nkululeko 0.81.3__tar.gz → 0.81.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (166) hide show
  1. {nkululeko-0.81.3 → nkululeko-0.81.4}/CHANGELOG.md +5 -0
  2. {nkululeko-0.81.3/nkululeko.egg-info → nkululeko-0.81.4}/PKG-INFO +6 -1
  3. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/constants.py +1 -1
  4. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/data/dataset.py +2 -2
  5. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/experiment.py +2 -2
  6. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_audmodel_dim.py +8 -4
  7. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/modelrunner.py +2 -2
  8. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model.py +13 -13
  9. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_svm.py +5 -2
  10. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/predict.py +3 -1
  11. {nkululeko-0.81.3 → nkululeko-0.81.4/nkululeko.egg-info}/PKG-INFO +6 -1
  12. {nkululeko-0.81.3 → nkululeko-0.81.4}/LICENSE +0 -0
  13. {nkululeko-0.81.3 → nkululeko-0.81.4}/README.md +0 -0
  14. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/aesdd/process_database.py +0 -0
  15. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/androids/process_database.py +0 -0
  16. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/androids_orig/process_database.py +0 -0
  17. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/androids_test/process_database.py +0 -0
  18. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/ased/process_database.py +0 -0
  19. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/asvp-esd/process_database.py +0 -0
  20. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/baved/process_database.py +0 -0
  21. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/cafe/process_database.py +0 -0
  22. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/clac/process_database.py +0 -0
  23. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/cmu-mosei/process_database.py +0 -0
  24. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/crema-d/process_database.py +0 -0
  25. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/demos/process_database.py +0 -0
  26. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/ekorpus/process_database.py +0 -0
  27. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emns/process_database.py +0 -0
  28. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emofilm/convert_to_16k.py +0 -0
  29. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emofilm/process_database.py +0 -0
  30. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emorynlp/process_database.py +0 -0
  31. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emov-db/process_database.py +0 -0
  32. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emovo/process_database.py +0 -0
  33. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/emozionalmente/create.py +0 -0
  34. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/enterface/process_database.py +0 -0
  35. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/esd/process_database.py +0 -0
  36. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/gerparas/process_database.py +0 -0
  37. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/iemocap/process_database.py +0 -0
  38. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/jl/process_database.py +0 -0
  39. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/jtes/process_database.py +0 -0
  40. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/meld/process_database.py +0 -0
  41. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/mesd/process_database.py +0 -0
  42. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/mess/process_database.py +0 -0
  43. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/mlendsnd/process_database.py +0 -0
  44. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/msp-improv/process_database2.py +0 -0
  45. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/msp-podcast/process_database.py +0 -0
  46. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/oreau2/process_database.py +0 -0
  47. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/portuguese/process_database.py +0 -0
  48. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/ravdess/process_database.py +0 -0
  49. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/ravdess/process_database_speaker.py +0 -0
  50. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/savee/process_database.py +0 -0
  51. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/shemo/process_database.py +0 -0
  52. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/subesco/process_database.py +0 -0
  53. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/tess/process_database.py +0 -0
  54. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/thorsten-emotional/process_database.py +0 -0
  55. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/urdu/process_database.py +0 -0
  56. {nkululeko-0.81.3 → nkululeko-0.81.4}/data/vivae/process_database.py +0 -0
  57. {nkululeko-0.81.3 → nkululeko-0.81.4}/docs/source/conf.py +0 -0
  58. {nkululeko-0.81.3 → nkululeko-0.81.4}/meta/demos/demo_best_model.py +0 -0
  59. {nkululeko-0.81.3 → nkululeko-0.81.4}/meta/demos/multiple_exeriments/do_experiments.py +0 -0
  60. {nkululeko-0.81.3 → nkululeko-0.81.4}/meta/demos/multiple_exeriments/parse_nkulu.py +0 -0
  61. {nkululeko-0.81.3 → nkululeko-0.81.4}/meta/demos/my_experiment.py +0 -0
  62. {nkululeko-0.81.3 → nkululeko-0.81.4}/meta/demos/my_experiment_local.py +0 -0
  63. {nkululeko-0.81.3 → nkululeko-0.81.4}/meta/demos/plot_faster_anim.py +0 -0
  64. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/__init__.py +0 -0
  65. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/aug_train.py +0 -0
  66. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/augment.py +0 -0
  67. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/augmenting/__init__.py +0 -0
  68. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/augmenting/augmenter.py +0 -0
  69. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/augmenting/randomsplicer.py +0 -0
  70. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/augmenting/randomsplicing.py +0 -0
  71. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/augmenting/resampler.py +0 -0
  72. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/__init__.py +0 -0
  73. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_age.py +0 -0
  74. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_arousal.py +0 -0
  75. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_dominance.py +0 -0
  76. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_gender.py +0 -0
  77. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_mos.py +0 -0
  78. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_pesq.py +0 -0
  79. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_sdr.py +0 -0
