new-value-analysis 0.1.0__tar.gz → 0.1.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. new_value_analysis-0.1.2/PKG-INFO +210 -0
  2. new_value_analysis-0.1.2/README.md +190 -0
  3. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/pyproject.toml +1 -1
  4. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/action_finder/find_topicnum.py +3 -1
  5. new_value_analysis-0.1.2/src/new_value_analysis.egg-info/PKG-INFO +210 -0
  6. new_value_analysis-0.1.0/PKG-INFO +0 -42
  7. new_value_analysis-0.1.0/README.md +0 -22
  8. new_value_analysis-0.1.0/src/new_value_analysis.egg-info/PKG-INFO +0 -42
  9. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/LICENSE +0 -0
  10. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/setup.cfg +0 -0
  11. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/__init__.py +0 -0
  12. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/action_finder/__init__.py +0 -0
  13. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/action_finder/select_action_number.py +0 -0
  14. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/action_finder/topic_modeling.py +0 -0
  15. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/actor_finder/__init__.py +0 -0
  16. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/actor_finder/doc2vec.py +0 -0
  17. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/actor_finder/find_right_silhouette.py +0 -0
  18. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/actor_finder/silhouette_plot.py +0 -0
  19. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/actor_finder/visualize_dendrogram.py +0 -0
  20. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/opportunity_area_analysis/__init__.py +0 -0
  21. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/opportunity_area_analysis/opportunity_plot.py +0 -0
  22. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis/opportunity_area_analysis/satisfaction_scaling.py +0 -0
  23. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis.egg-info/SOURCES.txt +0 -0
  24. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis.egg-info/dependency_links.txt +0 -0
  25. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis.egg-info/requires.txt +0 -0
  26. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/src/new_value_analysis.egg-info/top_level.txt +0 -0
  27. {new_value_analysis-0.1.0 → new_value_analysis-0.1.2}/tests/test_imports.py +0 -0
@@ -0,0 +1,210 @@
1
+ Metadata-Version: 2.4
2
+ Name: new_value_analysis
3
+ Version: 0.1.2
4
+ Summary: New Value Analysis: actor/action/opportunity 분석 유틸리티 패키지
5
+ Author: New Value Analysis contributors
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/smhrdGit/new_value_analysis
8
+ Project-URL: Repository, https://github.com/smhrdGit/new_value_analysis
9
+ Project-URL: Issues, https://github.com/smhrdGit/new_value_analysis/issues
10
+ Requires-Python: >=3.9
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: numpy>=1.21
14
+ Requires-Dist: pandas>=1.5
15
+ Requires-Dist: gensim>=4.3
16
+ Requires-Dist: scikit-learn>=1.2
17
+ Requires-Dist: matplotlib>=3.7
18
+ Requires-Dist: scipy>=1.10
19
+ Dynamic: license-file
20
+
21
+ # New Value Analysis
22
+
23
+ `new_value_analysis`는 **신규가치분석(New Value Analysis)**을 수행하기 위한
24
+ Python 기반 분석 유틸리티 라이브러리입니다.
25
+
26
+ 텍스트 데이터 기반으로
27
+ **Action(행동) → Actor(행위자) → Opportunity Area(기회영역)** 분석 파이프라인을
28
+ 일관된 구조로 수행할 수 있도록 설계되었습니다.
29
+
30
+ ---
31
+
32
+ ## 📦 Installation
33
+
34
+ ```bash
35
+ pip install new_value_analysis
36
+ ```
37
+
38
+ > Python 3.9 이상 권장
39
+
40
+ ---
41
+
42
+ ## 📚 Core Concept
43
+
44
+ 본 라이브러리는 다음과 같은 **3단계 분석 흐름**을 전제로 합니다.
