neurostats-API 0.0.9__tar.gz → 0.0.11__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- neurostats_API-0.0.9/README.md → neurostats_API-0.0.11/PKG-INFO +20 -3
- neurostats_API-0.0.9/PKG-INFO → neurostats_API-0.0.11/README.md +10 -13
- neurostats_API-0.0.11/neurostats_API/__init__.py +1 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/__init__.py +1 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/balance_sheet.py +19 -9
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/cash_flow.py +8 -6
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/finance_overview.py +95 -32
- neurostats_API-0.0.11/neurostats_API/fetchers/institution.py +214 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/month_revenue.py +23 -7
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/profit_lose.py +21 -9
- neurostats_API-0.0.11/neurostats_API/tools/balance_sheet.yaml +34 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/tools/finance_overview_dict.yaml +76 -34
- neurostats_API-0.0.11/neurostats_API/tools/profit_lose.yaml +121 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/tools/seasonal_data_field_dict.txt +16 -1
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/utils/data_process.py +13 -2
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API.egg-info/PKG-INFO +11 -4
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API.egg-info/SOURCES.txt +1 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/setup.py +1 -1
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/test/test_fetchers.py +42 -17
- neurostats_API-0.0.9/neurostats_API/__init__.py +0 -1
- neurostats_API-0.0.9/neurostats_API/tools/balance_sheet.yaml +0 -26
- neurostats_API-0.0.9/neurostats_API/tools/profit_lose.yaml +0 -93
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/MANIFEST.in +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/cli.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/base.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/tech.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/fetchers/value_invest.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/main.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/tools/cash_flow_percentage.yaml +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/utils/__init__.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/utils/datetime.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/utils/db_client.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API/utils/fetcher.py +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API.egg-info/dependency_links.txt +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/neurostats_API.egg-info/top_level.txt +0 -0
- {neurostats_API-0.0.9 → neurostats_API-0.0.11}/setup.cfg +0 -0
@@ -1,3 +1,13 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: neurostats_API
|
3
|
+
Version: 0.0.11
|
4
|
+
Summary: The service of NeuroStats website
|
5
|
+
Home-page: https://github.com/NeurowattStats/NeuroStats_API.git
|
6
|
+
Author: JasonWang@Neurowatt
|
7
|
+
Author-email: jason@neurowatt.ai
|
8
|
+
Requires-Python: >=3.6
|
9
|
+
Description-Content-Type: text/markdown
|
10
|
+
|
1
11
|
# neurostats_API
|
2
12
|
|
3
13
|
- [檔案架構](#檔案架構)
|
@@ -9,6 +19,8 @@
|
|
9
19
|
- [損益表](#損益表)
|
10
20
|
- [資產負債表](#資產負債表)
|
11
21
|
- [現金流量表](#現金流量表)
|
22
|
+
- [版本紀錄](#版本紀錄)
|
23
|
+
|
12
24
|
|
13
25
|
## 檔案架構
|
14
26
|
|
@@ -68,7 +80,7 @@ pip install neurostats-API
|
|
68
80
|
```Python
|
69
81
|
>>> import neurostats_API
|
70
82
|
>>> print(neurostats_API.__version__)
|
71
|
-
0.0.