  80. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_snr.py +0 -0
  81. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_stoi.py +0 -0
  82. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/ap_valence.py +0 -0
  83. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/autopredict/estimate_snr.py +0 -0
  84. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/cacheddataset.py +0 -0
  85. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/data/__init__.py +0 -0
  86. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/data/dataset_csv.py +0 -0
  87. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/demo.py +0 -0
  88. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/demo_feats.py +0 -0
  89. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/demo_predictor.py +0 -0
  90. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/explore.py +0 -0
  91. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/export.py +0 -0
  92. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/__init__.py +0 -0
  93. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_agender.py +0 -0
  94. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_agender_agender.py +0 -0
  95. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_analyser.py +0 -0
  96. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_audmodel.py +0 -0
  97. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_clap.py +0 -0
  98. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_hubert.py +0 -0
  99. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_import.py +0 -0
  100. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_mld.py +0 -0
  101. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_mos.py +0 -0
  102. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_opensmile.py +0 -0
  103. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_oxbow.py +0 -0
  104. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_praat.py +0 -0
  105. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_snr.py +0 -0
  106. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_spectra.py +0 -0
  107. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_spkrec.py +0 -0
  108. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_squim.py +0 -0
  109. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_trill.py +0 -0
  110. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_wav2vec2.py +0 -0
  111. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feats_wavlm.py +0 -0
  112. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/featureset.py +0 -0
  113. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feat_extract/feinberg_praat.py +0 -0
  114. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/feature_extractor.py +0 -0
  115. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/file_checker.py +0 -0
  116. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/filter_data.py +0 -0
  117. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/glob_conf.py +0 -0
  118. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/losses/__init__.py +0 -0
  119. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/losses/loss_ccc.py +0 -0
  120. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/losses/loss_softf1loss.py +0 -0
  121. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/__init__.py +0 -0
  122. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_bayes.py +0 -0
  123. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_cnn.py +0 -0
  124. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_gmm.py +0 -0
  125. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_knn.py +0 -0
  126. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_knn_reg.py +0 -0
  127. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_lin_reg.py +0 -0
  128. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_mlp.py +0 -0
  129. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_mlp_regression.py +0 -0
  130. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_svr.py +0 -0
  131. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_tree.py +0 -0
  132. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_tree_reg.py +0 -0
  133. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_xgb.py +0 -0
  134. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/models/model_xgr.py +0 -0
  135. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/multidb.py +0 -0
  136. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/nkululeko.py +0 -0
  137. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/plots.py +0 -0
  138. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/__init__.py +0 -0
  139. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/defines.py +0 -0
  140. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/latex_writer.py +0 -0
  141. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/report.py +0 -0
  142. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/report_item.py +0 -0
  143. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/reporter.py +0 -0
  144. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/reporting/result.py +0 -0
  145. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/resample.py +0 -0
  146. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/runmanager.py +0 -0
  147. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/scaler.py +0 -0
  148. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/segment.py +0 -0
  149. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/segmenting/__init__.py +0 -0
  150. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/segmenting/seg_inaspeechsegmenter.py +0 -0
  151. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/segmenting/seg_silero.py +0 -0
  152. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/syllable_nuclei.py +0 -0
  153. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/test.py +0 -0
  154. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/test_predictor.py +0 -0
  155. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/utils/__init__.py +0 -0
  156. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/utils/files.py +0 -0
  157. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/utils/stats.py +0 -0
  158. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko/utils/util.py +0 -0
  159. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko.egg-info/SOURCES.txt +0 -0
  160. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko.egg-info/dependency_links.txt +0 -0
  161. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko.egg-info/requires.txt +0 -0
  162. {nkululeko-0.81.3 → nkululeko-0.81.4}/nkululeko.egg-info/top_level.txt +0 -0
  163. {nkululeko-0.81.3 → nkululeko-0.81.4}/pyproject.toml +0 -0
  164. {nkululeko-0.81.3 → nkululeko-0.81.4}/setup.cfg +0 -0
  165. {nkululeko-0.81.3 → nkululeko-0.81.4}/setup.py +0 -0
  166. {nkululeko-0.81.3 → nkululeko-0.81.4}/venv/bin/activate_this.py +0 -0
@@ -1,6 +1,11 @@
1
1
  Changelog
2
2
  =========
3
3
 
