
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
160
- * *configurations*: which experiments to combine
160
+ * *--config*: which experiments (INI files) to combine
161
161
  * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
162
162
  * *--threshold*: uncertainty threshold (1.0 means no threshold)
163
163
  * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
@@ -218,7 +218,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
218
218
  * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
219
219
  * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
220
220
  * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
221
- * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
221
+ * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
222
222
  * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
223
223
  * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
224
224
  * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
@@ -9,14 +9,9 @@ Download and unzip the file Audio_Speech_Actors_01-24.zip e.g., `ravdess_speech`
9
9
 
10
10
  adapted from https://www.kaggle.com/code/shivamburnwal/speech-emotion-recognition
11
11
 
12
- <<<<<<< HEAD
13
- Usage: `python3 process_database.py /data/ravdess_speech/`
14
-
15
- =======
16
12
  Usage: `python3 process_database.py -d /data/ravdess_speech
17
13
  OR
18
14
  `python3 process_database.py /data/ravdess_speech`
19
- >>>>>>> e639b1104ec3f50b3944440119f2416aea6e31ac
20
15
  """
21
16
 
22
17
 
@@ -25,12 +20,6 @@ import sys
25
20
 
26
21
  import pandas as pd
27
22
 
28
- <<<<<<< HEAD
29
-
30
- # ravdess source directory as argument
31
- # source_dir = './'
32
- source_dir = sys.argv[1]
33
- =======
34
23
  import argparse
35
24
  from pathlib import Path, PurePath
36
25
 
@@ -40,7 +29,6 @@ parser = argparse.ArgumentParser()
40
29
  parser.add_argument('-d', '--dir', type=str, default='./', help='path to RAVDESS speech directory')
41
30
  args = parser.parse_args()
42
31
  source_dir = str(Path(args.dir))
43
- >>>>>>> e639b1104ec3f50b3944440119f2416aea6e31ac
44
32
  database_name = 'ravdess'
45
33
 
46
34
  # check if directory (e.g., Actor_01) exists
@@ -0,0 +1,43 @@
1
+ """"
2
+ A predictor for sid - Speaker ID.
3
+ """
4
+
5
+ from pyannote.audio import Pipeline
6
+
7
+
8
+ import numpy as np
9
+
10
+ import nkululeko.glob_conf as glob_conf
11
+ from nkululeko.feature_extractor import FeatureExtractor
12
+ from nkululeko.utils.util import Util
13
+
14
+
15
+ class SIDPredictor:
16
+ """SIDPredictor.
17
+
18
+ predicting speaker id.
19
+ """
20
+
21
+ def __init__(self, df):
22
+ self.df = df
23
+ self.util = Util("sidPredictor")
24
+ self.pipeline = Pipeline.from_pretrained(
25
+ "pyannote/speaker-diarization-3.1",
26
+ use_auth_token="HUGGINGFACE_ACCESS_TOKEN_GOES_HERE",
27
+ )
28
+
29
+ def predict(self, split_selection):
30
+ self.util.debug(f"estimating PESQ for {split_selection} samples")
31
+ return_df = self.df.copy()
32
+ feats_name = "_".join(ast.literal_eval(glob_conf.config["DATA"]["databases"]))
33
+ self.feature_extractor = FeatureExtractor(
34
+ self.df, ["squim"], feats_name, split_selection
35
+ )
36
+ result_df = self.feature_extractor.extract()
37
+ # replace missing values by 0
38
+ result_df = result_df.fillna(0)
39
+ result_df = result_df.replace(np.nan, 0)
40
+ result_df.replace([np.inf, -np.inf], 0, inplace=True)
41
+ pred_vals = result_df.pesq * 100
42
+ return_df["pesq_pred"] = pred_vals.astype("int") / 100
43
+ return return_df
@@ -1,2 +1,2 @@
1
- VERSION="0.91.1"
1
+ VERSION="0.91.3"
2
2
  SAMPLING_RATE = 16000
@@ -39,6 +39,8 @@ class Dataset_CSV(Dataset):
39
39
  df = audformat.utils.read_csv(data_file)
40
40
  if isinstance(df, pd.Series):
41
41
  df = df.to_frame()
42
+ elif isinstance(df, pd.Index):
43
+ df = pd.DataFrame(index=df)
42
44
  rename_cols = self.util.config_val_data(self.name, "colnames", False)
43
45
  if rename_cols:
44
46
  col_dict = ast.literal_eval(rename_cols)
@@ -78,7 +80,11 @@ class Dataset_CSV(Dataset):
78
80
 
