nextrec 0.4.25__tar.gz → 0.4.27__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (192) hide show
  1. {nextrec-0.4.25 → nextrec-0.4.27}/PKG-INFO +72 -62
  2. {nextrec-0.4.25 → nextrec-0.4.27}/README.md +71 -61
  3. {nextrec-0.4.25 → nextrec-0.4.27}/README_en.md +71 -61
  4. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/conf.py +1 -1
  5. nextrec-0.4.27/nextrec/__version__.py +1 -0
  6. nextrec-0.4.27/nextrec/basic/asserts.py +72 -0
  7. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/loggers.py +18 -1
  8. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/model.py +54 -51
  9. nextrec-0.4.27/nextrec/models/multi_task/[pre]aitm.py +173 -0
  10. nextrec-0.4.27/nextrec/models/multi_task/[pre]snr_trans.py +232 -0
  11. nextrec-0.4.27/nextrec/models/multi_task/[pre]star.py +192 -0
  12. nextrec-0.4.27/nextrec/models/multi_task/apg.py +330 -0
  13. nextrec-0.4.27/nextrec/models/multi_task/cross_stitch.py +229 -0
  14. nextrec-0.4.27/nextrec/models/multi_task/escm.py +290 -0
  15. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/esmm.py +8 -21
  16. nextrec-0.4.27/nextrec/models/multi_task/hmoe.py +203 -0
  17. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/mmoe.py +20 -28
  18. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/pepnet.py +68 -66
  19. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/ple.py +30 -44
  20. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/poso.py +13 -22
  21. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/share_bottom.py +14 -25
  22. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/afm.py +2 -2
  23. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/autoint.py +2 -4
  24. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/dcn.py +2 -3
  25. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/dcn_v2.py +2 -3
  26. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/deepfm.py +2 -3
  27. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/dien.py +7 -9
  28. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/din.py +8 -10
  29. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/eulernet.py +1 -2
  30. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/ffm.py +1 -2
  31. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/fibinet.py +2 -3
  32. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/fm.py +1 -1
  33. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/lr.py +1 -1
  34. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/masknet.py +1 -2
  35. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/pnn.py +1 -2
  36. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/widedeep.py +2 -3
  37. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/xdeepfm.py +2 -4
  38. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/rqvae.py +4 -4
  39. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/retrieval/dssm.py +18 -26
  40. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/retrieval/dssm_v2.py +15 -22
  41. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/retrieval/mind.py +9 -15
  42. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/retrieval/sdm.py +36 -33
  43. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/retrieval/youtube_dnn.py +16 -24
  44. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/sequential/hstu.py +2 -2
  45. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/__init__.py +5 -1
  46. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/model.py +9 -14
  47. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/NextRec-CLI.md +14 -116
  48. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/NextRec-CLI_zh.md +14 -116
  49. nextrec-0.4.27/nextrec_cli_preset/model_configs/apg.yaml +14 -0
  50. nextrec-0.4.27/nextrec_cli_preset/model_configs/cross_stitch.yaml +25 -0
  51. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/din.yaml +3 -2
  52. nextrec-0.4.27/nextrec_cli_preset/model_configs/escm.yaml +21 -0
  53. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/esmm.yaml +2 -2
  54. nextrec-0.4.27/nextrec_cli_preset/model_configs/hmoe.yaml +35 -0
  55. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/mmoe.yaml +2 -2
  56. nextrec-0.4.27/nextrec_cli_preset/model_configs/pepnet.yaml +26 -0
  57. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/ple.yaml +10 -7
  58. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/poso.yaml +1 -1
  59. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/share_bottom.yaml +2 -2
  60. {nextrec-0.4.25 → nextrec-0.4.27}/pyproject.toml +1 -1
  61. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_match_models.py +12 -12
  62. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_multitask_models.py +106 -88
  63. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_ranking_models.py +20 -12
  64. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/example_match.py +2 -2
  65. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/movielen_match_dssm.py +2 -2
  66. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/run_all_match_models.py +25 -11
  67. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/run_all_multitask_models.py +111 -19
  68. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/run_all_ranking_models.py +5 -3
  69. nextrec-0.4.25/nextrec/__version__.py +0 -1
  70. nextrec-0.4.25/nextrec/models/multi_task/aitm.py +0 -0
  71. nextrec-0.4.25/nextrec/models/multi_task/apg.py +0 -0
  72. nextrec-0.4.25/nextrec/models/multi_task/cross_stitch.py +0 -0
  73. nextrec-0.4.25/nextrec/models/multi_task/snr_trans.py +0 -0
  74. {nextrec-0.4.25 → nextrec-0.4.27}/.github/workflows/publish.yml +0 -0
  75. {nextrec-0.4.25 → nextrec-0.4.27}/.github/workflows/tests.yml +0 -0
  76. {nextrec-0.4.25 → nextrec-0.4.27}/.gitignore +0 -0
  77. {nextrec-0.4.25 → nextrec-0.4.27}/.readthedocs.yaml +0 -0
  78. {nextrec-0.4.25 → nextrec-0.4.27}/CODE_OF_CONDUCT.md +0 -0
  79. {nextrec-0.4.25 → nextrec-0.4.27}/CONTRIBUTING.md +0 -0
  80. {nextrec-0.4.25 → nextrec-0.4.27}/LICENSE +0 -0
  81. {nextrec-0.4.25 → nextrec-0.4.27}/MANIFEST.in +0 -0
  82. {nextrec-0.4.25 → nextrec-0.4.27}/assets/Feature Configuration.png +0 -0
  83. {nextrec-0.4.25 → nextrec-0.4.27}/assets/Model Parameters.png +0 -0
  84. {nextrec-0.4.25 → nextrec-0.4.27}/assets/Training Configuration.png +0 -0
  85. {nextrec-0.4.25 → nextrec-0.4.27}/assets/Training logs.png +0 -0
  86. {nextrec-0.4.25 → nextrec-0.4.27}/assets/logo.png +0 -0
  87. {nextrec-0.4.25 → nextrec-0.4.27}/assets/mmoe_tutorial.png +0 -0
  88. {nextrec-0.4.25 → nextrec-0.4.27}/assets/nextrec_diagram.png +0 -0
  89. {nextrec-0.4.25 → nextrec-0.4.27}/assets/test data.png +0 -0
  90. {nextrec-0.4.25 → nextrec-0.4.27}/dataset/ctcvr_task.csv +0 -0
  91. {nextrec-0.4.25 → nextrec-0.4.27}/dataset/ecommerce_task.csv +0 -0
  92. {nextrec-0.4.25 → nextrec-0.4.27}/dataset/match_task.csv +0 -0
  93. {nextrec-0.4.25 → nextrec-0.4.27}/dataset/movielens_100k.csv +0 -0
  94. {nextrec-0.4.25 → nextrec-0.4.27}/dataset/multitask_task.csv +0 -0
  95. {nextrec-0.4.25 → nextrec-0.4.27}/dataset/ranking_task.csv +0 -0
  96. {nextrec-0.4.25 → nextrec-0.4.27}/docs/en/Getting started guide.md +0 -0
  97. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/Makefile +0 -0
  98. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/index.md +0 -0
  99. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/make.bat +0 -0
  100. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/modules.rst +0 -0
  101. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/nextrec.basic.rst +0 -0
  102. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/nextrec.data.rst +0 -0
  103. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/nextrec.loss.rst +0 -0
  104. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/nextrec.rst +0 -0
  105. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/nextrec.utils.rst +0 -0
  106. {nextrec-0.4.25 → nextrec-0.4.27}/docs/rtd/requirements.txt +0 -0
  107. {nextrec-0.4.25 → nextrec-0.4.27}/docs/zh//345/277/253/351/200/237/344/270/212/346/211/213.md" +0 -0