|
83
|
+
0.0.10
|
72
84
|
```
|
73
85
|
|
74
86
|
### 得到最新一期的評價資料與歷年評價
|
@@ -424,6 +436,11 @@ stats_fetcher.query()
|
|
424
436
|
> 大部分資料缺失是因為尚未計算,僅先填上已經有的資料
|
425
437
|
|
426
438
|
|
427
|
-
##
|
428
|
-
|
439
|
+
## 版本紀錄
|
440
|
+
### 0.0.10
|
441
|
+
- 更新指標的資料型態: 單位為千元乘以1000之後回傳整數
|
442
|
+
|
443
|
+
- 處理銀行公司在finanace_overview會報錯誤的問題(未完全解決,因銀行公司財報有許多名稱不同,目前都會顯示為None)
|
429
444
|
|
445
|
+
### 0.0.9
|
446
|
+
- 更新指標的資料型態: 單位為日, %, 倍轉為字串
|
@@ -1,13 +1,3 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: neurostats_API
|
3
|
-
Version: 0.0.9
|
4
|
-
Summary: The service of NeuroStats website
|
5
|
-
Home-page: https://github.com/NeurowattStats/NeuroStats_API.git
|
6
|
-
Author: JasonWang@Neurowatt
|
7
|
-
Author-email: jason@neurowatt.ai
|
8
|
-
Requires-Python: >=3.6
|
9
|
-
Description-Content-Type: text/markdown
|
10
|
-
|
11
1
|
# neurostats_API
|
12
2
|
|
13
3
|
- [檔案架構](#檔案架構)
|
@@ -19,6 +9,8 @@ Description-Content-Type: text/markdown
|
|
19
9
|
- [損益表](#損益表)
|
20
10
|
- [資產負債表](#資產負債表)
|
21
11
|
- [現金流量表](#現金流量表)
|
12
|
+
- [版本紀錄](#版本紀錄)
|
13
|
+
|
22
14
|
|
23
15
|
## 檔案架構
|
24
16
|
|
@@ -78,7 +70,7 @@ pip install neurostats-API
|
|
78
70
|
```Python
|
79
71
|
>>> import neurostats_API
|
80
72
|
>>> print(neurostats_API.__version__)
|
81
|
-
0.0.
|
73
|
+
0.0.10
|
82
74
|
```
|
83
75
|
|
84
76
|
### 得到最新一期的評價資料與歷年評價
|
@@ -434,6 +426,11 @@ stats_fetcher.query()
|
|
434
426
|
> 大部分資料缺失是因為尚未計算,僅先填上已經有的資料
|
435
427
|
|
436
428
|
|
437
|
-
##
|
438
|
-
|
429
|
+
## 版本紀錄
|
430
|
+
### 0.0.10
|
431
|
+
- 更新指標的資料型態: 單位為千元乘以1000之後回傳整數
|
432
|
+
|
433
|
+
- 處理銀行公司在finanace_overview會報錯誤的問題(未完全解決,因銀行公司財報有許多名稱不同,目前都會顯示為None)
|
439
434
|
|
435
|
+
### 0.0.9
|
436
|
+
- 更新指標的資料型態: 單位為日, %, 倍轉為字串
|
@@ -0,0 +1 @@
|
|
1
|
+
__version__='0.0.11'
|
@@ -2,6 +2,7 @@ from .base import StatsDateTime, StatsFetcher
|
|
2
2
|
from .balance_sheet import BalanceSheetFetcher
|
3
3
|
from .cash_flow import CashFlowFetcher
|
4
4
|
from .finance_overview import FinanceOverviewFetcher
|
5
|
+
from .institution import InstitutionFetcher
|
5
6
|
from .month_revenue import MonthRevenueFetcher
|
6
7
|
from .profit_lose import ProfitLoseFetcher
|
7
8
|
from .value_invest import ValueFetcher
|
@@ -116,10 +116,13 @@ class BalanceSheetFetcher(StatsFetcher):
|
|
116
116
|
try: # table_dict[項目][(2020Q1, '%')]
|
117
117
|
if (item_name == 'percentage'):
|
118
118
|
if (isinstance(item, (float, int))):
|
119
|
-
item =
|
120
|
-
|
119
|
+
item = StatsProcessor.cal_non_percentage(item, to_str=True, postfix="%")
|
120
|
+
elif ("YoY" in item_name):
|
121
121
|
if (isinstance(item, (float, int))):
|
122
|
-
item =
|
122
|
+
item = StatsProcessor.cal_percentage(item)
|
123
|
+
else:
|
124
|
+
if (isinstance(item, (float, int))):
|
125
|
+
item = StatsProcessor.cal_non_percentage(item, postfix="千元")
|
123
126
|
table_dict[index_name][(time_index, item_name)] = item
|
124
127
|
|
125
128
|
except KeyError:
|
@@ -132,10 +135,17 @@ class BalanceSheetFetcher(StatsFetcher):
|
|
132
135
|
total_table.columns = pd.MultiIndex.from_tuples(total_table.columns)