79
81
  self.df = df
80
82
  self.db = None
81
- self.got_target = True
83
+ target = self.util.config_val("DATA", "target", None)
84
+ if target is not None:
85
+ self.got_target = True
86
+ else:
87
+ self.got_target = False
82
88
  self.is_labeled = self.got_target
83
89
  self.start_fresh = eval(self.util.config_val("DATA", "no_reuse", "False"))
84
90
  is_index = False
@@ -125,7 +125,15 @@ class Experiment:
125
125
  # df = pd.read_csv(storage, header=0, index_col=[0,1,2])
126
126
  # df.index.set_levels(pd.to_timedelta(df.index.levels[1]), level=1)
127
127
  # df.index.set_levels(pd.to_timedelta(df.index.levels[2]), level=2)
128
- df = audformat.utils.read_csv(storage)
128
+ try:
129
+ df = audformat.utils.read_csv(storage)
130
+ except ValueError:
131
+ # split might be empty
132
+ return pd.DataFrame()
133
+ if isinstance(df, pd.Series):
134
+ df = df.to_frame()
135
+ elif isinstance(df, pd.Index):
136
+ df = pd.DataFrame(index=df)
129
137
  df.is_labeled = True if self.target in df else False
130
138
  # print(df.head())
131
139
  return df
@@ -305,6 +305,9 @@ class Plots:
305
305
  except AttributeError as ae:
306
306
  self.util.warn(ae)
307
307
  ax = sns.histplot(df, x="duration", kde=True)
308
+ except ValueError as error:
309
+ self.util.warn(error)
310
+ ax = sns.histplot(df, x="duration", kde=True)
308
311
  min = self.util.to_3_digits(df.duration.min())
309
312
  max = self.util.to_3_digits(df.duration.max())
310
313
  title = f"Duration distr. for {sample_selection} {df.shape[0]}. min={min}, max={max}"
@@ -110,7 +110,7 @@ def main():
110
110
  )
111
111
  print("")
112
112
  # remove encoded labels
113
- target = util.config_val("DATA", "target", "emotion")
113
+ target = util.config_val("DATA", "target", None)
114
114
  if "class_label" in df_seg.columns:
115
115
  df_seg = df_seg.drop(columns=[target])
116
116
  df_seg = df_seg.rename(columns={"class_label": target})
@@ -216,7 +216,6 @@ def doit(config_file):
216
216
  )
217
217
 
218
218
  class Trainer(transformers.Trainer):
219
-
220
219
  def compute_loss(
221
220
  self,
222
221
  model,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.91.1
3
+ Version: 0.91.3
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -200,7 +200,7 @@ All of them take *--config <my_config.ini>* as an argument.
200
200
 
201
201
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
202
202
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
203
- * *configurations*: which experiments to combine
203
+ * *--config*: which experiments (INI files) to combine
204
204
  * *--method* (optional): majority_voting, mean (default), max, sum, uncertainty, uncertainty_weighted, confidence_weighted, performance_weighted
205
205
  * *--threshold*: uncertainty threshold (1.0 means no threshold)
206
206
  * *--weights*: weights for performance_weighted method (could be from previous UAR, ACC)
@@ -261,7 +261,7 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
261
261
  * [Predict new labels for your data from public models and check bias](http://blog.syntheticspeech.de/2023/08/16/nkululeko-how-to-predict-labels-for-your-data-from-existing-models-and-check-them/)
262
262
  * [Resample](http://blog.syntheticspeech.de/2023/08/31/how-to-fix-different-sampling-rates-in-a-dataset-with-nkululeko/)
263
263
  * [Get some statistics on correlation and effect-size](http://blog.syntheticspeech.de/2023/09/05/nkululeko-get-some-statistics-on-correlation-and-effect-size/)
264
- * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
264
+ * [Automatic generation of a latex / pdf report](http://blog.syntheticspeech.de/2023/09/26/nkululeko-generate-a-latex-pdf-report/)
265
265
  * [Inspect your data with Spotlight](http://blog.syntheticspeech.de/2023/10/31/nkululeko-inspect-your-data-with-spotlight/)
266
266
  * [Automatically stratify your split sets](http://blog.syntheticspeech.de/2023/11/07/nkululeko-automatically-stratify-your-split-sets/)
267
267
  * [re-name data column names](http://blog.syntheticspeech.de/2023/11/16/nkululeko-re-name-data-column-names/)
@@ -355,6 +355,15 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
355
355
  Changelog
356
356
  =========
357
357
 
358
+ Version 0.91.3
359
+ --------------
360
+ * some additions for robustness
361
+
362
+ Version 0.91.2
363
+ --------------
364
+ * making lint work by excluding constants from check
365
+
366
+ Version 0.91.1
358
367
  --------------
359
368
  * minor refactoring in ensemble module
360
369
 
@@ -100,6 +100,7 @@ nkululeko/autopredict/ap_gender.py
100
100
  nkululeko/autopredict/ap_mos.py
101
101
  nkululeko/autopredict/ap_pesq.py
102
102
  nkululeko/autopredict/ap_sdr.py
103
+ nkululeko/autopredict/ap_sid.py
103
104
  nkululeko/autopredict/ap_snr.py
104
105
  nkululeko/autopredict/ap_stoi.py
105
106
  nkululeko/autopredict/ap_valence.py
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes