nkululeko 0.88.2__tar.gz → 0.88.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (170) hide show
  1. {nkululeko-0.88.2 → nkululeko-0.88.4}/CHANGELOG.md +9 -0
  2. {nkululeko-0.88.2/nkululeko.egg-info → nkululeko-0.88.4}/PKG-INFO +14 -2
  3. {nkululeko-0.88.2 → nkululeko-0.88.4}/README.md +4 -1
  4. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/constants.py +1 -1
  5. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/demo_predictor.py +4 -2
  6. nkululeko-0.88.4/nkululeko/ensemble.py +343 -0
  7. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_ast.py +2 -4
  8. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/modelrunner.py +3 -3
  9. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_svm.py +2 -0
  10. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/reporter.py +4 -3
  11. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/runmanager.py +1 -1
  12. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/utils/util.py +44 -5
  13. {nkululeko-0.88.2 → nkululeko-0.88.4/nkululeko.egg-info}/PKG-INFO +14 -2
  14. nkululeko-0.88.2/nkululeko/ensemble.py +0 -158
  15. {nkululeko-0.88.2 → nkululeko-0.88.4}/LICENSE +0 -0
  16. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/aesdd/process_database.py +0 -0
  17. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/androids/process_database.py +0 -0
  18. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/androids_orig/process_database.py +0 -0
  19. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/androids_test/process_database.py +0 -0
  20. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/ased/process_database.py +0 -0
  21. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/asvp-esd/process_database.py +0 -0
  22. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/baved/process_database.py +0 -0
  23. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/cafe/process_database.py +0 -0
  24. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/clac/process_database.py +0 -0
  25. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/cmu-mosei/process_database.py +0 -0
  26. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/demos/process_database.py +0 -0
  27. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/ekorpus/process_database.py +0 -0
  28. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emns/process_database.py +0 -0
  29. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emofilm/convert_to_16k.py +0 -0
  30. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emofilm/process_database.py +0 -0
  31. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emorynlp/process_database.py +0 -0
  32. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emov-db/process_database.py +0 -0
  33. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emovo/process_database.py +0 -0
  34. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/emozionalmente/create.py +0 -0
  35. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/enterface/process_database.py +0 -0
  36. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/esd/process_database.py +0 -0
  37. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/gerparas/process_database.py +0 -0
  38. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/iemocap/process_database.py +0 -0
  39. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/jl/process_database.py +0 -0
  40. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/jtes/process_database.py +0 -0
  41. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/meld/process_database.py +0 -0
  42. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/mesd/process_database.py +0 -0
  43. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/mess/process_database.py +0 -0
  44. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/mlendsnd/process_database.py +0 -0
  45. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/msp-improv/process_database2.py +0 -0
  46. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/msp-podcast/process_database.py +0 -0
  47. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/oreau2/process_database.py +0 -0
  48. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/portuguese/process_database.py +0 -0
  49. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/ravdess/process_database.py +0 -0
  50. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/ravdess/process_database_speaker.py +0 -0
  51. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/savee/process_database.py +0 -0
  52. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/shemo/process_database.py +0 -0
  53. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/subesco/process_database.py +0 -0
  54. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/tess/process_database.py +0 -0
  55. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/thorsten-emotional/process_database.py +0 -0
  56. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/urdu/process_database.py +0 -0
  57. {nkululeko-0.88.2 → nkululeko-0.88.4}/data/vivae/process_database.py +0 -0
  58. {nkululeko-0.88.2 → nkululeko-0.88.4}/docs/source/conf.py +0 -0
  59. {nkululeko-0.88.2 → nkululeko-0.88.4}/meta/demos/demo_best_model.py +0 -0
  60. {nkululeko-0.88.2 → nkululeko-0.88.4}/meta/demos/my_experiment.py +0 -0
  61. {nkululeko-0.88.2 → nkululeko-0.88.4}/meta/demos/my_experiment_local.py +0 -0
  62. {nkululeko-0.88.2 → nkululeko-0.88.4}/meta/demos/plot_faster_anim.py +0 -0
  63. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/__init__.py +0 -0
  64. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/aug_train.py +0 -0
  65. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/augment.py +0 -0
  66. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/augmenting/__init__.py +0 -0
  67. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/augmenting/augmenter.py +0 -0
  68. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/augmenting/randomsplicer.py +0 -0
  69. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/augmenting/randomsplicing.py +0 -0
  70. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/augmenting/resampler.py +0 -0
  71. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/__init__.py +0 -0
  72. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_age.py +0 -0
  73. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_arousal.py +0 -0
  74. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_dominance.py +0 -0
  75. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_gender.py +0 -0
  76. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_mos.py +0 -0
  77. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_pesq.py +0 -0
  78. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_sdr.py +0 -0
  79. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_snr.py +0 -0
  80. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_stoi.py +0 -0
  81. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/ap_valence.py +0 -0
  82. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/autopredict/estimate_snr.py +0 -0
  83. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/cacheddataset.py +0 -0
  84. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/data/__init__.py +0 -0
  85. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/data/dataset.py +0 -0
  86. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/data/dataset_csv.py +0 -0
  87. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/demo.py +0 -0
  88. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/demo_feats.py +0 -0
  89. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/experiment.py +0 -0
  90. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/explore.py +0 -0
  91. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/export.py +0 -0
  92. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/__init__.py +0 -0
  93. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_agender.py +0 -0
  94. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  95. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_analyser.py +0 -0
  96. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_auddim.py +0 -0
  97. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  98. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_clap.py +0 -0
  99. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_hubert.py +0 -0
  100. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_import.py +0 -0
  101. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_mld.py +0 -0
  102. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_mos.py +0 -0
  103. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  104. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  105. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_praat.py +0 -0
  106. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_snr.py +0 -0
  107. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_spectra.py +0 -0
  108. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  109. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_squim.py +0 -0
  110. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_trill.py +0 -0
  111. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  112. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  113. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feats_whisper.py +0 -0
  114. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/featureset.py +0 -0
  115. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  116. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/feature_extractor.py +0 -0
  117. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/file_checker.py +0 -0
  118. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/filter_data.py +0 -0
  119. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/glob_conf.py +0 -0
  120. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/losses/__init__.py +0 -0
  121. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/losses/loss_ccc.py +0 -0
  122. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/losses/loss_softf1loss.py +0 -0
  123. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/__init__.py +0 -0
  124. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model.py +0 -0
  125. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_bayes.py +0 -0
  126. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_cnn.py +0 -0
  127. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_gmm.py +0 -0
  128. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_knn.py +0 -0
  129. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_knn_reg.py +0 -0
  130. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_lin_reg.py +0 -0
  131. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_mlp.py +0 -0
  132. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_mlp_regression.py +0 -0
  133. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_svr.py +0 -0
  134. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_tree.py +0 -0
  135. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_tree_reg.py +0 -0
  136. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_tuned.py +0 -0
  137. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_xgb.py +0 -0
  138. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/models/model_xgr.py +0 -0
  139. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/multidb.py +0 -0
  140. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/nkuluflag.py +0 -0
  141. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/nkululeko.py +0 -0
  142. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/plots.py +0 -0
  143. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/predict.py +0 -0
  144. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/__init__.py +0 -0
  145. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/defines.py +0 -0
  146. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/latex_writer.py +0 -0
  147. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/report.py +0 -0
  148. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/report_item.py +0 -0
  149. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/reporting/result.py +0 -0
  150. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/resample.py +0 -0
  151. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/scaler.py +0 -0
  152. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/segment.py +0 -0
  153. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/segmenting/__init__.py +0 -0
  154. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  155. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/segmenting/seg_silero.py +0 -0
  156. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/syllable_nuclei.py +0 -0
  157. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/test.py +0 -0
  158. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/test_predictor.py +0 -0
  159. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/test_pretrain.py +0 -0
  160. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/utils/__init__.py +0 -0
  161. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/utils/files.py +0 -0
  162. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko/utils/stats.py +0 -0
  163. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko.egg-info/SOURCES.txt +0 -0
  164. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko.egg-info/dependency_links.txt +0 -0
  165. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko.egg-info/requires.txt +0 -0
  166. {nkululeko-0.88.2 → nkululeko-0.88.4}/nkululeko.egg-info/top_level.txt +0 -0
  167. {nkululeko-0.88.2 → nkululeko-0.88.4}/pyproject.toml +0 -0
  168. {nkululeko-0.88.2 → nkululeko-0.88.4}/setup.cfg +0 -0
  169. {nkululeko-0.88.2 → nkululeko-0.88.4}/setup.py +0 -0
  170. {nkululeko-0.88.2 → nkululeko-0.88.4}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,15 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.88.4
5
+ --------------
6
+ * added more ensemble methods, e.g. based on uncertainty
7
+
8
+ Version 0.88.3
9
+ --------------
10
+ * fixed bug in false uncertainty estimation
11
+ * changed demo live recording
12
+
4
13
  Version 0.88.2
5
14
  --------------
6
15
  * changed combine speaker results to show speakers not samples
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.88.2
3
+ Version: 0.88.4
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -203,7 +203,8 @@ All of them take *--config <my_config.ini>* as an argument.
203
203
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
204
204
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
205
205
  * *configurations*: which experiments to combine
206
- * *--method* (optional): majority_voting, mean, max, sum
206
+ * *--method* (optional): mean, max, sum, max_class, uncertainty_threshold, uncertainty_weighted, confidence_weighted
207
+ * *--threshold*: uncertainty threshold (1.0 means no threshold)
207
208
  * *--outfile* (optional): name of CSV file for output
208
209
  * *--no_labels* (optional): indicate that no ground truth is given
209
210
  * **nkululeko.multidb**: do [multiple experiments](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/), comparing several databases cross and in itself
@@ -273,6 +274,8 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
273
274
  * [Tweak the target variable for database comparison](http://blog.syntheticspeech.de/2024/03/13/nkululeko-how-to-tweak-the-target-variable-for-database-comparison/)
274
275
  * [How to run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
275
276
  * [How to finetune a transformer-model](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
277
+ * [Ensemble (combine) classifiers with late-fusion](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
278
+
276
279
 
277
280
  ### <a name="helloworld">Hello World example</a>
278
281
  * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
@@ -356,6 +359,15 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
356
359
  Changelog
357
360
  =========
358
361
 
362
+ Version 0.88.4
363
+ --------------
364
+ * added more ensemble methods, e.g. based on uncertainty
365
+
366
+ Version 0.88.3
367
+ --------------
368
+ * fixed bug in false uncertainty estimation
369
+ * changed demo live recording
370
+
359
371
  Version 0.88.2
360
372
  --------------
361
373
  * changed combine speaker results to show speakers not samples
@@ -159,7 +159,8 @@ All of them take *--config <my_config.ini>* as an argument.
159
159
  * **nkululeko.nkululeko**: do machine learning experiments combining features and learners
160
160
  * **nkululeko.ensemble**: [combine several nkululeko experiments](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/) and report on late fusion results
161
161
  * *configurations*: which experiments to combine
162
- * *--method* (optional): majority_voting, mean, max, sum
162
+ * *--method* (optional): mean, max, sum, max_class, uncertainty_threshold, uncertainty_weighted, confidence_weighted
163
+ * *--threshold*: uncertainty threshold (1.0 means no threshold)
163
164
  * *--outfile* (optional): name of CSV file for output
164
165
  * *--no_labels* (optional): indicate that no ground truth is given
165
166
  * **nkululeko.multidb**: do [multiple experiments](http://blog.syntheticspeech.de/2024/01/02/nkululeko-compare-several-databases/), comparing several databases cross and in itself
@@ -229,6 +230,8 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
229
230
  * [Tweak the target variable for database comparison](http://blog.syntheticspeech.de/2024/03/13/nkululeko-how-to-tweak-the-target-variable-for-database-comparison/)
230
231
  * [How to run multiple experiments in one go](http://blog.syntheticspeech.de/2022/03/28/how-to-run-multiple-experiments-in-one-go-with-nkululeko/)
231
232
  * [How to finetune a transformer-model](http://blog.syntheticspeech.de/2024/05/29/nkululeko-how-to-finetune-a-transformer-model/)
233
+ * [Ensemble (combine) classifiers with late-fusion](http://blog.syntheticspeech.de/2024/06/25/nkululeko-ensemble-classifiers-with-late-fusion/)
234
+
232
235
 
233
236
  ### <a name="helloworld">Hello World example</a>
234
237
  * NEW: [Here's a Google colab that runs this example out-of-the-box](https://colab.research.google.com/drive/1GYNBd5cdZQ1QC3Jm58qoeMaJg3UuPhjw?usp=sharing#scrollTo=4G_SjuF9xeQf), and here is the same [with Kaggle](https://www.kaggle.com/felixburk/nkululeko-hello-world-example)
@@ -1,2 +1,2 @@
1
- VERSION="0.88.2"
1
+ VERSION="0.88.4"
2
2
  SAMPLING_RATE = 16000
@@ -72,9 +72,11 @@ class Demo_predictor:
72
72
  else:
73
73
  self.util.debug(df_res)
74
74
  else:
75
- while True:
75
+ answer = input("want to record y/n?")
76
+ while answer == "y":
76
77
  signal = self.record_audio(3)
77
78
  self.predict_signal(signal, self.sr)
79
+ answer = input("want to record y/n?")
78
80
 
79
81
  # self.play_audio(signal)
80
82
 
@@ -109,7 +111,7 @@ class Demo_predictor:
109
111
  def record_audio(self, seconds):
110
112
  import sounddevice as sd
111
113
 
112
- print("recording ...")
114
+ print("recording ...", flush=True)
113
115
  y = sd.rec(int(seconds * self.sr), samplerate=self.sr, channels=1)
114
116
  sd.wait()
115
117
  y = y.T
@@ -0,0 +1,343 @@
1
+ #!/usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+
4
+ from typing import List
5
+ import configparser
6
+ import time
7
+ from argparse import ArgumentParser
8
+ from pathlib import Path
9
+
10
+ import numpy as np
11
+ import pandas as pd
12
+ from sklearn.metrics import balanced_accuracy_score
13
+
14
+ from nkululeko.constants import VERSION
15
+ from nkululeko.experiment import Experiment
16
+ from nkululeko.utils.util import Util
17
+
18
+ # import torch
19
+
20
+ # Constants
21
+ DEFAULT_METHOD = "mean"
22
+ DEFAULT_OUTFILE = "ensemble_result.csv"
23
+
24
+
25
+ def majority_voting(ensemble_preds_ls):
26
+ all_predictions = pd.concat([df["predicted"] for df in ensemble_preds_ls], axis=1)
27
+ return all_predictions.mode(axis=1).iloc[:, 0]
28
+
29
+
30
+ def mean_ensemble(ensemble_preds, labels):
31
+ for label in labels:
32
+ ensemble_preds[label] = ensemble_preds[label].mean(axis=1)
33
+ return ensemble_preds[labels].idxmax(axis=1)
34
+
35
+
36
+ def max_ensemble(ensemble_preds, labels):
37
+ for label in labels:
38
+ ensemble_preds[label] = ensemble_preds[label].max(axis=1)
39
+ return ensemble_preds[labels].idxmax(axis=1)
40
+
41
+
42
+ def sum_ensemble(ensemble_preds, labels):
43
+ for label in labels:
44
+ ensemble_preds[label] = ensemble_preds[label].sum(axis=1)
45
+ return ensemble_preds[labels].idxmax(axis=1)
46
+
47
+
48
+ def uncertainty_ensemble(ensemble_preds):
49
+ """Same as uncertainty_threshold with a threshold of 0.1"""
50
+ final_predictions = []
51
+ best_uncertainty = []
52
+ for _, row in ensemble_preds.iterrows():
53
+ uncertainties = row[["uncertainty"]].values
54
+ min_uncertainty_idx = np.argmin(uncertainties)
55
+ final_predictions.append(row["predicted"].iloc[min_uncertainty_idx])
56
+ best_uncertainty.append(uncertainties[min_uncertainty_idx])
57
+
58
+ return final_predictions, best_uncertainty
59
+
60
+
61
+ def max_class_ensemble(ensemble_preds_ls, labels):
62
+ """Compare the highest probabilites of all models across classes (instead of same class as in max_ensemble) and return the highest probability and the class"""
63
+ final_preds = []
64
+ final_probs = []
65
+
66
+ for _, row in pd.concat(ensemble_preds_ls, axis=1).iterrows():
67
+ max_probs = []
68
+ max_classes = []
69
+
70
+ for model_df in ensemble_preds_ls:
71
+ model_probs = row[labels].astype(float)
72
+ max_prob = model_probs.max()
73
+ max_class = model_probs.idxmax()
74
+
75
+ max_probs.append(max_prob)
76
+ max_classes.append(max_class)
77
+
78
+ best_model_index = np.argmax(max_probs)
79
+
80
+ final_preds.append(max_classes[best_model_index])
81
+ final_probs.append(max_probs[best_model_index])
82
+
83
+ return pd.Series(final_preds), pd.Series(final_probs)
84
+
85
+
86
+ def uncertainty_threshold_ensemble(ensemble_preds_ls, labels, threshold):
87
+ final_predictions = []
88
+ final_uncertainties = []
89
+
90
+ for idx in ensemble_preds_ls[0].index:
91
+ uncertainties = [df.loc[idx, "uncertainty"] for df in ensemble_preds_ls]
92
+ min_uncertainty_idx = np.argmin(uncertainties)
93
+ min_uncertainty = uncertainties[min_uncertainty_idx]
94
+
95
+ if min_uncertainty <= threshold:
96
+ # Use the prediction with low uncertainty
97
+ final_predictions.append(
98
+ ensemble_preds_ls[min_uncertainty_idx].loc[idx, "predicted"]
99
+ )
100
+ final_uncertainties.append(min_uncertainty)
101
+ else: # for uncertainty above threshold
102
+ # Calculate mean of probabilities same class different model
103
+ mean_probs = np.mean(
104
+ [df.loc[idx, labels].values for df in ensemble_preds_ls], axis=0
105
+ )
106
+ final_predictions.append(labels[np.argmax(mean_probs)])
107
+ final_uncertainties.append(np.mean(uncertainties))
108
+
109
+ return final_predictions
110
+
111
+
112
+ def uncertainty_weighted_ensemble(ensemble_preds_ls, labels):
113
+ """Weighted ensemble based on uncertainty, normalized for each class"""
114
+ final_predictions = []
115
+ final_uncertainties = []
116
+
117
+ for idx in ensemble_preds_ls[0].index:
118
+ uncertainties = [df.loc[idx, "uncertainty"] for df in ensemble_preds_ls]
119
+ # Convert uncertainties to accuracies/confidence
120
+ accuracies = [1 - uncertainty for uncertainty in uncertainties]
121
+
122
+ # Calculate weights (inverse of uncertainties)
123
+ weights = [
124
+ 1 / uncertainty if uncertainty != 0 else 1e10
125
+ for uncertainty in uncertainties
126
+ ]
127
+
128
+ # Normalize weights for each class
129
+ total_weight = sum(weights)
130
+ normalized_weights = [w / total_weight for w in weights]
131
+
132
+ # Calculate weighted probabilities for each class
133
+ weighted_probs = {label: 0 for label in labels}
134
+ for df, weight in zip(ensemble_preds_ls, normalized_weights):
135
+ for label in labels:
136
+ weighted_probs[label] += df.loc[idx, label] * weight
137
+
138
+ # Select the class with the highest weighted probability
139
+ predicted_class = max(weighted_probs, key=weighted_probs.get)
140
+ final_predictions.append(predicted_class)
141
+
142
+ # Use the lowest accuracy as the final uncertainty
143
+ final_uncertainties.append(1 - min(accuracies))
144
+
145
+ return final_predictions, final_uncertainties
146
+
147
+
148
+ def confidence_weighted_ensemble(ensemble_preds_ls, labels):
149
+ """Weighted ensemble based on confidence, normalized for all samples per model"""
150
+ final_predictions = []
151
+ final_confidences = []
152
+
153
+ for idx in ensemble_preds_ls[0].index:
154
+ class_probabilities = {label: 0 for label in labels}
155
+ total_confidence = 0
156
+
157
+ for df in ensemble_preds_ls:
158
+ row = df.loc[idx]
159
+ confidence = 1 - row["uncertainty"] # confidence score
160
+ total_confidence += confidence
161
+
162
+ for label in labels:
163
+ class_probabilities[label] += row[label] * confidence
164
+
165
+ # Normalize probabilities
166
+ for label in labels:
167
+ class_probabilities[label] /= total_confidence
168
+
169
+ predicted_class = max(class_probabilities, key=class_probabilities.get)
170
+ final_predictions.append(predicted_class)
171
+ final_confidences.append(max(class_probabilities.values()))
172
+
173
+ return final_predictions, final_confidences
174
+
175
+
176
+ def ensemble_predictions(
177
+ config_files: List[str], method: str, threshold: float, no_labels: bool
178
+ ) -> pd.DataFrame:
179
+ """
180
+ Ensemble predictions from multiple experiments.
181
+
182
+ Args:
183
+ config_files (list): List of configuration file paths.
184
+ method (str): Ensemble method to use. Options are 'majority_voting', 'mean', 'max', or 'sum'.
185
+ no_labels (bool): Flag indicating whether the predictions have labels or not.
186
+
187
+ Returns:
188
+ pandas.DataFrame: The ensemble predictions.
189
+
190
+ Raises:
191
+ ValueError: If an unknown ensemble method is provided.
192
+ AssertionError: If the number of config files is less than 2 for majority voting.
193
+
194
+ """
195
+ ensemble_preds_ls = []
196
+ for config_file in config_files:
197
+ if no_labels:
198
+ # for ensembling results from Nkululeko.demo
199
+ preds = pd.read_csv(config_file)
200
+ labels = preds.columns[1:-2]
201
+ else:
202
+ # for ensembling results from Nkululeko.nkululeko
203
+ config = configparser.ConfigParser()
204
+ config.read(config_file)
205
+ expr = Experiment(config)
206
+ module = "ensemble"
207
+ expr.set_module(module)
208
+ util = Util(module, has_config=True)
209
+ util.debug(
210
+ f"running {expr.name} from config {config_file}, nkululeko version"
211
+ f" {VERSION}"
212
+ )
213
+
214
+ # get labels
215
+ labels = expr.util.get_labels()
216
+ # load the experiment
217
+ # get CSV files of predictions
218
+ pred_name = expr.util.get_pred_name()
219
+ util.debug(f"Loading predictions from {pred_name}")
220
+ preds = pd.read_csv(pred_name)
221
+
222
+ ensemble_preds_ls.append(preds)
223
+
224
+ # pd concate
225
+ ensemble_preds = pd.concat(ensemble_preds_ls, axis=1)
226
+
227
+ if method == "majority_voting":
228
+ assert (
229
+ len(ensemble_preds_ls) > 2
230
+ ), "Majority voting only works for more than two models"
231
+ ensemble_preds["predicted"] = majority_voting(ensemble_preds_ls)
232
+ elif method == "mean":
233
+ ensemble_preds["predicted"] = mean_ensemble(ensemble_preds, labels)
234
+ elif method == "max":
235
+ ensemble_preds["predicted"] = max_ensemble(ensemble_preds, labels)
236
+ elif method == "sum":
237
+ ensemble_preds["predicted"] = sum_ensemble(ensemble_preds, labels)
238
+ elif method == "max_class":
239
+ ensemble_preds["predicted"], ensemble_preds["max_probability"] = (
240
+ max_class_ensemble(ensemble_preds_ls, labels)
241
+ )
242
+ elif method == "uncertainty_threshold":
243
+ ensemble_preds["predicted"] = uncertainty_threshold_ensemble(
244
+ ensemble_preds_ls, labels, threshold
245
+ )
246
+ elif method == "uncertainty_weighted":
247
+ ensemble_preds["predicted"], ensemble_preds["uncertainty"] = (
248
+ uncertainty_weighted_ensemble(ensemble_preds_ls, labels)
249
+ )
250
+ elif method == "confidence_weighted":
251
+ ensemble_preds["predicted"], ensemble_preds["confidence"] = (
252
+ confidence_weighted_ensemble(ensemble_preds_ls, labels)
253
+ )
254
+ else:
255
+ raise ValueError(f"Unknown ensemble method: {method}")
256
+
257
+ # get the highest value from all labels to infer the label
258
+ # replace the old first predicted column
259
+ if method in ["mean", "max", "sum"]:
260
+ ensemble_preds["predicted"] = ensemble_preds[labels].idxmax(axis=1)
261
+
262
+ if no_labels:
263
+ return ensemble_preds
264
+
265
+ # Drop start, end columns
266
+ ensemble_preds = ensemble_preds.drop(columns=["start", "end"])
267
+
268
+ # Drop other column except until truth
269
+ ensemble_preds = ensemble_preds.iloc[:, : len(labels) + 3]
270
+
271
+ # calculate UAR from predicted and truth columns
272
+
273
+ truth = ensemble_preds["truth"]
274
+ predicted = ensemble_preds["predicted"]
275
+ uar = balanced_accuracy_score(truth, predicted)
276
+ acc = (truth == predicted).mean()
277
+ Util("ensemble").debug(f"{method}: UAR: {uar:.3f}, ACC: {acc:.3f}")
278
+
279
+ return ensemble_preds
280
+
281
+
282
+ def main(src_dir: Path) -> None:
283
+ parser = ArgumentParser()
284
+ parser.add_argument(
285
+ "configs",
286
+ nargs="+",
287
+ help="Paths to the configuration files of the experiments to ensemble. \
288
+ Can be INI files for Nkululeko.nkululeo or CSV files from Nkululeko.demo.",
289
+ )
290
+ parser.add_argument(
291
+ "--method",
292
+ default=DEFAULT_METHOD,
293
+ choices=[
294
+ "majority_voting",
295
+ "mean",
296
+ "max",
297
+ "sum",
298
+ "max_class",
299
+ # "uncertainty_lowest",
300
+ # "entropy",
301
+ "uncertainty_threshold",
302
+ "uncertainty_weighted",
303
+ "confidence_weighted",
304
+ ],
305
+ help=f"Ensemble method to use (default: {DEFAULT_METHOD})",
306
+ )
307
+ # add threshold if method is uncertainty_threshold
308
+ parser.add_argument(
309
+ "--threshold",
310
+ default=1.0,
311
+ type=float,
312
+ help="Threshold for uncertainty_threshold method (default: 1.0, i.e. no threshold)",
313
+ )
314
+ parser.add_argument(
315
+ "--outfile",
316
+ default=DEFAULT_OUTFILE,
317
+ help=f"Output file path for the ensemble predictions (default: {DEFAULT_OUTFILE})",
318
+ )
319
+ parser.add_argument(
320
+ "--no_labels",
321
+ action="store_true",
322
+ help="True if true labels are not available. For Nkululeko.demo results.",
323
+ )
324
+
325
+ args = parser.parse_args()
326
+
327
+ start = time.time()
328
+
329
+ ensemble_preds = ensemble_predictions(
330
+ args.configs, args.method, args.threshold, args.no_labels
331
+ )
332
+
333
+ # save to csv
334
+ ensemble_preds.to_csv(args.outfile, index=False)
335
+ Util("ensemble").debug(f"Ensemble predictions saved to: {args.outfile}")
336
+ Util("ensemble").debug(f"Ensemble done, used {time.time()-start:.2f} seconds")
337
+
338
+ Util("ensemble").debug("DONE")
339
+
340
+
341
+ if __name__ == "__main__":
342
+ cwd = Path(__file__).parent
343
+ main(cwd)
@@ -100,10 +100,8 @@ class Ast(Featureset):
100
100
  embeddings = torch.mean(last_hidden_state, dim=1)
101
101
  embeddings = embeddings.cpu().numpy()
102
102
 
103
- # convert the same from (768,) to (1, 768)
104
- # embeddings = embeddings.reshape(1, -1)
105
- print(f"hs shape: {embeddings.shape}")
106
-
103
+ # print(f"hs shape: {embeddings.shape}")
104
+ # hs shape: (1, 768)
107
105
 
108
106
  except Exception as e:
109
107
  self.util.error(f"Error extracting embeddings for file {file}: {str(e)}, fill with")
@@ -238,21 +238,21 @@ class Modelrunner:
238
238
  if balancing == "ros":
239
239
  from imblearn.over_sampling import RandomOverSampler
240
240
 
241
- sampler = RandomOverSampler()
241
+ sampler = RandomOverSampler(random_state=42)
242
242
  X_res, y_res = sampler.fit_resample(
243
243
  self.feats_train, self.df_train[self.target]
244
244
  )
245
245
  elif balancing == "smote":
246
246
  from imblearn.over_sampling import SMOTE
247
247
 
248
- sampler = SMOTE()
248
+ sampler = SMOTE(random_state=42)
249
249
  X_res, y_res = sampler.fit_resample(
250
250
  self.feats_train, self.df_train[self.target]
251
251
  )
252
252
  elif balancing == "adasyn":
253
253
  from imblearn.over_sampling import ADASYN
254
254
 
255
- sampler = ADASYN()
255
+ sampler = ADASYN(random_state=42)
256
256
  X_res, y_res = sampler.fit_resample(
257
257
  self.feats_train, self.df_train[self.target]
258
258
  )
@@ -1,5 +1,6 @@
1
1
  # model_svm.py
2
2
 
3
+ import random
3
4
  from sklearn import svm
4
5
  from nkululeko.models.model import Model
5
6
 
@@ -24,6 +25,7 @@ class SVM_model(Model):
24
25
  gamma="scale",
25
26
  probability=True,
26
27
  class_weight=class_weight,
28
+ random_state=42, # for consistent result
27
29
  ) # set up the classifier
28
30
 
29
31
  def set_c(self, c):
@@ -144,10 +144,10 @@ class Reporter:
144
144
  and "uncertainty" not in self.probas
145
145
  ):
146
146
  probas = self.probas
147
- probas["predicted"] = self.preds
148
- probas["truth"] = self.truths
149
147
  # softmax the probabilities or logits
150
148
  uncertainty = probas.apply(softmax, axis=1)
149
+ probas["predicted"] = self.preds
150
+ probas["truth"] = self.truths
151
151
  try:
152
152
  le = glob_conf.label_encoder
153
153
  mapping = dict(zip(le.classes_, range(len(le.classes_))))
@@ -166,7 +166,8 @@ class Reporter:
166
166
  )
167
167
  probas["uncertainty"] = uncertainty
168
168
  probas["correct"] = probas.predicted == probas.truth
169
- sp = os.path.join(self.util.get_path("store"), "pred_df.csv")
169
+ sp = self.util.get_pred_name()
170
+
170
171
  self.probas = probas
171
172
  probas.to_csv(sp)
172
173
  self.util.debug(f"Saved probabilities to {sp}")
@@ -50,7 +50,7 @@ class Runmanager:
50
50
  self.last_epochs = [] # keep the epoch of best result per run
51
51
  # for all runs
52
52
  for run in range(int(self.util.config_val("EXP", "runs", 1))):
53
- self.util.debug(f"run {run}")
53
+ self.util.debug(f"run {run} using model {glob_conf.config['MODEL']['type']}")
54
54
  # set the run index as global variable for reporting
55
55
  self.util.set_config_val("EXP", "run", run)
56
56
  self.modelrunner = Modelrunner(
@@ -1,10 +1,13 @@
1
1
  # util.py
2
2
  import ast
3
3
  import configparser
4
+ import logging
4
5
  import os.path
5
6
  import pickle
6
7
  import sys
7
8
 
9
+ # from sysconfig import get_config_h_filename
10
+ # from turtle import setup
8
11
  import audeer
9
12
  import audformat
10
13
  import numpy as np
@@ -32,6 +35,7 @@ class Util:
32
35
  self.caller = caller
33
36
  else:
34
37
  self.caller = ""
38
+ self.config = None
35
39
  if has_config:
36
40
  try:
37
41
  import nkululeko.glob_conf as glob_conf
@@ -49,6 +53,30 @@ class Util:
49
53
  self.config = None
50
54
  self.got_data_roots = False
51
55
 
56
+ self.setup_logging()
57
+ # self.logged_configs = set()
58
+
59
+ def setup_logging(self):
60
+ # Setup logging
61
+ logger = logging.getLogger(__name__)
62
+ if not logger.hasHandlers():
63
+ logger.setLevel(logging.DEBUG) # Set the desired logging level
64
+
65
+ # Create a console handler
66
+ console_handler = logging.StreamHandler()
67
+
68
+ # Create a simple formatter that only shows the message
69
+ class SimpleFormatter(logging.Formatter):
70
+ def format(self, record):
71
+ return record.getMessage()
72
+
73
+ # Set the formatter for the console handler
74
+ console_handler.setFormatter(SimpleFormatter())
75
+
76
+ # Add the console handler to the logger
77
+ logger.addHandler(console_handler)
78
+ self.logger = logger
79
+
52
80
  def get_path(self, entry):
53
81
  """This method allows the user to get the directory path for the given argument."""
54
82
  if self.config is None:
@@ -120,6 +148,7 @@ class Util:
120
148
 
121
149
  def set_config(self, config):
122
150
  self.config = config
151
+ # self.logged_configs.clear()
123
152
 
124
153
  def get_save_name(self):
125
154
  """Return a relative path to a name to save the experiment"""
@@ -128,7 +157,8 @@ class Util:
128
157
 
129
158
  def get_pred_name(self):
130
159
  store = self.get_path("store")
131
- return f"{store}/pred_df.csv"
160
+ pred_name = self.get_model_description()
161
+ return f"{store}/pred_{pred_name}.csv"
132
162
 
133
163
  def is_categorical(self, pd_series):
134
164
  """Check if a dataframe column is categorical"""
@@ -233,6 +263,11 @@ class Util:
233
263
  return_string += self._get_value_descript(option[0], option[1]).replace(
234
264
  ".", "-"
235
265
  )
266
+ # prevent double underscores
267
+ return_string = return_string.replace("__", "_")
268
+ # remove trailing underscores in the end
269
+ return_string = return_string.strip("_")
270
+
236
271
  return return_string
237
272
 
238
273
  def get_plot_name(self):
@@ -249,14 +284,14 @@ class Util:
249
284
  return False
250
285
 
251
286
  def error(self, message):
252
- print(f"ERROR {self.caller}: {message}")
287
+ self.logger.error(f"ERROR: {self.caller}: {message}")
253
288
  sys.exit()
254
289
 
255
290
  def warn(self, message):
256
- print(f"WARNING {self.caller}: {message}")
291
+ self.logger.warning(f"WARNING: {self.caller}: {message}")
257
292
 
258
293
  def debug(self, message):
259
- print(f"DEBUG {self.caller}: {message}")
294
+ self.logger.debug(f"DEBUG: {self.caller}: {message}")
260
295
 
261
296
  def set_config_val(self, section, key, value):
262
297
  try:
@@ -278,9 +313,13 @@ class Util:
278
313
  return self.config[section][key]
279
314
  except KeyError:
280
315
  if default not in self.stopvals:
281
- self.debug(f"value for {key} not found, using default: {default}")
316
+ self.debug(f"value for {key} is not found, using default: {default}")
282
317
  return default
283
318
 
319
+ @classmethod
320
+ def reset_logged_configs(cls):
321
+ cls.logged_configs.clear()
322
+
284
323
  def config_val_list(self, section, key, default):
285
324
  try:
286
325
  return ast.literal_eval(self.config[section][key])