  108. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/__init__.py +0 -0
  109. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/__init__.py +0 -0
  110. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/activation.py +0 -0
  111. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/callback.py +0 -0
  112. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/features.py +0 -0
  113. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/heads.py +0 -0
  114. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/layers.py +0 -0
  115. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/metrics.py +0 -0
  116. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/session.py +0 -0
  117. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/basic/summary.py +0 -0
  118. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/cli.py +0 -0
  119. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/data/__init__.py +0 -0
  120. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/data/batch_utils.py +0 -0
  121. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/data/data_processing.py +0 -0
  122. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/data/data_utils.py +0 -0
  123. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/data/dataloader.py +0 -0
  124. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/data/preprocessor.py +0 -0
  125. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/loss/__init__.py +0 -0
  126. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/loss/grad_norm.py +0 -0
  127. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/loss/listwise.py +0 -0
  128. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/loss/pairwise.py +0 -0
  129. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/loss/pointwise.py +0 -0
  130. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/generative/__init__.py +0 -0
  131. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/generative/tiger.py +0 -0
  132. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/multi_task/__init__.py +0 -0
  133. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/ranking/__init__.py +0 -0
  134. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/__init__.py +0 -0
  135. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/autorec.py +0 -0
  136. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/bpr.py +0 -0
  137. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/cl4srec.py +0 -0
  138. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/lightgcn.py +0 -0
  139. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/mf.py +0 -0
  140. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/representation/s3rec.py +0 -0
  141. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/retrieval/__init__.py +0 -0
  142. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/models/sequential/sasrec.py +0 -0
  143. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/config.py +0 -0
  144. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/console.py +0 -0
  145. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/data.py +0 -0
  146. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/embedding.py +0 -0
  147. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/feature.py +0 -0
  148. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/loss.py +0 -0
  149. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/torch_utils.py +0 -0
  150. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec/utils/types.py +0 -0
  151. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/feature_config.yaml +0 -0
  152. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/afm.yaml +0 -0
  153. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/autoint.yaml +0 -0
  154. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/dcn.yaml +0 -0
  155. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/deepfm.yaml +0 -0
  156. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/fibinet.yaml +0 -0
  157. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/fm.yaml +0 -0
  158. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/masknet.yaml +0 -0
  159. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/pnn.yaml +0 -0
  160. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/widedeep.yaml +0 -0
  161. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/model_configs/xdeepfm.yaml +0 -0
  162. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/predict_config.yaml +0 -0
  163. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/predict_config_template.yaml +0 -0
  164. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/train_config.yaml +0 -0
  165. {nextrec-0.4.25 → nextrec-0.4.27}/nextrec_cli_preset/train_config_template.yaml +0 -0
  166. {nextrec-0.4.25 → nextrec-0.4.27}/pytest.ini +0 -0
  167. {nextrec-0.4.25 → nextrec-0.4.27}/requirements.txt +0 -0
  168. {nextrec-0.4.25 → nextrec-0.4.27}/scripts/format_code.py +0 -0
  169. {nextrec-0.4.25 → nextrec-0.4.27}/test/__init__.py +0 -0
  170. {nextrec-0.4.25 → nextrec-0.4.27}/test/conftest.py +0 -0
  171. {nextrec-0.4.25 → nextrec-0.4.27}/test/helpers.py +0 -0
  172. {nextrec-0.4.25 → nextrec-0.4.27}/test/run_tests.py +0 -0
  173. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_base_model_regularization.py +0 -0
  174. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_generative_models.py +0 -0
  175. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_layers.py +0 -0
  176. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_losses.py +0 -0
  177. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_preprocessor.py +0 -0
  178. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_utils_console.py +0 -0
  179. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_utils_data.py +0 -0
  180. {nextrec-0.4.25 → nextrec-0.4.27}/test/test_utils_embedding.py +0 -0
  181. {nextrec-0.4.25 → nextrec-0.4.27}/test_requirements.txt +0 -0
  182. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/distributed/example_distributed_training.py +0 -0
  183. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/distributed/example_distributed_training_large_dataset.py +0 -0
  184. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/example_multitask.py +0 -0
  185. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/example_ranking_din.py +0 -0
  186. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/movielen_ranking_deepfm.py +0 -0
  187. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/notebooks/en/Build semantic ID with RQ-VAE.ipynb +0 -0
  188. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/notebooks/en/Hands on dataprocessor.ipynb +0 -0
  189. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/notebooks/en/Hands on nextrec.ipynb +0 -0
  190. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/notebooks/zh//344/275/277/347/224/250RQ-VAE/346/236/204/345/273/272/350/257/255/344/271/211ID.ipynb" +0 -0
  191. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/notebooks/zh//345/246/202/344/275/225/344/275/277/347/224/250DataProcessor/350/277/233/350/241/214/351/242/204/345/244/204/347/220/206.ipynb" +0 -0
  192. {nextrec-0.4.25 → nextrec-0.4.27}/tutorials/notebooks/zh//345/277/253/351/200/237/345/205/245/351/227/250nextrec.ipynb" +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nextrec
3
- Version: 0.4.25
3
+ Version: 0.4.27
4
4
  Summary: A comprehensive recommendation library with match, ranking, and multi-task learning models
5
5
  Project-URL: Homepage, https://github.com/zerolovesea/NextRec
6
6
  Project-URL: Repository, https://github.com/zerolovesea/NextRec
@@ -69,7 +69,7 @@ Description-Content-Type: text/markdown
69
69
  ![Python](https://img.shields.io/badge/Python-3.10+-blue.svg)
70
70
  ![PyTorch](https://img.shields.io/badge/PyTorch-1.10+-ee4c2c.svg)
71
71
  ![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)
72
- ![Version](https://img.shields.io/badge/Version-0.4.25-orange.svg)
72
+ ![Version](https://img.shields.io/badge/Version-0.4.27-orange.svg)
73
73
  [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/zerolovesea/NextRec)
74
74
 
75
75
  中文文档 | [English Version](README_en.md)
@@ -102,13 +102,14 @@ NextRec是一个基于PyTorch的现代推荐系统框架,旨在为研究工程
102
102
  - **高效训练与评估**:内置多种优化器、学习率调度、早停、模型检查点与详细的日志管理,开箱即用。
103
103
 
104
104
  ## NextRec近期进展
105
+ - **01/01/2026** 新年好,在v0.4.27中加入了多个多目标模型的支持:[APG](nextrec/models/multi_task/apg.py), [ESCM](nextrec/models/multi_task/escm.py), [HMoE](nextrec/models/multi_task/hmoe.py), [Cross Stitch](nextrec/models/multi_task/cross_stitch.py)
105
106
  - **28/12/2025** 在v0.4.21中加入了对SwanLab和Wandb的支持,通过model的`fit`方法进行配置:`use_swanlab=True, swanlab_kwargs={"project": "NextRec","name":"tutorial_movielens_deepfm"},`
106
107
  - **21/12/2025** 在v0.4.16中加入了对[GradNorm](/nextrec/loss/grad_norm.py)的支持,通过compile的`loss_weight='grad_norm'`进行配置
107
108
  - **12/12/2025** 在v0.4.9中加入了[RQ-VAE](/nextrec/models/representation/rqvae.py)模块。配套的[数据集](/dataset/ecommerce_task.csv)和[代码](tutorials/notebooks/zh/使用RQ-VAE构建语义ID.ipynb)已经同步在仓库中
108
109
  - **07/12/2025** 发布了NextRec CLI命令行工具,它允许用户根据配置文件进行一键训练和推理,我们提供了相关的[教程](/nextrec_cli_preset/NextRec-CLI_zh.md)和[教学代码](/nextrec_cli_preset)
109
110
  - **03/12/2025** NextRec获得了100颗🌟!感谢大家的支持
110
111
  - **06/12/2025** 在v0.4.1中支持了单机多卡的分布式DDP训练,并且提供了配套的[代码](tutorials/distributed)
111
- - **11/11/2025** NextRec v0.1.0发布,我们提供了10余种Ranking模型,4种多任务模型和4种召回模型,以及统一的训练/日志/指标管理系统
112
+ - **11/11/2025** NextRec v0.1.0发布,我们提供了10余种Ranking模型,11种多任务模型和4种召回模型,以及统一的训练/日志/指标管理系统
112
113
 
113
114
  ## 架构
114
115
 
@@ -194,15 +195,13 @@ model = DIN(
194
195
  behavior_feature_name="sequence_0",
195
196
  candidate_feature_name="item_id",
196
197
  mlp_params=mlp_params,
197
- attention_hidden_units=[80, 40],
198
- attention_activation='sigmoid',
198
+ attention_mlp_params={
199
+ "hidden_dims": [80, 40],
200
+ "activation": "sigmoid",
201
+ },
199
202
  attention_use_softmax=True,
200
- target=['label'], # 目标变量
201
- device='mps',
202
- embedding_l1_reg=1e-6,
203
- embedding_l2_reg=1e-5,
204
- dense_l1_reg=1e-5,
205
- dense_l2_reg=1e-4,
203
+ target='label', # 目标变量
204
+ device='cpu',
206
205
  session_id="din_tutorial", # 实验id,用于存放训练日志
207
206
  )
208
207
 
@@ -220,7 +219,13 @@ model.fit(
220
219
  epochs=3,
221
220
  batch_size=512,
222
221
  shuffle=True,
223
- user_id_column='user_id' # 用于计算GAUC的id列
222
+ user_id_column='user_id', # 用于计算GAUC的id列
223
+ valid_ratio=0.2, # 自动划分验证集(可选)
224
+ num_workers=4, # DataLoader 并行数
225
+ use_wandb=False, # 启用 Wandb(可选)
226
+ wandb_kwargs={"project": "NextRec", "name": "din_tutorial"},
227
+ use_swanlab=False, # 启用 SwanLab(可选)
228
+ swanlab_kwargs={"project": "NextRec", "name": "din_tutorial"},
224
229
  )
225
230
 
226
231
  # 训练完成后进行指标评估
@@ -249,11 +254,11 @@ nextrec --mode=predict --predict_config=path/to/predict_config.yaml
249
254
 
250
255
  预测结果固定保存到 `{checkpoint_path}/predictions/{name}.{save_data_format}`。
251
256
 
252
- > 截止当前版本0.4.25,NextRec CLI支持单机训练,分布式训练相关功能尚在开发中。
257
+ > 截止当前版本0.4.27,NextRec CLI支持单机训练,分布式训练相关功能尚在开发中。
253
258
 
254
259
  ## 兼容平台
255
260
 
256
- 当前最新版本为0.4.25,所有模型和测试代码均已在以下平台通过验证,如果开发者在使用中遇到兼容问题,请在issue区提出错误报告及系统版本:
261
+ 当前最新版本为0.4.27,所有模型和测试代码均已在以下平台通过验证,如果开发者在使用中遇到兼容问题,请在issue区提出错误报告及系统版本:
257
262
 
258
263
  | 平台 | 配置 |
259
264
  |------|------|
@@ -266,69 +271,74 @@ nextrec --mode=predict --predict_config=path/to/predict_config.yaml
266
271
 
267
272
  ### 排序模型
268
273
 
269
- | 模型 | 论文 | 年份 | 状态 |
270
- |------|------|------|------|
271
- | [FM](nextrec/models/ranking/fm.py) | Factorization Machines | ICDM 2010 | 已支持 |
272
- | [LR](nextrec/models/ranking/lr.py) | Logistic Regression | - | 已支持 |
273
- | [AFM](nextrec/models/ranking/afm.py) | Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks | IJCAI 2017 | 已支持 |
274
- | [FFM](nextrec/models/ranking/ffm.py) | Field-aware Factorization Machines | RecSys 2016 | 已支持 |
275
- | [DeepFM](nextrec/models/ranking/deepfm.py) | DeepFM: A Factorization-Machine based Neural Network for CTR Prediction | IJCAI 2017 | 已支持 |
276
- | [Wide&Deep](nextrec/models/ranking/widedeep.py) | Wide & Deep Learning for Recommender Systems | DLRS 2016 | 已支持 |
277
- | [xDeepFM](nextrec/models/ranking/xdeepfm.py) | xDeepFM: Combining Explicit and Implicit Feature Interactions | KDD 2018 | 已支持 |
278
- | [FiBiNET](nextrec/models/ranking/fibinet.py) | FiBiNET: Combining Feature Importance and Bilinear Feature Interaction for CTR Prediction | RecSys 2019 | 已支持 |
279
- | [PNN](nextrec/models/ranking/pnn.py) | Product-based Neural Networks for User Response Prediction | ICDM 2016 | 已支持 |
280
- | [AutoInt](nextrec/models/ranking/autoint.py) | AutoInt: Automatic Feature Interaction Learning | CIKM 2019 | 已支持 |
281
- | [DCN](nextrec/models/ranking/dcn.py) | Deep & Cross Network for Ad Click Predictions | ADKDD 2017 | 已支持 |
282
- | [DCN v2](nextrec/models/ranking/dcn_v2.py) | DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems | KDD 2021 | 已支持 |
283
- | [DIN](nextrec/models/ranking/din.py) | Deep Interest Network for Click-Through Rate Prediction | KDD 2018 | 已支持 |
284
- | [DIEN](nextrec/models/ranking/dien.py) | Deep Interest Evolution Network for Click-Through Rate Prediction | AAAI 2019 | 已支持 |
285
- | [MaskNet](nextrec/models/ranking/masknet.py) | MaskNet: Introducing Feature-wise Gating Blocks for High-dimensional Sparse Recommendation Data | 2020 | 已支持 |
286
- | [EulerNet](nextrec/models/ranking/eulernet.py) | EulerNet: Efficient and Effective Feature Interaction Modeling with Euler's Formula | SIGIR 2021 | 已支持 |
274
+ | 模型 | 论文 | 状态 |
275
+ | ------ | ------ | ------ |
276
+ | [FM](nextrec/models/ranking/fm.py) | Factorization machines | 已支持 |
277
+ | [LR](nextrec/models/ranking/lr.py) | Applied Logistic Regression | 已支持 |
278
+ | [AFM](nextrec/models/ranking/afm.py) | Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks | 已支持 |
279
+ | [FFM](nextrec/models/ranking/ffm.py) | Field-aware Factorization Machines for CTR Prediction | 已支持 |
280
+ | [DeepFM](nextrec/models/ranking/deepfm.py) | DeepFM: A factorization-machine based neural network for CTR prediction | 已支持 |
281
+ | [Wide&Deep](nextrec/models/ranking/widedeep.py) | Wide & Deep learning for recommender systems | 已支持 |
282
+ | [xDeepFM](nextrec/models/ranking/xdeepfm.py) | xdeepfm: Combining explicit and implicit feature interactions for recommender systems | 已支持 |
283
+ | [FiBiNET](nextrec/models/ranking/fibinet.py) | FiBiNET: Combining feature importance and bilinear feature interaction for click-through rate prediction | 已支持 |
284
+ | [PNN](nextrec/models/ranking/pnn.py) | Product-based neural networks for user response prediction | 已支持 |
285
+ | [AutoInt](nextrec/models/ranking/autoint.py) | AutoInt: Automatic feature interaction learning via self-attentive neural networks | 已支持 |
286
+ | [DCN](nextrec/models/ranking/dcn.py) | Deep & cross network for ad click predictions | 已支持 |
287
+ | [DCN v2](nextrec/models/ranking/dcn_v2.py) | DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems | 已支持 |
288
+ | [DIN](nextrec/models/ranking/din.py) | Deep interest network for click-through rate prediction | 已支持 |
289
+ | [DIEN](nextrec/models/ranking/dien.py) | Deep interest evolution network for click-through rate prediction | 已支持 |
290
+ | [MaskNet](nextrec/models/ranking/masknet.py) | MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask | 已支持 |
291
+ | [EulerNet](nextrec/models/ranking/eulernet.py) | EulerNet: Efficient and Effective Feature Interaction Modeling with Euler's Formula | 已支持 |
287
292
 
288
293
  ### 召回模型
289
294
 
290
- | 模型 | 论文 | 年份 | 状态 |
291
- |------|------|------|------|
292
- | [DSSM](nextrec/models/retrieval/dssm.py) | Learning Deep Structured Semantic Models | CIKM 2013 | 已支持 |
293
- | [DSSM v2](nextrec/models/retrieval/dssm_v2.py) | DSSM with pairwise BPR-style optimization | - | 已支持 |
294
- | [YouTube DNN](nextrec/models/retrieval/youtube_dnn.py) | Deep Neural Networks for YouTube Recommendations | RecSys 2016 | 已支持 |
295
- | [MIND](nextrec/models/retrieval/mind.py) | Multi-Interest Network with Dynamic Routing | CIKM 2019 | 已支持 |
296
- | [SDM](nextrec/models/retrieval/sdm.py) | Sequential Deep Matching Model | - | 已支持 |
295
+ | 模型 | 论文 | 状态 |
296
+ | ------ | ------ | ------ |
297
+ | [DSSM](nextrec/models/retrieval/dssm.py) | Learning deep structured semantic models for web search using clickthrough data | 已支持 |
298
+ | [DSSM v2](nextrec/models/retrieval/dssm_v2.py) | DSSM v2 - DSSM with pairwise training using BPR loss | 已支持 |
299
+ | [YouTube DNN](nextrec/models/retrieval/youtube_dnn.py) | Deep neural networks for youtube recommendations | 已支持 |
300
+ | [MIND](nextrec/models/retrieval/mind.py) | Multi-interest network with dynamic routing for recommendation at Tmall | 已支持 |
301
+ | [SDM](nextrec/models/retrieval/sdm.py) | Sequential recommender system based on hierarchical attention networks | 已支持 |
297
302
 
298
303
  ### 序列推荐模型
299
304
 
300
- | 模型 | 论文 | 年份 | 状态 |
301
- |------|------|------|------|
302
- | [SASRec](nextrec/models/sequential/sasrec.py) | Self-Attentive Sequential Recommendation | KDD 2018 | 开发中 |
303
- | [HSTU](nextrec/models/sequential/hstu.py) | Actions speak louder than words: Trillion-parameter sequential transducers for generative recommendations | arXiv 2024 | 已支持 |
305
+ | 模型 | 论文 | 状态 |
306
+ | ------ | ------ | ------ |
307
+ | [SASRec](nextrec/models/sequential/sasrec.py) | Self-Attentive Sequential Recommendation | 开发中 |
308
+ | [HSTU](nextrec/models/sequential/hstu.py) | Actions speak louder than words: Trillion-parameter sequential transducers for generative recommendations | 已支持 |
304
309
 
305
310
  ### 多任务模型
306
311
 
307
- | 模型 | 论文 | 年份 | 状态 |
308
- |------|------|------|------|
309
- | [MMOE](nextrec/models/multi_task/mmoe.py) | Modeling Task Relationships in Multi-task Learning | KDD 2018 | 已支持 |
310
- | [PLE](nextrec/models/multi_task/ple.py) | Progressive Layered Extraction | RecSys 2020 | 已支持 |
311
- | [ESMM](nextrec/models/multi_task/esmm.py) | Entire Space Multi-Task Model | SIGIR 2018 | 已支持 |
312
- | [ShareBottom](nextrec/models/multi_task/share_bottom.py) | Multitask Learning | - | 已支持 |
313
- | [POSO](nextrec/models/multi_task/poso.py) | POSO: Personalized Cold-start Modules for Large-scale Recommender Systems | 2021 | 已支持 |
312
+ | 模型 | 论文 | 状态 |
313
+ | ------ | ------ | ------ |
314
+ | [MMOE](nextrec/models/multi_task/mmoe.py) | Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts | 已支持 |
315
+ | [PLE](nextrec/models/multi_task/ple.py) | Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations | 已支持 |
316
+ | [ESMM](nextrec/models/multi_task/esmm.py) | Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate | 已支持 |
317
+ | [ShareBottom](nextrec/models/multi_task/share_bottom.py) | Multitask Learning | 已支持 |
318
+ | [POSO](nextrec/models/multi_task/poso.py) | POSO: Personalized Cold Start Modules for Large-scale Recommender Systems | 已支持 |
319
+ | [PEPNet](nextrec/models/multi_task/pepnet.py) | PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information | 已支持 |
320
+ | [APG](nextrec/models/multi_task/apg.py) | APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction | 已支持 |
321
+ | [CrossStitch](nextrec/models/multi_task/cross_stitch.py) | Cross-Stitch Networks for Multi-Task Learning | 已支持 |
322
+ | [ESCM](nextrec/models/multi_task/escm.py) | ESCM²: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation | 已支持 |
323
+ | [HMOE](nextrec/models/multi_task/hmoe.py) | Improving multi-scenario learning to rank in e-commerce by exploiting task relationships in the label space | 已支持 |
314
324
 
315
325
  ### 生成式模型
316
326
 
317
- | 模型 | 论文 | 年份 | 状态 |
318
- |------|------|------|------|
319
- | [TIGER](nextrec/models/generative/tiger.py) | Recommender Systems with Generative Retrieval | NeurIPS 2023 | 开发中 |
327
+ | 模型 | 论文 | 状态 |
328
+ | ------ | ------ | ------ |
329
+ | [TIGER](nextrec/models/generative/tiger.py) | Recommender Systems with Generative Retrieval | 开发中 |
320
330
 
321
331
  ### 表征模型
322
332
 
323
- | 模型 | 论文 | 年份 | 状态 |
324
- |------|------|------|------|
325
- | [RQ-VAE](nextrec/models/representation/rqvae.py) | RQ-VAE: RQVAE for Generative Retrieval | - | 已支持 |
326
- | [BPR](nextrec/models/representation/bpr.py) | Bayesian Personalized Ranking | UAI 2009 | 开发中 |
327
- | [MF](nextrec/models/representation/mf.py) | Matrix Factorization Techniques for Recommender Systems | - | 开发中 |
328
- | [AutoRec](nextrec/models/representation/autorec.py) | AutoRec: Autoencoders Meet Collaborative Filtering | WWW 2015 | 开发中 |
329
- | [LightGCN](nextrec/models/representation/lightgcn.py) | LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation | SIGIR 2020 | 开发中 |
330
- | [S3Rec](nextrec/models/representation/s3rec.py) | S3-Rec: Self-Supervised Learning for Sequential Recommendation | CIKM 2020 | 开发中 |
331
- | [CL4SRec](nextrec/models/representation/cl4srec.py) | CL4SRec: Contrastive Learning for Sequential Recommendation | 2021 | 开发中 |
333
+ | 模型 | 论文 | 状态 |
334
+ | ------ | ------ | ------ |
335
+ | [RQ-VAE](nextrec/models/representation/rqvae.py) | Autoregressive Image Generation using Residual Quantization | 已支持 |
336
+ | [BPR](nextrec/models/representation/bpr.py) | Bayesian Personalized Ranking | 开发中 |
337
+ | [MF](nextrec/models/representation/mf.py) | Matrix Factorization Techniques for Recommender Systems | 开发中 |
338
+ | [AutoRec](nextrec/models/representation/autorec.py) | AutoRec: Autoencoders Meet Collaborative Filtering | 开发中 |
339
+ | [LightGCN](nextrec/models/representation/lightgcn.py) | LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation | 开发中 |
340
+ | [S3Rec](nextrec/models/representation/s3rec.py) | S3-Rec: Self-Supervised Learning for Sequential Recommendation | 开发中 |
341
+ | [CL4SRec](nextrec/models/representation/cl4srec.py) | CL4SRec: Contrastive Learning for Sequential Recommendation | 开发中 |
332
342
 
333
343
  ---
334
344
 
@@ -8,7 +8,7 @@
8
8
  ![Python](https://img.shields.io/badge/Python-3.10+-blue.svg)
9
9
  ![PyTorch](https://img.shields.io/badge/PyTorch-1.10+-ee4c2c.svg)
10
10
  ![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)
11
- ![Version](https://img.shields.io/badge/Version-0.4.25-orange.svg)
11
+ ![Version](https://img.shields.io/badge/Version-0.4.27-orange.svg)
12
12
  [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/zerolovesea/NextRec)
13
13
 
14
14
  中文文档 | [English Version](README_en.md)
@@ -41,13 +41,14 @@ NextRec是一个基于PyTorch的现代推荐系统框架,旨在为研究工程
41
41
  - **高效训练与评估**:内置多种优化器、学习率调度、早停、模型检查点与详细的日志管理,开箱即用。
42
42
 
43
43
  ## NextRec近期进展
44
+ - **01/01/2026** 新年好,在v0.4.27中加入了多个多目标模型的支持:[APG](nextrec/models/multi_task/apg.py), [ESCM](nextrec/models/multi_task/escm.py), [HMoE](nextrec/models/multi_task/hmoe.py), [Cross Stitch](nextrec/models/multi_task/cross_stitch.py)
44
45
  - **28/12/2025** 在v0.4.21中加入了对SwanLab和Wandb的支持,通过model的`fit`方法进行配置:`use_swanlab=True, swanlab_kwargs={"project": "NextRec","name":"tutorial_movielens_deepfm"},`
45
46
  - **21/12/2025** 在v0.4.16中加入了对[GradNorm](/nextrec/loss/grad_norm.py)的支持,通过compile的`loss_weight='grad_norm'`进行配置
46
47
  - **12/12/2025** 在v0.4.9中加入了[RQ-VAE](/nextrec/models/representation/rqvae.py)模块。配套的[数据集](/dataset/ecommerce_task.csv)和[代码](tutorials/notebooks/zh/使用RQ-VAE构建语义ID.ipynb)已经同步在仓库中
47
48
  - **07/12/2025** 发布了NextRec CLI命令行工具,它允许用户根据配置文件进行一键训练和推理,我们提供了相关的[教程](/nextrec_cli_preset/NextRec-CLI_zh.md)和[教学代码](/nextrec_cli_preset)
48
49
  - **03/12/2025** NextRec获得了100颗🌟!感谢大家的支持
49
50
  - **06/12/2025** 在v0.4.1中支持了单机多卡的分布式DDP训练,并且提供了配套的[代码](tutorials/distributed)
50
- - **11/11/2025** NextRec v0.1.0发布,我们提供了10余种Ranking模型,4种多任务模型和4种召回模型,以及统一的训练/日志/指标管理系统
51
+ - **11/11/2025** NextRec v0.1.0发布,我们提供了10余种Ranking模型,11种多任务模型和4种召回模型,以及统一的训练/日志/指标管理系统
51
52
 
52
53
  ## 架构
53
54
 
@@ -133,15 +134,13 @@ model = DIN(
133
134
  behavior_feature_name="sequence_0",
134
135
  candidate_feature_name="item_id",
135
136
  mlp_params=mlp_params,
136
- attention_hidden_units=[80, 40],
137
- attention_activation='sigmoid',
137
+ attention_mlp_params={
138
+ "hidden_dims": [80, 40],
139
+ "activation": "sigmoid",
140
+ },
138
141
  attention_use_softmax=True,
139
- target=['label'], # 目标变量
140
- device='mps',
141
- embedding_l1_reg=1e-6,
142
- embedding_l2_reg=1e-5,
143
- dense_l1_reg=1e-5,
144
- dense_l2_reg=1e-4,
142
+ target='label', # 目标变量
143
+ device='cpu',
145
144
  session_id="din_tutorial", # 实验id,用于存放训练日志
146
145
  )
147
146
 
@@ -159,7 +158,13 @@ model.fit(
159
158
  epochs=3,
160
159
  batch_size=512,
161
160
  shuffle=True,
162
- user_id_column='user_id' # 用于计算GAUC的id列
161
+ user_id_column='user_id', # 用于计算GAUC的id列
162
+ valid_ratio=0.2, # 自动划分验证集(可选)
163
+ num_workers=4, # DataLoader 并行数
164
+ use_wandb=False, # 启用 Wandb(可选)
165
+ wandb_kwargs={"project": "NextRec", "name": "din_tutorial"},
166
+ use_swanlab=False, # 启用 SwanLab(可选)
167
+ swanlab_kwargs={"project": "NextRec", "name": "din_tutorial"},
163
168
  )
164
169
 
165
170
  # 训练完成后进行指标评估
@@ -188,11 +193,11 @@ nextrec --mode=predict --predict_config=path/to/predict_config.yaml
188
193
 
189
194
  预测结果固定保存到 `{checkpoint_path}/predictions/{name}.{save_data_format}`。
190
195
 
191
- > 截止当前版本0.4.25,NextRec CLI支持单机训练,分布式训练相关功能尚在开发中。
196
+ > 截止当前版本0.4.27,NextRec CLI支持单机训练,分布式训练相关功能尚在开发中。
192
197
 
193
198
  ## 兼容平台
194
199
 
195
- 当前最新版本为0.4.25,所有模型和测试代码均已在以下平台通过验证,如果开发者在使用中遇到兼容问题,请在issue区提出错误报告及系统版本:
200
+ 当前最新版本为0.4.27,所有模型和测试代码均已在以下平台通过验证,如果开发者在使用中遇到兼容问题,请在issue区提出错误报告及系统版本:
196
201
 
197
202
  | 平台 | 配置 |
198
203
  |------|------|
@@ -205,69 +210,74 @@ nextrec --mode=predict --predict_config=path/to/predict_config.yaml
205
210
 
206
211
  ### 排序模型
207
212
 
208
- | 模型 | 论文 | 年份 | 状态 |
209
- |------|------|------|------|
210
- | [FM](nextrec/models/ranking/fm.py) | Factorization Machines | ICDM 2010 | 已支持 |
211
- | [LR](nextrec/models/ranking/lr.py) | Logistic Regression | - | 已支持 |
212
- | [AFM](nextrec/models/ranking/afm.py) | Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks | IJCAI 2017 | 已支持 |
213
- | [FFM](nextrec/models/ranking/ffm.py) | Field-aware Factorization Machines | RecSys 2016 | 已支持 |
214
- | [DeepFM](nextrec/models/ranking/deepfm.py) | DeepFM: A Factorization-Machine based Neural Network for CTR Prediction | IJCAI 2017 | 已支持 |
215
- | [Wide&Deep](nextrec/models/ranking/widedeep.py) | Wide & Deep Learning for Recommender Systems | DLRS 2016 | 已支持 |
216
- | [xDeepFM](nextrec/models/ranking/xdeepfm.py) | xDeepFM: Combining Explicit and Implicit Feature Interactions | KDD 2018 | 已支持 |
217
- | [FiBiNET](nextrec/models/ranking/fibinet.py) | FiBiNET: Combining Feature Importance and Bilinear Feature Interaction for CTR Prediction | RecSys 2019 | 已支持 |
218
- | [PNN](nextrec/models/ranking/pnn.py) | Product-based Neural Networks for User Response Prediction | ICDM 2016 | 已支持 |
219
- | [AutoInt](nextrec/models/ranking/autoint.py) | AutoInt: Automatic Feature Interaction Learning | CIKM 2019 | 已支持 |
220
- | [DCN](nextrec/models/ranking/dcn.py) | Deep & Cross Network for Ad Click Predictions | ADKDD 2017 | 已支持 |
221
- | [DCN v2](nextrec/models/ranking/dcn_v2.py) | DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems | KDD 2021 | 已支持 |
222
- | [DIN](nextrec/models/ranking/din.py) | Deep Interest Network for Click-Through Rate Prediction | KDD 2018 | 已支持 |
223
- | [DIEN](nextrec/models/ranking/dien.py) | Deep Interest Evolution Network for Click-Through Rate Prediction | AAAI 2019 | 已支持 |
224
- | [MaskNet](nextrec/models/ranking/masknet.py) | MaskNet: Introducing Feature-wise Gating Blocks for High-dimensional Sparse Recommendation Data | 2020 | 已支持 |
225
- | [EulerNet](nextrec/models/ranking/eulernet.py) | EulerNet: Efficient and Effective Feature Interaction Modeling with Euler's Formula | SIGIR 2021 | 已支持 |
213
+ | 模型 | 论文 | 状态 |
214
+ | ------ | ------ | ------ |
215
+ | [FM](nextrec/models/ranking/fm.py) | Factorization machines | 已支持 |
216
+ | [LR](nextrec/models/ranking/lr.py) | Applied Logistic Regression | 已支持 |
217
+ | [AFM](nextrec/models/ranking/afm.py) | Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks | 已支持 |
218
+ | [FFM](nextrec/models/ranking/ffm.py) | Field-aware Factorization Machines for CTR Prediction | 已支持 |
219
+ | [DeepFM](nextrec/models/ranking/deepfm.py) | DeepFM: A factorization-machine based neural network for CTR prediction | 已支持 |
220
+ | [Wide&Deep](nextrec/models/ranking/widedeep.py) | Wide & Deep learning for recommender systems | 已支持 |
221
+ | [xDeepFM](nextrec/models/ranking/xdeepfm.py) | xdeepfm: Combining explicit and implicit feature interactions for recommender systems | 已支持 |
222
+ | [FiBiNET](nextrec/models/ranking/fibinet.py) | FiBiNET: Combining feature importance and bilinear feature interaction for click-through rate prediction | 已支持 |
223
+ | [PNN](nextrec/models/ranking/pnn.py) | Product-based neural networks for user response prediction | 已支持 |
224
+ | [AutoInt](nextrec/models/ranking/autoint.py) | AutoInt: Automatic feature interaction learning via self-attentive neural networks | 已支持 |
225
+ | [DCN](nextrec/models/ranking/dcn.py) | Deep & cross network for ad click predictions | 已支持 |
226
+ | [DCN v2](nextrec/models/ranking/dcn_v2.py) | DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems | 已支持 |
227
+ | [DIN](nextrec/models/ranking/din.py) | Deep interest network for click-through rate prediction | 已支持 |
228
+ | [DIEN](nextrec/models/ranking/dien.py) | Deep interest evolution network for click-through rate prediction | 已支持 |
229
+ | [MaskNet](nextrec/models/ranking/masknet.py) | MaskNet: Introducing Feature-Wise Multiplication to CTR Ranking Models by Instance-Guided Mask | 已支持 |
230
+ | [EulerNet](nextrec/models/ranking/eulernet.py) | EulerNet: Efficient and Effective Feature Interaction Modeling with Euler's Formula | 已支持 |
226
231
 
227
232
  ### 召回模型
228
233
 
229
- | 模型 | 论文 | 年份 | 状态 |
230
- |------|------|------|------|
231
- | [DSSM](nextrec/models/retrieval/dssm.py) | Learning Deep Structured Semantic Models | CIKM 2013 | 已支持 |
232
- | [DSSM v2](nextrec/models/retrieval/dssm_v2.py) | DSSM with pairwise BPR-style optimization | - | 已支持 |
233
- | [YouTube DNN](nextrec/models/retrieval/youtube_dnn.py) | Deep Neural Networks for YouTube Recommendations | RecSys 2016 | 已支持 |
234
- | [MIND](nextrec/models/retrieval/mind.py) | Multi-Interest Network with Dynamic Routing | CIKM 2019 | 已支持 |
235
- | [SDM](nextrec/models/retrieval/sdm.py) | Sequential Deep Matching Model | - | 已支持 |
234
+ | 模型 | 论文 | 状态 |
235
+ | ------ | ------ | ------ |
236
+ | [DSSM](nextrec/models/retrieval/dssm.py) | Learning deep structured semantic models for web search using clickthrough data | 已支持 |
237
+ | [DSSM v2](nextrec/models/retrieval/dssm_v2.py) | DSSM v2 - DSSM with pairwise training using BPR loss | 已支持 |
238
+ | [YouTube DNN](nextrec/models/retrieval/youtube_dnn.py) | Deep neural networks for youtube recommendations | 已支持 |
239
+ | [MIND](nextrec/models/retrieval/mind.py) | Multi-interest network with dynamic routing for recommendation at Tmall | 已支持 |
240
+ | [SDM](nextrec/models/retrieval/sdm.py) | Sequential recommender system based on hierarchical attention networks | 已支持 |
236
241
 
237
242
  ### 序列推荐模型
238
243
 
239
- | 模型 | 论文 | 年份 | 状态 |
240
- |------|------|------|------|
241
- | [SASRec](nextrec/models/sequential/sasrec.py) | Self-Attentive Sequential Recommendation | KDD 2018 | 开发中 |
242
- | [HSTU](nextrec/models/sequential/hstu.py) | Actions speak louder than words: Trillion-parameter sequential transducers for generative recommendations | arXiv 2024 | 已支持 |
244
+ | 模型 | 论文 | 状态 |
245
+ | ------ | ------ | ------ |
246
+ | [SASRec](nextrec/models/sequential/sasrec.py) | Self-Attentive Sequential Recommendation | 开发中 |
247
+ | [HSTU](nextrec/models/sequential/hstu.py) | Actions speak louder than words: Trillion-parameter sequential transducers for generative recommendations | 已支持 |
243
248
 
244
249
  ### 多任务模型
245
250
 
246
- | 模型 | 论文 | 年份 | 状态 |
247
- |------|------|------|------|
248
- | [MMOE](nextrec/models/multi_task/mmoe.py) | Modeling Task Relationships in Multi-task Learning | KDD 2018 | 已支持 |
249
- | [PLE](nextrec/models/multi_task/ple.py) | Progressive Layered Extraction | RecSys 2020 | 已支持 |
250
- | [ESMM](nextrec/models/multi_task/esmm.py) | Entire Space Multi-Task Model | SIGIR 2018 | 已支持 |
251
- | [ShareBottom](nextrec/models/multi_task/share_bottom.py) | Multitask Learning | - | 已支持 |
252
- | [POSO](nextrec/models/multi_task/poso.py) | POSO: Personalized Cold-start Modules for Large-scale Recommender Systems | 2021 | 已支持 |
251
+ | 模型 | 论文 | 状态 |
252
+ | ------ | ------ | ------ |
253
+ | [MMOE](nextrec/models/multi_task/mmoe.py) | Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts | 已支持 |
254
+ | [PLE](nextrec/models/multi_task/ple.py) | Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations | 已支持 |
255
+ | [ESMM](nextrec/models/multi_task/esmm.py) | Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate | 已支持 |
256
+ | [ShareBottom](nextrec/models/multi_task/share_bottom.py) | Multitask Learning | 已支持 |
257
+ | [POSO](nextrec/models/multi_task/poso.py) | POSO: Personalized Cold Start Modules for Large-scale Recommender Systems | 已支持 |
258
+ | [PEPNet](nextrec/models/multi_task/pepnet.py) | PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information | 已支持 |
259
+ | [APG](nextrec/models/multi_task/apg.py) | APG: Adaptive Parameter Generation Network for Click-Through Rate Prediction | 已支持 |
260
+ | [CrossStitch](nextrec/models/multi_task/cross_stitch.py) | Cross-Stitch Networks for Multi-Task Learning | 已支持 |
261
+ | [ESCM](nextrec/models/multi_task/escm.py) | ESCM²: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation | 已支持 |
262
+ | [HMOE](nextrec/models/multi_task/hmoe.py) | Improving multi-scenario learning to rank in e-commerce by exploiting task relationships in the label space | 已支持 |
253
263
 
254
264
  ### 生成式模型
255
265
 
256
- | 模型 | 论文 | 年份 | 状态 |
257
- |------|------|------|------|
258
- | [TIGER](nextrec/models/generative/tiger.py) | Recommender Systems with Generative Retrieval | NeurIPS 2023 | 开发中 |
266
+ | 模型 | 论文 | 状态 |
267
+ | ------ | ------ | ------ |
268
+ | [TIGER](nextrec/models/generative/tiger.py) | Recommender Systems with Generative Retrieval | 开发中 |
259
269
 
260
270
  ### 表征模型
261
271
 
262
- | 模型 | 论文 | 年份 | 状态 |
263
- |------|------|------|------|
264
- | [RQ-VAE](nextrec/models/representation/rqvae.py) | RQ-VAE: RQVAE for Generative Retrieval | - | 已支持 |
265
- | [BPR](nextrec/models/representation/bpr.py) | Bayesian Personalized Ranking | UAI 2009 | 开发中 |
266
- | [MF](nextrec/models/representation/mf.py) | Matrix Factorization Techniques for Recommender Systems | - | 开发中 |
267
- | [AutoRec](nextrec/models/representation/autorec.py) | AutoRec: Autoencoders Meet Collaborative Filtering | WWW 2015 | 开发中 |
268
- | [LightGCN](nextrec/models/representation/lightgcn.py) | LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation | SIGIR 2020 | 开发中 |
269
- | [S3Rec](nextrec/models/representation/s3rec.py) | S3-Rec: Self-Supervised Learning for Sequential Recommendation | CIKM 2020 | 开发中 |
270
- | [CL4SRec](nextrec/models/representation/cl4srec.py) | CL4SRec: Contrastive Learning for Sequential Recommendation | 2021 | 开发中 |
272
+ | 模型 | 论文 | 状态 |
273
+ | ------ | ------ | ------ |
274
+ | [RQ-VAE](nextrec/models/representation/rqvae.py) | Autoregressive Image Generation using Residual Quantization | 已支持 |
275
+ | [BPR](nextrec/models/representation/bpr.py) | Bayesian Personalized Ranking | 开发中 |
276
+ | [MF](nextrec/models/representation/mf.py) | Matrix Factorization Techniques for Recommender Systems | 开发中 |
277
+ | [AutoRec](nextrec/models/representation/autorec.py) | AutoRec: Autoencoders Meet Collaborative Filtering | 开发中 |
278
+ | [LightGCN](nextrec/models/representation/lightgcn.py) | LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation | 开发中 |
279
+ | [S3Rec](nextrec/models/representation/s3rec.py) | S3-Rec: Self-Supervised Learning for Sequential Recommendation | 开发中 |
280
+ | [CL4SRec](nextrec/models/representation/cl4srec.py) | CL4SRec: Contrastive Learning for Sequential Recommendation | 开发中 |
271
281
 
272
282
  ---
273
283