45
+
46
+ ```
47
+ [Action Finder]
48
+ 텍스트 데이터 → 토픽 모델링 → 행동(Action) 정의
49
+
50
+ [Actor Finder]
51
+ 문서 임베딩 → 군집 분석 → 행위자(Actor) 유형화
52
+
53
+ [Opportunity Area Analysis]
54
+ 중요도 × 만족도 → 기회영역(Opportunity Area) 도출
55
+ ```
56
+
57
+ ---
58
+
59
+ ## 📁 Package Structure
60
+
61
+ ```text
62
+ new_value_analysis
63
+ ├─ action_finder
64
+ │ ├─ topic_modeling.py # LDA 학습
65
+ │ ├─ find_topicnum.py # 토픽 수 탐색
66
+ │ └─ select_action_number.py # 문서별 Action 번호 할당
67
+
68
+ ├─ actor_finder
69
+ │ ├─ doc2vec.py # Doc2Vec 임베딩
70
+ │ ├─ find_right_silhouette.py # 최적 군집 수 탐색
71
+ │ ├─ silhouette_plot.py # 실루엣 플롯
72
+ │ └─ visualize_dendrogram.py # 덴드로그램 시각화
73
+
74
+ └─ opportunity_area_analysis
75
+ ├─ satisfaction_scaling.py # 점수 스케일링
76
+ └─ opportunity_plot.py # Opportunity Area 시각화
77
+ ```
78
+
79
+ ---
80
+
81
+ ## 1️⃣ Action Finder
82
+
83
+ ### 목적
84
+
85
+ * 텍스트 데이터에서 **행동(Action)**을 추출
86
+ * 문서별로 어떤 행동을 가장 강하게 드러내는지 식별
87
+
88
+ ### 주요 기능
89
+
90
+ ```python
91
+ from new_value_analysis.action_finder import (
92
+ LDA_train,
93
+ assign_action_number
94
+ )
95
+ ```
96
+
97
+ ### 예시 흐름
98
+
99
+ ```python
100
+ # 1. LDA 모델 학습
101
+ lda_model, corpus, dictionary = LDA_train(texts)
102
+
103
+ # 2. 문서별 Action 번호 할당
104
+ df["action_number"] = assign_action_number(lda_model, corpus)
105
+ ```
106
+
107
+ ---
108
+
109
+ ## 2️⃣ Actor Finder
110
+
111
+ ### 목적
112
+
113
+ * 문서를 **행위자(Actor) 관점에서 군집화**
114
+ * “어떤 유형의 사람이 어떤 행동을 하는가?”를 구조화
115
+
116
+ ### 주요 기능
117
+
118
+ ```python
119
+ from new_value_analysis.actor_finder import (
120
+ train_doc2vec_module,
121
+ agglomerative_silhouette_module,
122
+ visualize_silhouette,
123
+ plot_dendrogram
124
+ )
125
+ ```
126
+
127
+ ### 예시 흐름
128
+
129
+ ```python
130
+ # 1. Doc2Vec 임베딩
131
+ model, vectors, tagged_docs = train_doc2vec_module(
132
+ df,
133
+ token_col="tagged_review"
134
+ )
135
+ df["vector"] = vectors
136
+
137
+ # 2. 최적 군집 수 탐색
138
+ scores, best_k = agglomerative_silhouette_module(df)
139
+
140
+ # 3. 군집 품질 시각화
141
+ visualize_silhouette([2, 3, 4, 5], vectors)
142
+
143
+ # 4. 덴드로그램 확인
144
+ plot_dendrogram(df)
145
+ ```
146
+
147
+ ---
148
+
149
+ ## 3️⃣ Opportunity Area Analysis
150
+
151
+ ### 목적
152
+
153
+ * 중요도 × 만족도 기반으로 **기회영역(Opportunity Area)** 도출
154
+ * “노력 대비 가치가 큰 영역”을 시각적으로 식별
155
+
156
+ ### 주요 기능
157
+
158
+ ```python
159
+ from new_value_analysis.opportunity_area_analysis import (
160
+ minmax_scale_scores,
161
+ plot_opportunity_area
162
+ )
163
+ ```
164
+
165
+ ### 예시 흐름
166
+
167
+ ```python
168
+ # 1. 점수 스케일링
169
+ df_scaled = minmax_scale_scores(df)
170
+
171
+ # 2. Opportunity Area 시각화
172
+ plot_opportunity_area(
173
+ importance=df_scaled["importance"],
174