|
133
136
|
|
134
137
|
for name, setting in self.table_settings.items():
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
138
|
+
if ('target_index' in setting.keys()):
|
139
|
+
target_indexes = [target_index.strip() for target_index in setting['target_index']]
|
140
|
+
else:
|
141
|
+
target_indexes = [None]
|
142
|
+
for target_index in target_indexes:
|
143
|
+
try:
|
144
|
+
return_dict[name] = StatsProcessor.slice_multi_col_table(
|
145
|
+
total_table=total_table,
|
146
|
+
mode=setting['mode'],
|
147
|
+
target_index=target_index)
|
148
|
+
break
|
149
|
+
except Exception as e:
|
150
|
+
continue
|
141
151
|
return return_dict
|
@@ -132,14 +132,15 @@ class CashFlowFetcher(StatsFetcher):
|
|
132
132
|
table_dict[time_index][index_name]['value'] = value[
|
133
133
|
'value']
|
134
134
|
if (value['value']):
|
135
|
-
|
136
|
-
'percentage'] = np.round(
|
135
|
+
ratio = np.round(
|
137
136
|
(value['value'] / cash_flow[
|
138
137
|
main_cash_flow_name]['value']) * 100, 2)
|
138
|
+
table_dict[time_index][index_name][
|
139
|
+
'percentage'] = f"{ratio}%"
|
139
140
|
else:
|
140
141
|
table_dict[time_index][index_name][
|
141
142
|
'percentage'] = None
|
142
|
-
except:
|
143
|
+
except: # 新增index再做一次
|
143
144
|
if (time_index not in table_dict.keys()):
|
144
145
|
table_dict[time_index] = dict()
|
145
146
|
table_dict[time_index][index_name] = dict()
|
@@ -147,14 +148,15 @@ class CashFlowFetcher(StatsFetcher):
|
|
147
148
|
table_dict[time_index][index_name]['value'] = value[
|
148
149
|
'value']
|
149
150
|
if (value['value']):
|
150
|
-
|
151
|
-
'percentage'] = np.round(
|
151
|
+
ratio = np.round(
|
152
152
|
(value['value'] / cash_flow[
|
153
153
|
main_cash_flow_name]['value']) * 100, 2)
|
154
|
+
table_dict[time_index][index_name][
|
155
|
+
'percentage'] = f"{ratio}%"
|
154
156
|
else:
|
155
157
|
table_dict[time_index][index_name][
|
156
158
|
'percentage'] = None
|
157
|
-
|
159
|
+
table_dict[time_index][index_name]['value'] = StatsProcessor.cal_non_percentage(value['value'], postfix="千元")
|
158
160
|
try:
|
159
161
|
partial_cash_flow[time_index][index_name] = table_dict[
|
160
162
|
time_index][index_name]
|
@@ -31,15 +31,19 @@ class FinanceOverviewFetcher(StatsFetcher):
|
|
31
31
|
|
32
32
|
for key, target_sets in self.target_fields.items():
|
33
33
|
try:
|
34
|
-
|
35
|
-
|
36
|
-
small_target] # balance_sheet/profit_lose/cash_flow
|
34
|
+
small_targets = target_sets['field']
|
35
|
+
|
37
36
|
value_index = target_sets['value'] # "金額" or "%"
|
38
37
|
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
38
|
+
for small_target in small_targets:
|
39
|
+
big_target = self.inverse_dict[
|
40
|
+
small_target] # balance_sheet/profit_lose/cash_flow
|
41
|
+
if (small_target == "利息費用_bank"):
|
42
|
+
small_target = small_target[:small_target.find("_bank")]
|
43
|
+
target_query.update({
|
44
|
+
f"{key}":
|
45
|
+
f"$$target_season_data.{big_target}.{small_target}.{value_index}"
|
46
|
+
})
|
43
47
|
except Exception:
|
44
48
|
continue
|
45
49
|
|
@@ -98,8 +102,16 @@ class FinanceOverviewFetcher(StatsFetcher):
|
|
98
102
|
finance_dict = fetched_data['seasonal_data'][0]
|
99
103
|
FinanceOverviewProcessor.process_rate(finance_dict)
|
100
104
|
FinanceOverviewProcessor.process_all(finance_dict)
|
105
|
+
self.fill_nan_index(finance_dict)
|
106
|
+
FinanceOverviewProcessor.process_thousand_dollar(finance_dict)
|
101
107
|
fetched_data['seasonal_data'] = finance_dict
|
108
|
+
|
102
109
|
return fetched_data
|
110
|
+
|
111
|
+
def fill_nan_index(self, finance_dict):
|
112
|
+
for key in self.target_fields.keys():
|
113
|
+
if (key not in finance_dict.keys()):
|
114
|
+
finance_dict[key] = None
|
103
115
|
|
104
116
|
|
105
117
|
class FinanceOverviewProcessor(StatsProcessor):
|
@@ -116,6 +128,35 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
116
128
|
else:
|
117
129
|
finance_dict[key] = StatsProcessor.cal_non_percentage(
|
118
130
|
finance_dict[key])
|
131
|
+
|
132
|
+
|
133
|
+
@classmethod
|
134
|
+
def process_thousand_dollar(cls, finance_dict):
|
135
|
+
process_index = [
|
136
|
+
"revenue",
|
137
|
+
"gross_profit",
|
138
|
+
"operating_income",
|
139
|
+
"net_income",
|
140
|
+
"operating_cash_flow",
|
141
|
+
"invest_cash_flow",
|
142
|
+
"financing_cash_flow",
|
143
|
+
"fcf",
|
144
|
+
|
145
|
+
'current_assets',
|
146
|
+
'current_liabilities',
|
147
|
+
'non_current_assets',
|
148
|
+
'non_current_liabilities',
|
149
|
+
'total_assets',
|
150
|
+
"total_liabilities",
|
151
|
+
"equity"
|
152
|
+
]
|
153
|
+
|
154
|
+
for index in process_index:
|
155
|
+
try:
|
156
|
+
finance_dict[index] = StatsProcessor.cal_non_percentage(finance_dict[index], postfix="千元")
|
157
|
+
except Exception as e:
|
158
|
+
finance_dict[index] = None
|
159
|
+
|
119
160
|
|
120
161
|
@classmethod
|
121
162
|
def process_all(cls, finance_dict):
|
@@ -135,12 +176,13 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
135
176
|
cls.cal_quick_ratio, cls.cal_debt_to_equity_ratio,
|
136
177
|
cls.cal_net_debt_to_equity_ratio, cls.cal_interest_coverage_ratio,
|
137
178
|
cls.cal_debt_to_operating_cash_flow,
|
138
|
-
cls.cal_debt_to_free_cash_flow, cls.cal_cash_flow_ratio
|
179
|
+
cls.cal_debt_to_free_cash_flow, cls.cal_cash_flow_ratio,
|
139
180
|
]
|
140
181
|
|
141
182
|
for method in methods:
|
142
183
|
method(finance_dict)
|
143
184
|
|
185
|
+
|
144
186
|
@classmethod
|
145
187
|
def cal_EBIT(cls, finance_dict):
|
146
188
|
"""
|
@@ -224,7 +266,14 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
224
266
|
計算每股毛利
|
225
267
|
= (當期營業毛利)÷(當期在外流通股數)
|
226
268
|
"""
|
227
|
-
|
269
|
+
if ('gross_profit' not in finance_dict.keys()):
|
270
|
+
try:
|
271
|
+
finance_dict['gross_profit'] = (
|
272
|
+
finance_dict['revenue'] -
|
273
|
+
finance_dict['operating_cost']
|
274
|
+
)
|
275
|
+
except:
|
276
|
+
finance_dict['gross_profit'] = None
|
228
277
|
try:
|
229
278
|
gross_per_share = (finance_dict['gross_profit'] /
|
230
279
|
finance_dict['share_outstanding'])
|
@@ -267,7 +316,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