4
+ Version 0.81.4
5
+ --------------
6
+ * fixed bug in demo module
7
+ * removed [MODEL] save
8
+
4
9
  Version 0.81.3
5
10
  --------------
6
11
  * added confidence intervals to result reporting
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.81.3
3
+ Version: 0.81.4
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -323,6 +323,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
323
323
  Changelog
324
324
  =========
325
325
 
326
+ Version 0.81.4
327
+ --------------
328
+ * fixed bug in demo module
329
+ * removed [MODEL] save
330
+
326
331
  Version 0.81.3
327
332
  --------------
328
333
  * added confidence intervals to result reporting
@@ -1,2 +1,2 @@
1
- VERSION="0.81.3"
1
+ VERSION="0.81.4"
2
2
  SAMPLING_RATE = 16000
@@ -96,8 +96,8 @@ class Dataset:
96
96
  """Load the dataframe with files, speakers and task labels"""
97
97
  # store the dataframe
98
98
  store = self.util.get_path("store")
99
- store_file = f"{store}{self.name}"
100
99
  store_format = self.util.config_val("FEATS", "store_format", "pkl")
100
+ store_file = f"{store}{self.name}.{store_format}"
101
101
  self.root = self._load_db()
102
102
  if not self.start_fresh and os.path.isfile(store_file):
103
103
  self.util.debug(f"{self.name}: reusing previously stored file {store_file}")
@@ -241,7 +241,7 @@ class Dataset:
241
241
  # store the dataframe
242
242
  store = self.util.get_path("store")
243
243
  store_format = self.util.config_val("FEATS", "store_format", "pkl")
244
- store_file = f"{store}{self.name}"
244
+ store_file = f"{store}{self.name}.{store_format}"
245
245
  self.util.write_store(self.df, store_file, store_format)
246
246
 
247
247
  def _get_df_for_lists(self, db, df_files):
@@ -685,7 +685,7 @@ class Experiment:
685
685
  glob_conf.set_labels(self.labels)
686
686
 
687
687
  def save(self, filename):
688
- if self.runmgr.modelrunner.model.is_ANN():
688
+ if self.runmgr.modelrunner.model.is_ann():
689
689
  self.runmgr.modelrunner.model = None
690
690
  self.util.warn(
691
691
  f"Save experiment: Can't pickle the learning model so saving without it."
@@ -708,7 +708,7 @@ class Experiment:
708
708
  def save_onnx(self, filename):
709
709
  # export the model to onnx
710
710
  model = self.runmgr.get_best_model()
711
- if model.is_ANN():
711
+ if model.is_ann():
712
712
  print("converting to onnx from torch")
713
713
  else:
714
714
  from skl2onnx import to_onnx
@@ -1,12 +1,16 @@
1
1
  # feats_audmodel_dim.py
2
- from nkululeko.feat_extract.featureset import Featureset
3
2
  import os
3
+
4
+ import numpy as np
4
5
  import pandas as pd
6
+ import torch
7
+
5
8
  import audeer
6
- import nkululeko.glob_conf as glob_conf
7
- import audonnx
8
- import numpy as np
9
9
  import audinterface
10
+ import audonnx
11
+
12
+ from nkululeko.feat_extract.featureset import Featureset
13
+ import nkululeko.glob_conf as glob_conf
10
14
 