+ satisfaction=df_scaled["satisfaction"],
175
+ labels=df_scaled["action_label"]
176
+ )
177
+ ```
178
+
179
+ ---
180
+
181
+ ## 🧠 Recommended Workflow
182
+
183
+ ```text
184
+ 텍스트 수집
185
+
186
+ 전처리 / 토큰화
187
+
188
+ Action Finder (행동 정의)
189
+
190
+ Actor Finder (행위자 유형화)
191
+
192
+ Opportunity Area Analysis (기회영역 도출)
193
+ ```
194
+
195
+ ---
196
+
197
+ ## 🎓 Use Cases
198
+
199
+ * AI 서비스 기획 / UX 리서치
200
+ * VOC / 리뷰 데이터 기반 서비스 개선
201
+ * 공공 데이터 기반 정책 기획
202
+ * 교육 과정(부트캠프) 분석 프로젝트
203
+
204
+
205
+ ## ✨ Versioning
206
+
207
+ * **v0.1.0**
208
+
209
+ * Initial public release
210
+ * Action / Actor / Opportunity 분석 파이프라인 제공
@@ -0,0 +1,190 @@
1
+ # New Value Analysis
2
+
3
+ `new_value_analysis`는 **신규가치분석(New Value Analysis)**을 수행하기 위한
4
+ Python 기반 분석 유틸리티 라이브러리입니다.
5
+
6
+ 텍스트 데이터 기반으로
7
+ **Action(행동) → Actor(행위자) → Opportunity Area(기회영역)** 분석 파이프라인을
8
+ 일관된 구조로 수행할 수 있도록 설계되었습니다.
9
+
10
+ ---
11
+
12
+ ## 📦 Installation
13
+
14
+ ```bash
15
+ pip install new_value_analysis
16
+ ```
17
+
18
+ > Python 3.9 이상 권장
19
+
20
+ ---
21
+
22
+ ## 📚 Core Concept
23
+
24
+ 본 라이브러리는 다음과 같은 **3단계 분석 흐름**을 전제로 합니다.
25
+
26
+ ```
27
+ [Action Finder]
28
+ 텍스트 데이터 → 토픽 모델링 → 행동(Action) 정의
29
+
30
+ [Actor Finder]
31
+ 문서 임베딩 → 군집 분석 → 행위자(Actor) 유형화
32
+
33
+ [Opportunity Area Analysis]
34
+ 중요도 × 만족도 → 기회영역(Opportunity Area) 도출
35
+ ```
36
+
37
+ ---
38
+
39
+ ## 📁 Package Structure
40
+
41
+ ```text
42
+ new_value_analysis
43
+ ├─ action_finder
44
+ │ ├─ topic_modeling.py # LDA 학습
45
+ │ ├─ find_topicnum.py # 토픽 수 탐색
46
+ │ └─ select_action_number.py # 문서별 Action 번호 할당
47
+
48
+ ├─ actor_finder
49
+ │ ├─ doc2vec.py # Doc2Vec 임베딩
50
+ │ ├─ find_right_silhouette.py # 최적 군집 수 탐색
51
+ │ ├─ silhouette_plot.py # 실루엣 플롯
52
+ │ └─ visualize_dendrogram.py # 덴드로그램 시각화
53
+
54
+ └─ opportunity_area_analysis
55
+ ├─ satisfaction_scaling.py # 점수 스케일링
56
+ └─ opportunity_plot.py # Opportunity Area 시각화
57
+ ```
58
+
59
+ ---
60
+
61
+ ## 1️⃣ Action Finder
62
+
63
+ ### 목적
64
+
65
+ * 텍스트 데이터에서 **행동(Action)**을 추출
66
+ * 문서별로 어떤 행동을 가장 강하게 드러내는지 식별
67
+
68
+ ### 주요 기능
69
+
70
+ ```python
71
+ from new_value_analysis.action_finder import (
72
+ LDA_train,
73
+ assign_action_number
74
+ )
75
+ ```
76
+
77
+ ### 예시 흐름
78
+
79
+ ```python
80
+ # 1. LDA 모델 학습
81
+ lda_model, corpus, dictionary = LDA_train(texts)
82
+
83
+ # 2. 문서별 Action 번호 할당
84
+ df["action_number"] = assign_action_number(lda_model, corpus)
85
+ ```
86
+
87
+ ---
88
+
89
+ ## 2️⃣ Actor Finder
90
+
91
+ ### 목적
92
+
93
+ * 문서를 **행위자(Actor) 관점에서 군집화**
94
+ * “어떤 유형의 사람이 어떤 행동을 하는가?”를 구조화
95
+
96
+ ### 주요 기능
97
+
98
+ ```python
99
+ from new_value_analysis.actor_finder import (
100
+ train_doc2vec_module,
101