267
316
|
operating_cash_flow_per_share)
|
268
317
|
except (KeyError, ZeroDivisionError, TypeError) as e:
|
269
318
|
finance_dict['operating_cash_flow_per_share'] = None
|
270
|
-
print(f'operating_cash_flow_per_share because of {str(e)}')
|
319
|
+
# print(f'operating_cash_flow_per_share because of {str(e)}')
|
271
320
|
|
272
321
|
@classmethod
|
273
322
|
def fcf_per_share(cls, finance_dict):
|
@@ -292,12 +341,15 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
292
341
|
計算資產報酬率(ROA)
|
293
342
|
ROA = [ 本期淨利 + 利息費用 × (1-有效稅率) ] ÷(資產總額)
|
294
343
|
"""
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
344
|
+
try:
|
345
|
+
roa = (
|
346
|
+
finance_dict['net_income'] + finance_dict['interest'] +
|
347
|
+
(1 * 0.1) # 有效稅率需要改,這裡先設0.1
|
348
|
+
) / finance_dict['inventories']
|
299
349
|
|
300
|
-
|
350
|
+
finance_dict["roa"] = StatsProcessor.cal_percentage(roa)
|
351
|
+
except Exception as e:
|
352
|
+
finance_dict["roa"] = None
|
301
353
|
|
302
354
|
@classmethod
|
303
355
|
def cal_roe(cls, finance_dict):
|
@@ -305,8 +357,11 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
305
357
|
計算股東權益報酬率(ROE)
|
306
358
|
ROE = (本期淨利) ÷(權益總額)
|
307
359
|
"""
|
308
|
-
|
309
|
-
|
360
|
+
try:
|
361
|
+
roe = (finance_dict['net_income'] / finance_dict['equity'])
|
362
|
+
finance_dict['roe'] = StatsProcessor.cal_percentage(roe)
|
363
|
+
except Exception as e:
|
364
|
+
finance_dict['roe'] = None
|
310
365
|
|
311
366
|
@classmethod
|
312
367
|
def cal_gross_over_asset(cls, finance_dict):
|
@@ -315,7 +370,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
315
370
|
"""
|
316
371
|
try:
|
317
372
|
gross_over_asset = (finance_dict['gross_profit'] /
|
318
|
-
finance_dict['
|
373
|
+
finance_dict['total_assets'])
|
319
374
|
finance_dict['gross_over_asset'] = StatsProcessor.cal_percentage(
|
320
375
|
gross_over_asset)
|
321
376
|
except (KeyError, ZeroDivisionError, TypeError) as e:
|
@@ -331,7 +386,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
331
386
|
try:
|
332
387
|
roce = ((finance_dict['net_income_before_tax'] +
|
333
388
|
finance_dict['interest']) /
|
334
|
-
(finance_dict['
|
389
|
+
(finance_dict['total_assets'] -
|
335
390
|
finance_dict['current_liabilities']))
|
336
391
|
finance_dict['roce'] = StatsProcessor.cal_percentage(roce)
|
337
392
|
|
@@ -351,7 +406,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
351
406
|
finance_dict[
|
352
407
|
'gross_profit_margin'] = StatsProcessor.cal_percentage(
|
353
408
|
gross_profit_margin)
|
354
|
-
except:
|
409
|
+
except Exception as e:
|
355
410
|
finance_dict['gross_profit_margin'] = None
|
356
411
|
print(f"gross_profit_margin failed because of {str(e)}")
|
357
412
|
|
@@ -409,7 +464,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
409
464
|
(finance_dict['account_pay'] / finance_dict['revenue']))
|
410
465
|
finance_dict['dso'] = StatsProcessor.cal_non_percentage(
|
411
466
|
dso, to_str=True, postfix="日")
|
412
|
-
except:
|
467
|
+
except Exception as e:
|
413
468
|
finance_dict['dso'] = None
|
414