11
15
 
12
16
  class AudModelDimSet(Featureset):
@@ -39,7 +39,7 @@ class Modelrunner:
39
39
  plot_epochs = self.util.config_val("PLOT", "epochs", False)
40
40
  only_test = self.util.config_val("MODEL", "only_test", False)
41
41
  epoch_num = int(self.util.config_val("EXP", "epochs", 1))
42
- if not self.model.is_ANN() and epoch_num > 1:
42
+ if not self.model.is_ann() and epoch_num > 1:
43
43
  self.util.warn(f"setting epoch num to 1 (was {epoch_num}) if model not ANN")
44
44
  epoch_num = 1
45
45
  glob_conf.config["EXP"]["epochs"] = "1"
@@ -69,7 +69,7 @@ class Modelrunner:
69
69
  if plot_epochs:
70
70
  self.util.debug(f"plotting conf matrix to {plot_name}")
71
71
  report.plot_confmatrix(plot_name, epoch)
72
- store_models = self.util.config_val("MODEL", "save", False)
72
+ store_models = self.util.config_val("EXP", "save", False)
73
73
  plot_best_model = self.util.config_val("PLOT", "best_model", False)
74
74
  if (store_models or plot_best_model) and (
75
75
  not only_test
@@ -1,23 +1,25 @@
1
1
  # model.py
2
- from nkululeko.utils.util import Util
3
- import pandas as pd
4
- import numpy as np
5
- import nkululeko.glob_conf as glob_conf
6
- import sklearn.utils
7
- from nkululeko.reporting.reporter import Reporter
8
2
  import ast
9
- from sklearn.model_selection import GridSearchCV
10
3
  import pickle
11
4
  import random
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ from sklearn.model_selection import GridSearchCV
12
9
  from sklearn.model_selection import LeaveOneGroupOut
13
10
  from sklearn.model_selection import StratifiedKFold
11
+ import sklearn.utils
12
+
13
+ import nkululeko.glob_conf as glob_conf
14
+ from nkululeko.reporting.reporter import Reporter
15
+ from nkululeko.utils.util import Util
14
16
 
15
17
 
16
18
  class Model:
17
- """Generic model class for linear (non-neural) algorithms"""
19
+ """Generic model class for linear (non-neural) algorithms."""
18
20
 
19
21
  def __init__(self, df_train, df_test, feats_train, feats_test):
20
- """Constructor taking the configuration and all dataframes"""
22
+ """Constructor taking the configuration and all dataframes."""
21
23
  self.df_train, self.df_test, self.feats_train, self.feats_test = (
22
24
  df_train,
23
25
  df_test,
@@ -35,7 +37,7 @@ class Model:
35
37
  def set_model_type(self, type):
36
38
  self.model_type = type
37
39
 
38
- def is_ANN(self):
40
+ def is_ann(self):
39
41
  if self.model_type == "ann":
40
42
  return True
41
43
  else:
@@ -277,8 +279,6 @@ class Model:
277
279
  prediction = {}
278
280
  if self.util.exp_is_classification():
279
281
  # get the class probabilities
280
- if not self.get_type() == "xgb":
281
- features = [features]
282
282
  predictions = self.clf.predict_proba(features)
283
283
  # pred = self.clf.predict(features)
284
284
  for i in range(len(self.clf.classes_)):
@@ -302,7 +302,7 @@ class Model:
302
302
  self.clf = pickle.load(handle)
303
303
  except FileNotFoundError as fe:
304
304
  self.util.error(
305
- f"did you forget to store your models? needs: \n[MODEL]\nsave=True\n{fe}"
305
+ f"Did you forget to store your models? needs: \n[MODEL]\nsave=True\n{fe}"
306
306
  )
307
307
 
308
308
  def load_path(self, path, run, epoch):
@@ -25,6 +25,9 @@ class SVM_model(Model):
25
25
  class_weight=class_weight,
26
26
  ) # set up the classifier
27
27
 
28
- def set_C(self, c):
29
- """Set the C parameter"""
28
+ def set_c(self, c):
29
+ """Set the C parameter."""
30
30
  self.clf.C = c
31
+
32
+ def get_type(self):
33
+ return "svm"
@@ -28,7 +28,9 @@ def main(src_dir):
28
28
  config.read(config_file)
29
29
  # create a new experiment
30
30
  expr = Experiment(config)
31
- util = Util("predict")
31
+ module = "predict"
32
+ expr.set_module(module)
33
+ util = Util(module)
32
34
  util.debug(
33
35
  f"running {expr.name} from config {config_file}, nkululeko version"
34
36
  f" {VERSION}"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.81.3
3
+ Version: 0.81.4
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -323,6 +323,11 @@ F. Burkhardt, Johannes Wagner, Hagen Wierstorf, Florian Eyben and Björn Schulle
323
323
  Changelog
324
324
  =========
325
325
 
326
+ Version 0.81.4
327
+ --------------
328
+ * fixed bug in demo module
329
+ * removed [MODEL] save
330
+
326
331
  Version 0.81.3
327
332
  --------------
328
333
  * added confidence intervals to result reporting
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes