nkululeko 0.45.0__tar.gz → 0.45.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. {nkululeko-0.45.0 → nkululeko-0.45.2}/CHANGELOG.md +7 -0
  2. {nkululeko-0.45.0/nkululeko.egg-info → nkululeko-0.45.2}/PKG-INFO +8 -2
  3. {nkululeko-0.45.0 → nkululeko-0.45.2}/README.md +0 -1
  4. nkululeko-0.45.2/nkululeko/constants.py +1 -0
  5. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/experiment.py +19 -15
  6. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/explore.py +3 -2
  7. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/util.py +6 -1
  8. {nkululeko-0.45.0 → nkululeko-0.45.2/nkululeko.egg-info}/PKG-INFO +8 -2
  9. {nkululeko-0.45.0 → nkululeko-0.45.2}/setup.cfg +1 -1
  10. nkululeko-0.45.0/nkululeko/constants.py +0 -1
  11. {nkululeko-0.45.0 → nkululeko-0.45.2}/LICENSE +0 -0
  12. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/__init__.py +0 -0
  13. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/augment.py +0 -0
  14. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/augmenter.py +0 -0
  15. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/balancer.py +0 -0
  16. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/cacheddataset.py +0 -0
  17. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/dataset.py +0 -0
  18. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/dataset_csv.py +0 -0
  19. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/dataset_ravdess.py +0 -0
  20. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/demo.py +0 -0
  21. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/demo_predictor.py +0 -0
  22. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_analyser.py +0 -0
  23. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_audmodel.py +0 -0
  24. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_audmodel_dim.py +0 -0
  25. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_clap.py +0 -0
  26. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_import.py +0 -0
  27. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_mld.py +0 -0
  28. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_opensmile.py +0 -0
  29. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_oxbow.py +0 -0
  30. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_praat.py +0 -0
  31. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_trill.py +0 -0
  32. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feats_wav2vec2.py +0 -0
  33. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feature_extractor.py +0 -0
  34. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/featureset.py +0 -0
  35. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/feinberg_praat.py +0 -0
  36. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/filter_data.py +0 -0
  37. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/glob_conf.py +0 -0
  38. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/loss_ccc.py +0 -0
  39. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/loss_softf1loss.py +0 -0
  40. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model.py +0 -0
  41. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_bayes.py +0 -0
  42. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_cnn.py +0 -0
  43. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_gmm.py +0 -0
  44. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_knn.py +0 -0
  45. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_knn_reg.py +0 -0
  46. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_mlp.py +0 -0
  47. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_mlp_regression.py +0 -0
  48. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_svm.py +0 -0
  49. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_svr.py +0 -0
  50. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_tree.py +0 -0
  51. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_tree_reg.py +0 -0
  52. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_xgb.py +0 -0
  53. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/model_xgr.py +0 -0
  54. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/modelrunner.py +0 -0
  55. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/nkululeko.py +0 -0
  56. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/plots.py +0 -0
  57. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/reporter.py +0 -0
  58. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/result.py +0 -0
  59. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/runmanager.py +0 -0
  60. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/scaler.py +0 -0
  61. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/test.py +0 -0
  62. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko/test_predictor.py +0 -0
  63. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko.egg-info/SOURCES.txt +0 -0
  64. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko.egg-info/dependency_links.txt +0 -0
  65. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko.egg-info/requires.txt +0 -0
  66. {nkululeko-0.45.0 → nkululeko-0.45.2}/nkululeko.egg-info/top_level.txt +0 -0
  67. {nkululeko-0.45.0 → nkululeko-0.45.2}/pyproject.toml +0 -0
  68. {nkululeko-0.45.0 → nkululeko-0.45.2}/setup.py +0 -0
@@ -6,6 +6,13 @@ Version 0.44.1
6
6
  * bugfixing: feature importance: https://github.com/felixbur/nkululeko/issues/23
7
7
  * bugfixing: loading csv database with filewise index https://github.com/felixbur/nkululeko/issues/24
8
8
 
9
+ Version 0.45.2
10
+ --------------
11
+ * added sample_selection for sample distribution plots
12
+
13
+ Version 0.45.1
14
+ --------------
15
+ * fixed dataframe.append bug
9
16
 
10
17
  Version 0.45.0
11
18
  --------------
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.45.0
3
+ Version: 0.45.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -123,7 +123,6 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
123
123
  * [Combine feature sets](http://blog.syntheticspeech.de/2022/06/30/how-to-combine-feature-sets-with-nkululeko/)
124
124
  * [Classifying continuous variables](http://blog.syntheticspeech.de/2022/01/26/nkululeko-classifying-continuous-variables/)
125
125
  * [Try out / demo a trained model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/)
126
- * [Plot distributions of feature values](http://blog.syntheticspeech.de/2023/02/16/nkululeko-how-to-plot-distributions-of-feature-values/)
127
126
  * [Perform cross database experiments](http://blog.syntheticspeech.de/2021/10/05/nkululeko-perform-cross-database-experiments/)
128
127
  * [Meta parameter optimization](http://blog.syntheticspeech.de/2021/09/03/perform-optimization-with-nkululeko/)
129
128
  * [How to set up wav2vec embedding](http://blog.syntheticspeech.de/2021/12/03/how-to-set-up-wav2vec-embedding-for-nkululeko/)
@@ -217,6 +216,13 @@ Version 0.44.1
217
216
  * bugfixing: feature importance: https://github.com/felixbur/nkululeko/issues/23
218
217
  * bugfixing: loading csv database with filewise index https://github.com/felixbur/nkululeko/issues/24
219
218
 
219
+ Version 0.45.2
220
+ --------------
221
+ * added sample_selection for sample distribution plots
222
+
223
+ Version 0.45.1
224
+ --------------
225
+ * fixed dataframe.append bug
220
226
 
221
227
  Version 0.45.0
222
228
  --------------
@@ -107,7 +107,6 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
107
107
  * [Combine feature sets](http://blog.syntheticspeech.de/2022/06/30/how-to-combine-feature-sets-with-nkululeko/)
108
108
  * [Classifying continuous variables](http://blog.syntheticspeech.de/2022/01/26/nkululeko-classifying-continuous-variables/)
109
109
  * [Try out / demo a trained model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/)
110
- * [Plot distributions of feature values](http://blog.syntheticspeech.de/2023/02/16/nkululeko-how-to-plot-distributions-of-feature-values/)
111
110
  * [Perform cross database experiments](http://blog.syntheticspeech.de/2021/10/05/nkululeko-perform-cross-database-experiments/)
112
111
  * [Meta parameter optimization](http://blog.syntheticspeech.de/2021/09/03/perform-optimization-with-nkululeko/)
113
112
  * [How to set up wav2vec embedding](http://blog.syntheticspeech.de/2021/12/03/how-to-set-up-wav2vec-embedding-for-nkululeko/)
@@ -0,0 +1 @@
1
+ VERSION = '0.45.2'
@@ -247,17 +247,20 @@ class Experiment:
247
247
  def plot_distribution(self):
248
248
  """Plot the distribution of samples and speaker per target class and biological sex"""
249
249
  plot = Plots()
250
- if self.util.exp_is_classification():
251
- # self.df_train['labels'] = self.label_encoder.inverse_transform(self.df_train[self.target])
252
- # if self.df_test.is_labeled:
253
- # self.df_test['labels'] = self.label_encoder.inverse_transform(self.df_test[self.target])
254
- if self.df_test.shape[0] > 0:
255
- plot.describe_df('dev_set', self.df_test, self.target, f'test_distplot')
256
- plot.describe_df('train_set', self.df_train, self.target, f'train_distplot')
250
+ sample_selection = self.util.config_val('EXPL', 'sample_selection', 'all')
251
+ if sample_selection=='all':
252
+ df_labels = pd.concat([self.df_train, self.df_test])
253
+ self.util.copy_flags(self.df_train, df_labels)
254
+ elif sample_selection=='train':
255
+ df_labels = self.df_train
256
+ self.util.copy_flags(self.df_train, df_labels)
257
+ elif sample_selection=='test':
258
+ df_labels = self.df_test
259
+ self.util.copy_flags(self.df_test, df_labels)
257
260
  else:
258
- if self.df_test.shape[0] > 0:
259
- plot.describe_df('dev_set', self.df_test, self.target, f'test_distplot')
260
- plot.describe_df('train_set', self.df_train, self.target, f'train_distplot')
261
+ self.util.error(f'unkown sample selection specifier {sample_selection}, should be [all | train | test]')
262
+
263
+ plot.describe_df(f'{sample_selection}_set', df_labels, self.target, f'{sample_selection}_distplot')
261
264
 
262
265
  def extract_test_feats(self):
263
266
  self.feats_test = pd.DataFrame()
@@ -303,7 +306,7 @@ class Experiment:
303
306
  # self.df_train = self.df_train.append(df_train_aug)
304
307
 
305
308
 
306
- def analyse_features(self):
309
+ def analyse_features(self, needs_feats):
307
310
  """
308
311
  Do a feature exploration
309
312
 
@@ -311,7 +314,8 @@ class Experiment:
311
314
 
312
315
  if self.util.config_val('EXPL', 'value_counts', False):
313
316
  self.plot_distribution()
314
-
317
+ if not needs_feats:
318
+ return
315
319
  sample_selection = self.util.config_val('EXPL', 'sample_selection', 'False')
316
320
  if sample_selection=='all':
317
321
  df_feats = pd.concat([self.feats_train, self.feats_test])
@@ -325,7 +329,7 @@ class Experiment:
325
329
  elif sample_selection=='False':
326
330
  pass
327
331
  else:
328
- self.util.error(f'unkown feature_distribution specifier {sample_selection}, should be [all | train | test]')
332
+ self.util.error(f'unkown sample selection specifier {sample_selection}, should be [all | train | test]')
329
333
  if sample_selection in ('all', 'train', 'test'):
330
334
  feat_analyser = FeatureAnalyser(sample_selection, df_labels, df_feats)
331
335
  feat_analyser.analyse()
@@ -336,8 +340,8 @@ class Experiment:
336
340
  scatters = ast.literal_eval(glob_conf.config['EXPL']['scatter'])
337
341
  if self.util.exp_is_classification():
338
342
  plots = Plots()
339
- all_feats =self.feats_train.append(self.feats_test)
340
- all_labels = self.df_train['class_label'].append(self.df_test['class_label'])
343
+ all_feats = pd.concat([self.feats_train, self.feats_test])
344
+ all_labels = pd.concat([self.df_train['class_label'], self.df_test['class_label']])
341
345
  for scatter in scatters:
342
346
  plots.scatter_plot(all_feats, all_labels, scatter)
343
347
  else:
@@ -42,12 +42,13 @@ def main(src_dir):
42
42
  scatter = eval(util.config_val('EXPL', 'scatter', 'False'))
43
43
  model_type = util.config_val('EXPL', 'model', False)
44
44
  plot_tree = eval(util.config_val('EXPL', 'plot_tree', 'False'))
45
+ needs_feats = False
45
46
  if plot_feats or tsne or scatter or model_type or plot_tree:
46
47
  # these investigations need features to explore
47
48
  expr.extract_feats()
48
-
49
+ needs_feats = True
49
50
  # explore
50
- expr.analyse_features()
51
+ expr.analyse_features(needs_feats)
51
52
 
52
53
  print('DONE')
53
54
 
@@ -226,4 +226,9 @@ class Util:
226
226
  elif format == 'csv':
227
227
  return audformat.utils.read_csv(name)
228
228
  else:
229
- self.error(f'unkown store format: {format}')
229
+ self.error(f'unkown store format: {format}')
230
+
231
+ def copy_flags(self, df_source, df_target):
232
+ df_target.is_labeled = df_source.is_labeled
233
+ df_target.got_gender = df_source.got_gender
234
+ df_target.got_speaker = df_source.got_speaker
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nkululeko
3
- Version: 0.45.0
3
+ Version: 0.45.2
4
4
  Summary: Machine learning audio prediction experiments based on templates
5
5
  Home-page: https://github.com/felixbur/nkululeko
6
6
  Author: Felix Burkhardt
@@ -123,7 +123,6 @@ There's my [blog](http://blog.syntheticspeech.de/?s=nkululeko) with tutorials:
123
123
  * [Combine feature sets](http://blog.syntheticspeech.de/2022/06/30/how-to-combine-feature-sets-with-nkululeko/)
124
124
  * [Classifying continuous variables](http://blog.syntheticspeech.de/2022/01/26/nkululeko-classifying-continuous-variables/)
125
125
  * [Try out / demo a trained model](http://blog.syntheticspeech.de/2022/01/24/nkululeko-try-out-demo-a-trained-model/)
126
- * [Plot distributions of feature values](http://blog.syntheticspeech.de/2023/02/16/nkululeko-how-to-plot-distributions-of-feature-values/)
127
126
  * [Perform cross database experiments](http://blog.syntheticspeech.de/2021/10/05/nkululeko-perform-cross-database-experiments/)
128
127
  * [Meta parameter optimization](http://blog.syntheticspeech.de/2021/09/03/perform-optimization-with-nkululeko/)
129
128
  * [How to set up wav2vec embedding](http://blog.syntheticspeech.de/2021/12/03/how-to-set-up-wav2vec-embedding-for-nkululeko/)
@@ -217,6 +216,13 @@ Version 0.44.1
217
216
  * bugfixing: feature importance: https://github.com/felixbur/nkululeko/issues/23
218
217
  * bugfixing: loading csv database with filewise index https://github.com/felixbur/nkululeko/issues/24
219
218
 
219
+ Version 0.45.2
220
+ --------------
221
+ * added sample_selection for sample distribution plots
222
+
223
+ Version 0.45.1
224
+ --------------
225
+ * fixed dataframe.append bug
220
226
 
221
227
  Version 0.45.0
222
228
  --------------
@@ -1,6 +1,6 @@
1
1
  [metadata]
2
2
  name = nkululeko
3
- version = 0.45.0
3
+ version = 0.45.2
4
4
  author = Felix Burkhardt
5
5
  author_email = fxburk@gmail.com
6
6
  description = Machine learning audio prediction experiments based on templates
@@ -1 +0,0 @@
1
- VERSION = '0.45.0'
File without changes
File without changes
File without changes
File without changes
File without changes