469
|
print(f"Error calculating 應收帳款收現天數 because of {str(e)}")
|
415
470
|
|
@@ -419,11 +474,15 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
419
474
|
計算應收帳款佔營收比率
|
420
475
|
= 應收帳款平均餘額 ÷ 營業收入
|
421
476
|
"""
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
account_receive_over_revenue
|
477
|
+
try:
|
478
|
+
account_receive_over_revenue = (finance_dict['account_receive'] /
|
479
|
+
finance_dict['revenue'])
|
480
|
+
finance_dict[
|
481
|
+
"account_receive_over_revenue"] = StatsProcessor.cal_percentage(
|
482
|
+
account_receive_over_revenue)
|
483
|
+
except Exception as e:
|
484
|
+
finance_dict[
|
485
|
+
"account_receive_over_revenue"] = None
|
427
486
|
|
428
487
|
@classmethod
|
429
488
|
def cal_dpo(cls, finance_dict):
|
@@ -513,10 +572,13 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
513
572
|
計算資產周轉率
|
514
573
|
營業收入 ÷ 資產總額
|
515
574
|
"""
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
asset_turnover
|
575
|
+
try:
|
576
|
+
asset_turnover = (finance_dict["revenue"] /
|
577
|
+
finance_dict["inventories"])
|
578
|
+
finance_dict["asset_turnover"] = StatsProcessor.cal_percentage(
|
579
|
+
asset_turnover)
|
580
|
+
except Exception as e:
|
581
|
+
finance_dict["asset_turnover"] = None
|
520
582
|
|
521
583
|
@classmethod
|
522
584
|
def cal_application_turnover(cls, finance_dict):
|
@@ -528,11 +590,12 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
528
590
|
applcation_turnover = (finance_dict['revenue'] /
|
529
591
|
finance_dict["application"])
|
530
592
|
finance_dict[
|
531
|
-
'
|
593
|
+
'application_turnover'] = StatsProcessor.cal_percentage(
|
532
594
|
applcation_turnover)
|
533
595
|
|
534
|
-
except
|
596
|
+
except Exception as e:
|
535
597
|
finance_dict['application_turnover'] = None
|
598
|
+
|
536
599
|
|
537
600
|
@classmethod
|
538
601
|
def cal_current_ratio(cls, finance_dict):
|
@@ -0,0 +1,214 @@
|
|
1
|
+
from .base import StatsFetcher
|
2
|
+
from datetime import datetime, timedelta
|
3
|
+
import json
|
4
|
+
import numpy as np
|
5
|
+
import pandas as pd
|
6
|
+
from ..utils import StatsDateTime, StatsProcessor
|
7
|
+
import importlib.resources as pkg_resources
|
8
|
+
import yaml
|
9
|
+
|
10
|
+
|
11
|
+
class InstitutionFetcher(StatsFetcher):
|
12
|
+
"""
|
13
|
+
iFa -> 交易資訊 -> 法人買賣
|
14
|
+
|
15
|
+
包括:
|
16
|
+
1. 當日交易
|
17
|
+
2. 一年內交易
|
18
|
+
"""
|
19
|
+
|
20
|
+
def __init__(self, ticker, db_client):
|
21
|
+
super().__init__(ticker, db_client)
|
22
|
+
|
23
|
+
def prepare_query(self, start_date, end_date):
|
24
|
+
pipeline = super().prepare_query()
|
25
|
+
|
26
|
+
# target_query = {
|
27
|
+
# "date": date,
|
28
|
+
# "institution_trading": "$$target_season_data.institution_trading"
|
29
|
+
# }
|
30
|
+
|
31
|
+
pipeline.append({
|
32
|
+
"$project": {
|
33
|
+
"_id": 0,
|
34
|
+
"ticker": 1,
|
35
|
+
"company_name": 1,
|
36
|
+
"daily_data": {
|
37
|
+
"$map": {
|
38
|
+
"input": {
|
39
|
+
"$filter": {
|
40
|
+
"input": "$daily_data",
|
41
|
+
"as": "daily",
|
42
|
+
"cond": {
|
43
|
+
"$and": [{
|
44
|
+
"$gte": ["$$daily.date", start_date]
|
45
|
+
}, {
|
46
|
+
"$lte": ["$$daily.date", end_date]
|
47
|
+
}]
|
48
|
+
}
|
49
|
+
}
|
50
|
+
},
|
51
|
+
"as": "target_daily_data",
|
52
|
+
"in": "$$target_daily_data"
|
53
|
+
}
|
54
|
+
}
|
55
|
+
}
|
56
|
+
})
|
57
|
+
|
58
|
+
return pipeline
|
59
|
+
|
60
|
+
def collect_data(self, start_date, end_date):
|
61
|
+
pipeline = self.prepare_query(start_date, end_date)
|
62
|
+
|
63
|
+
fetched_data = self.collection.aggregate(pipeline).to_list()
|
64
|
+
|
65
|
+
return fetched_data[-1]
|
66
|
+
|
67
|
+
def query_data(self):
|
68
|
+
try:
|
69
|
+
latest_time = StatsDateTime.get_latest_time(
|
70
|
+
self.ticker, self.collection)['last_update_time']
|
71
|
+
latest_date = latest_time['institution_trading'][
|
72
|
+
'latest_date']
|
73
|
+
date = latest_date.replace(hour=0,
|
74
|
+
minute=0,
|
75
|
+
second=0,
|
76
|
+
microsecond=0)
|
77
|
+
except Exception as e:
|
78
|
+
print(
|
79
|
+
f"No updated time for institution_trading in {self.ticker}, use current time instead"
|
80
|
+
)
|
81
|
+
date = datetime.now(self.timezone)
|
82
|
+
date = date.replace(hour=0, minute=0, second=0, microsecond=0)
|
83
|
+
|
84
|
+
if (date.hour < 17): # 拿不到今天的資料
|
85
|
+
date = date - timedelta(days=1)
|
86
|
+
|
87
|
+
start_date = date - timedelta(days=365)
|
88
|
+
|
89
|
+
daily_data = self.collect_data(start_date, end_date=date)
|
90
|
+
|
91
|
+
daily_data = sorted(daily_data['daily_data'],
|
92
|
+
key=lambda x: x['date'],
|
93
|
+
reverse=True)
|
94
|
+
|
95
|
+
table_dict = self.process_data(daily_data)
|
96
|
+
|
97
|
+
return table_dict
|
98
|
+
|
99
|
+
def process_data(self, daily_data):
|
100
|
+
table_dict = dict()
|
101
|
+
|
102
|
+
latest_data = daily_data[0]
|
103
|
+
yesterday_data = daily_data[1]
|
104
|
+
|
105
|
+
# 交易價格與昨天交易
|
106
|
+
price_dict = {
|
107
|
+
"open": latest_data['open'],
|
108
|
+
'close': latest_data['close'],
|
109
|
+
'range': f"{latest_data['low']}-{latest_data['high']}",
|
110
|
+
'volumn': latest_data['volume'] / 1000,
|
111
|
+
'last_open': yesterday_data['open'],
|
112
|
+
'last_close': yesterday_data['close'],
|
113
|
+
'last_range': f"{yesterday_data['low']}-{yesterday_data['high']}",
|
114
|
+
'last_volumn': yesterday_data['volume'] / 1000
|
115
|
+
}
|
116
|
+
# 一年範圍
|
117
|
+
annual_lows = [data['low'] for data in daily_data]
|
118
|
+
annual_highs = [data['high'] for data in daily_data]
|
119
|
+
lowest = np.min(annual_lows).item()
|
120
|
+
highest = np.max(annual_highs).item()
|
121
|
+
|
122
|
+
price_dict['52weeks_range'] = f"{lowest}-{highest}"
|
123
|
+
table_dict['price'] = price_dict
|
124
|
+
|
125
|
+
# 發行股數 & 市值
|
126
|
+
|
127
|
+
# 今日法人買賣
|
128
|
+
table_dict['latest_trading'] = {
|
129
|
+
"date":
|
130
|
+
daily_data[0]['date'],
|
131
|
+
"table":
|
132
|
+
self.process_latest_trading(daily_data[0]['institution_trading'], daily_data[0]['volume'])
|
133
|
+
}
|
134
|
+
# 一年內法人
|
135
|
+
annual_trading = [
|
136
|
+
{
|
137
|
+
**data['institution_trading'],
|
138
|
+
"收盤價": int(data['close'])