+ agglomerative_silhouette_module,
102
+ visualize_silhouette,
103
+ plot_dendrogram
104
+ )
105
+ ```
106
+
107
+ ### 예시 흐름
108
+
109
+ ```python
110
+ # 1. Doc2Vec 임베딩
111
+ model, vectors, tagged_docs = train_doc2vec_module(
112
+ df,
113
+ token_col="tagged_review"
114
+ )
115
+ df["vector"] = vectors
116
+
117
+ # 2. 최적 군집 수 탐색
118
+ scores, best_k = agglomerative_silhouette_module(df)
119
+
120
+ # 3. 군집 품질 시각화
121
+ visualize_silhouette([2, 3, 4, 5], vectors)
122
+
123
+ # 4. 덴드로그램 확인
124
+ plot_dendrogram(df)
125
+ ```
126
+
127
+ ---
128
+
129
+ ## 3️⃣ Opportunity Area Analysis
130
+
131
+ ### 목적
132
+
133
+ * 중요도 × 만족도 기반으로 **기회영역(Opportunity Area)** 도출
134
+ * “노력 대비 가치가 큰 영역”을 시각적으로 식별
135
+
136
+ ### 주요 기능
137
+
138
+ ```python
139
+ from new_value_analysis.opportunity_area_analysis import (
140
+ minmax_scale_scores,
141
+ plot_opportunity_area
142
+ )
143
+ ```
144
+
145
+ ### 예시 흐름
146
+
147
+ ```python
148
+ # 1. 점수 스케일링
149
+ df_scaled = minmax_scale_scores(df)
150
+
151
+ # 2. Opportunity Area 시각화
152
+ plot_opportunity_area(
153
+ importance=df_scaled["importance"],
154
+ satisfaction=df_scaled["satisfaction"],
155
+ labels=df_scaled["action_label"]
156
+ )
157
+ ```
158
+
159
+ ---
160
+
161
+ ## 🧠 Recommended Workflow
162
+
163
+ ```text
164
+ 텍스트 수집
165
+
166
+ 전처리 / 토큰화
167
+
168
+ Action Finder (행동 정의)
169
+
170
+ Actor Finder (행위자 유형화)
171
+
172
+ Opportunity Area Analysis (기회영역 도출)
173
+ ```
174
+
175
+ ---
176
+
177
+ ## 🎓 Use Cases
178
+
179
+ * AI 서비스 기획 / UX 리서치
180
+ * VOC / 리뷰 데이터 기반 서비스 개선
181
+ * 공공 데이터 기반 정책 기획
182
+ * 교육 과정(부트캠프) 분석 프로젝트
183
+
184
+
185
+ ## ✨ Versioning
186
+
187
+ * **v0.1.0**
188
+
189
+ * Initial public release
190
+ * Action / Actor / Opportunity 분석 파이프라인 제공
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "new_value_analysis"
7
- version = "0.1.0"
7
+ version = "0.1.2"
8
8
  description = "New Value Analysis: actor/action/opportunity 분석 유틸리티 패키지"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.9"
@@ -18,6 +18,7 @@ def lda_perplexity_coherence_plot(
18
18
  from gensim.models import CoherenceModel
19
19
  from tqdm.auto import tqdm
20
20
  import matplotlib.pyplot as plt
21
+ import numpy as np
21
22
 
22
23
  perplexity_values = []
23
24
  coherence_values = []
@@ -43,7 +44,8 @@ def lda_perplexity_coherence_plot(
43
44
  )
44
45
 
45
46
  # 2. Perplexity 계산(perplexity_score 변수에 담아주기)
46
- perplexity_score = ldamodel.log_perplexity(corpus)
47
+ log_perplexity = ldamodel.log_perplexity(corpus)
48
+ perplexity_score = np.exp(log_perplexity)
47
49
 
48
50
  # 3. 2번에서 구한 값 perplexity_values 에 추가하기
49
51
  perplexity_values.append(perplexity_score)
@@ -0,0 +1,210 @@
1
+ Metadata-Version: 2.4
2
+ Name: new_value_analysis
3
+ Version: 0.1.2
4
+ Summary: New Value Analysis: actor/action/opportunity 분석 유틸리티 패키지
5
+ Author: New Value Analysis contributors
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/smhrdGit/new_value_analysis
8
+ Project-URL: Repository, https://github.com/smhrdGit/new_value_analysis
9
+ Project-URL: Issues, https://github.com/smhrdGit/new_value_analysis/issues
10
+ Requires-Python: >=3.9
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+ Requires-Dist: numpy>=1.21
14
+ Requires-Dist: pandas>=1.5
15
+ Requires-Dist: gensim>=4.3
16
+ Requires-Dist: scikit-learn>=1.2
17
+ Requires-Dist: matplotlib>=3.7
18
+ Requires-Dist: scipy>=1.10
19
+ Dynamic: license-file
20
+
21
+ # New Value Analysis
22
+
23
+ `new_value_analysis`는 **신규가치분석(New Value Analysis)**을 수행하기 위한
24
+ Python 기반 분석 유틸리티 라이브러리입니다.
25
+
26
+ 텍스트 데이터 기반으로
27
+ **Action(행동) → Actor(행위자) → Opportunity Area(기회영역)** 분석 파이프라인을
28
+ 일관된 구조로 수행할 수 있도록 설계되었습니다.
29
+
30
+ ---
31
+
32
+ ## 📦 Installation
33
+
34
+ ```bash
35
+ pip install new_value_analysis
36
+ ```
37
+
38
+ > Python 3.9 이상 권장
39
+
40
+ ---
41
+
42
+ ## 📚 Core Concept
43
+
44
+ 본 라이브러리는 다음과 같은 **3단계 분석 흐름**을 전제로 합니다.
45
+
46
+ ```
47
+ [Action Finder]
48
+ 텍스트 데이터 → 토픽 모델링 → 행동(Action) 정의
49
+
50
+ [Actor Finder]
51
+ 문서 임베딩 → 군집 분석 → 행위자(Actor) 유형화
52
+
53
+ [Opportunity Area Analysis]
54
+ 중요도 × 만족도 → 기회영역(Opportunity Area) 도출
55
+ ```
56
+
57
+ ---
58
+
59
+ ## 📁 Package Structure
60
+
61
+ ```text
62
+ new_value_analysis
63
+ ├─ action_finder
64
+ │ ├─ topic_modeling.py # LDA 학습
65
+ │ ├─ find_topicnum.py # 토픽 수 탐색
66
+ │ └─ select_action_number.py # 문서별 Action 번호 할당
67
+
68
+ ├─ actor_finder
69
+ │ ├─ doc2vec.py # Doc2Vec 임베딩
70
+ │ ├─ find_right_silhouette.py # 최적 군집 수 탐색
71
+ │ ├─ silhouette_plot.py # 실루엣 플롯
72
+ │ └─ visualize_dendrogram.py # 덴드로그램 시각화
73
+
74
+ └─ opportunity_area_analysis
75
+ ├─ satisfaction_scaling.py # 점수 스케일링
76
+ └─ opportunity_plot.py # Opportunity Area 시각화
77
+ ```
78
+
79
+ ---
80
+
81
+ ## 1️⃣ Action Finder
82
+
83
+ ### 목적
84
+
85
+ * 텍스트 데이터에서 **행동(Action)**을 추출
86
+ * 문서별로 어떤 행동을 가장 강하게 드러내는지 식별
87
+
88
+ ### 주요 기능
89
+
90
+ ```python
91
+ from new_value_analysis.action_finder import (
92
+ LDA_train,
93
+ assign_action_number
94
+ )
95
+ ```
96
+
97
+ ### 예시 흐름
98
+
99
+ ```python
100
+ # 1. LDA 모델 학습
101
+ lda_model, corpus, dictionary = LDA_train(texts)
102
+
103
+ # 2. 문서별 Action 번호 할당
104
+ df["action_number"] = assign_action_number(lda_model, corpus)
105
+ ```
106
+
107
+ ---
108
+
109
+ ## 2️⃣ Actor Finder
110
+
111
+ ### 목적
112
+
113
+ * 문서를 **행위자(Actor) 관점에서 군집화**
114
+ * “어떤 유형의 사람이 어떤 행동을 하는가?”를 구조화
115
+
116
+ ### 주요 기능
117
+
118
+ ```python
119
+ from new_value_analysis.actor_finder import (
120
+ train_doc2vec_module,
121
+ agglomerative_silhouette_module,
122
+ visualize_silhouette,
123
+ plot_dendrogram
124
+ )
125
+ ```
126
+
127
+ ### 예시 흐름
128
+
129
+ ```python
130
+ # 1. Doc2Vec 임베딩
131
+ model, vectors, tagged_docs = train_doc2vec_module(
132
+ df,
133
+ token_col="tagged_review"
134
+ )
135
+ df["vector"] = vectors
136
+
137
+ # 2. 최적 군집 수 탐색
138
+ scores, best_k = agglomerative_silhouette_module(df)
139
+
140
+ # 3. 군집 품질 시각화
141
+ visualize_silhouette([2, 3, 4, 5], vectors)
142
+
143
+ # 4. 덴드로그램 확인
144
+ plot_dendrogram(df)
145
+ ```
146
+
147
+ ---
148
+
149
+ ## 3️⃣ Opportunity Area Analysis
150
+
151
+ ### 목적
152
+
153
+ * 중요도 × 만족도 기반으로 **기회영역(Opportunity Area)** 도출
154
+ * “노력 대비 가치가 큰 영역”을 시각적으로 식별
155
+
156
+ ### 주요 기능
157
+
158
+ ```python
159
+ from new_value_analysis.opportunity_area_analysis import (
160
+ minmax_scale_scores,
161
+ plot_opportunity_area
162
+ )
163
+ ```
164
+
165
+ ### 예시 흐름
166
+
167
+ ```python
168
+ # 1. 점수 스케일링
169
+ df_scaled = minmax_scale_scores(df)
170
+
171
+ # 2. Opportunity Area 시각화
172
+ plot_opportunity_area(
173
+ importance=df_scaled["importance"],
174
+ satisfaction=df_scaled["satisfaction"],
175
+ labels=df_scaled["action_label"]
176
+ )
177
+ ```
178
+
179
+ ---
180
+
181
+ ## 🧠 Recommended Workflow
182
+
183
+ ```text
184
+ 텍스트 수집
185
+
186
+ 전처리 / 토큰화
187
+
188
+ Action Finder (행동 정의)
189
+
190
+ Actor Finder (행위자 유형화)
191
+
192
+ Opportunity Area Analysis (기회영역 도출)
193
+ ```
194
+
195
+ ---
196
+
197
+ ## 🎓 Use Cases
198
+
199
+ * AI 서비스 기획 / UX 리서치
200
+ * VOC / 리뷰 데이터 기반 서비스 개선
201
+ * 공공 데이터 기반 정책 기획
202
+ * 교육 과정(부트캠프) 분석 프로젝트
203
+
204
+
205
+ ## ✨ Versioning
206
+
207
+ * **v0.1.0**
208
+
209
+ * Initial public release
210
+ * Action / Actor / Opportunity 분석 파이프라인 제공
@@ -1,42 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: new_value_analysis
3
- Version: 0.1.0
4
- Summary: New Value Analysis: actor/action/opportunity 분석 유틸리티 패키지
5
- Author: New Value Analysis contributors
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/smhrdGit/new_value_analysis
8
- Project-URL: Repository, https://github.com/smhrdGit/new_value_analysis
9
- Project-URL: Issues, https://github.com/smhrdGit/new_value_analysis/issues
10
- Requires-Python: >=3.9
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: numpy>=1.21
14
- Requires-Dist: pandas>=1.5
15
- Requires-Dist: gensim>=4.3
16
- Requires-Dist: scikit-learn>=1.2
17
- Requires-Dist: matplotlib>=3.7
18
- Requires-Dist: scipy>=1.10
19
- Dynamic: license-file
20
-
21
- # New Value Analysis
22
-
23
- `new_value_analysis`는 신규가치분석(New Value Analysis)을 위한 파이썬 유틸리티 패키지입니다.
24
-
25
- ## 구성
26
- - `action_finder`: 토픽 모델링(LDA) 기반 Action(행동) 추출/할당
27
- - `actor_finder`: Doc2Vec 임베딩 + 군집 진단(실루엣/덴드로그램)
28
- - `opportunity_area_analysis`: Opportunity Area 스케일링/시각화
29
-
30
- ## 설치(로컬 개발 모드)
31
- ```bash
32
- pip install -U pip
33
- pip install -e .
34
- ```
35
-
36
- ## 사용 예시
37
- ```python
38
- from new_value_analysis import action_finder, actor_finder, opportunity_area_analysis
39
-
40
- # 예: actor_finder 내부 함수 사용
41
- # model, vectors, tagged = actor_finder.train_doc2vec_module(df, token_col="tagged_review")
42
- ```
@@ -1,22 +0,0 @@
1
- # New Value Analysis
2
-
3
- `new_value_analysis`는 신규가치분석(New Value Analysis)을 위한 파이썬 유틸리티 패키지입니다.
4
-
5
- ## 구성
6
- - `action_finder`: 토픽 모델링(LDA) 기반 Action(행동) 추출/할당
7
- - `actor_finder`: Doc2Vec 임베딩 + 군집 진단(실루엣/덴드로그램)
8
- - `opportunity_area_analysis`: Opportunity Area 스케일링/시각화
9
-
10
- ## 설치(로컬 개발 모드)
11
- ```bash
12
- pip install -U pip
13
- pip install -e .
14
- ```
15
-
16
- ## 사용 예시
17
- ```python
18
- from new_value_analysis import action_finder, actor_finder, opportunity_area_analysis
19
-
20
- # 예: actor_finder 내부 함수 사용
21
- # model, vectors, tagged = actor_finder.train_doc2vec_module(df, token_col="tagged_review")
22
- ```
@@ -1,42 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: new_value_analysis
3
- Version: 0.1.0
4
- Summary: New Value Analysis: actor/action/opportunity 분석 유틸리티 패키지
5
- Author: New Value Analysis contributors
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/smhrdGit/new_value_analysis
8
- Project-URL: Repository, https://github.com/smhrdGit/new_value_analysis
9
- Project-URL: Issues, https://github.com/smhrdGit/new_value_analysis/issues
10
- Requires-Python: >=3.9
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: numpy>=1.21
14
- Requires-Dist: pandas>=1.5
15
- Requires-Dist: gensim>=4.3
16
- Requires-Dist: scikit-learn>=1.2
17
- Requires-Dist: matplotlib>=3.7
18
- Requires-Dist: scipy>=1.10
19
- Dynamic: license-file
20
-
21
- # New Value Analysis
22
-
23
- `new_value_analysis`는 신규가치분석(New Value Analysis)을 위한 파이썬 유틸리티 패키지입니다.
24
-
25
- ## 구성
26
- - `action_finder`: 토픽 모델링(LDA) 기반 Action(행동) 추출/할당
27
- - `actor_finder`: Doc2Vec 임베딩 + 군집 진단(실루엣/덴드로그램)
28
- - `opportunity_area_analysis`: Opportunity Area 스케일링/시각화
29
-
30
- ## 설치(로컬 개발 모드)
31
- ```bash
32
- pip install -U pip
33
- pip install -e .
34
- ```
35
-
36
- ## 사용 예시
37
- ```python
38
- from new_value_analysis import action_finder, actor_finder, opportunity_area_analysis
39
-
40
- # 예: actor_finder 내부 함수 사용
41
- # model, vectors, tagged = actor_finder.train_doc2vec_module(df, token_col="tagged_review")
42
- ```