|
139
|
+
}
|
140
|
+
for data in daily_data
|
141
|
+
] # 將close也併入這個表格
|
142
|
+
annual_dates = [data['date'] for data in daily_data]
|
143
|
+
table_dict['annual_trading'] = self.process_annual_trading(
|
144
|
+
annual_dates, annual_trading)
|
145
|
+
|
146
|
+
return table_dict
|
147
|
+
|
148
|
+
def process_latest_trading(self, latest_trading, volume):
|
149
|
+
latest_table = {
|
150
|
+
"foreign": self.default_institution_chart(),
|
151
|
+
"mutual": self.default_institution_chart(),
|
152
|
+
"prop": self.default_institution_chart(),
|
153
|
+
"institutional_investor":self.default_institution_chart(),
|
154
|
+
}
|
155
|
+
|
156
|
+
for key in latest_trading.keys():
|
157
|
+
if (key.find("外陸資") >= 0 or key.find("外資") >= 0):
|
158
|
+
self.target_institution(latest_trading, latest_table['foreign'], key, volume)
|
159
|
+
elif (key.find("自營商") >= 0):
|
160
|
+
self.target_institution(latest_trading,latest_table['prop'], key, volume)
|
161
|
+
elif (key.find("投信") >= 0):
|
162
|
+
self.target_institution(latest_trading,latest_table['mutual'], key, volume)
|
163
|
+
elif (key.find("三大法人") >= 0):
|
164
|
+
self.target_institution(latest_trading,latest_table['institutional_investor'], key, volume)
|
165
|
+
|
166
|
+
frames = []
|
167
|
+
for category, trades in latest_table.items():
|
168
|
+
temp_df = pd.DataFrame(trades).T
|
169
|
+
temp_df['category'] = category
|
170
|
+
frames.append(temp_df)
|
171
|
+
|
172
|
+
latest_df = pd.concat(frames)
|
173
|
+
latest_df = latest_df.reset_index().rename(columns={'index': 'type'})
|
174
|
+
latest_df = latest_df[['type', 'category', 'stock', 'price', 'average_price', 'percentage']]
|
175
|
+
|
176
|
+
return latest_df
|
177
|
+
|
178
|
+
def process_annual_trading(self, dates, annual_tradings):
|
179
|
+
dates = [date.strftime("%m/%d") for date in dates]
|
180
|
+
return pd.DataFrame(annual_tradings, index=dates)
|
181
|
+
|
182
|
+
def target_institution(self, old_table, new_table, key, volume):
|
183
|
+
if (key.find("買進") >= 0):
|
184
|
+
self.cal_institution(old_table, new_table['buy'], key, volume)
|
185
|
+
elif (key.find("賣出") >= 0):
|
186
|
+
self.cal_institution(old_table, new_table['sell'], key, volume)
|
187
|
+
elif (key.find("買賣超") >= 0):
|
188
|
+
self.cal_institution(old_table, new_table['over_buy_sell'], key, volume)
|
189
|
+
|
190
|
+
def cal_institution(self, old_table, new_table, key, volume):
|
191
|
+
new_table['stock'] = np.round(old_table[key] / 1000, 2).item()
|
192
|
+
new_table['percentage'] = np.round((old_table[key] / volume) * 100, 2).item()
|
193
|
+
|
194
|
+
def default_institution_chart(self):
|
195
|
+
return {
|
196
|
+
"buy": {
|
197
|
+
"stock": 0,
|
198
|
+
"price": 0,
|
199
|
+
"average_price": 0,
|
200
|
+
"percentage": 0
|
201
|
+
},
|
202
|
+
"sell": {
|
203
|
+
"stock": 0,
|
204
|
+
"price": 0,
|
205
|
+
"average_price": 0,
|
206
|
+
"percentage": 0
|
207
|
+
},
|
208
|
+
"over_buy_sell": {
|
209
|
+
"stock": 0,
|
210
|
+
"price": 0,
|
211
|
+
"average_price": 0,
|
212
|
+
"percentage": 0
|
213
|
+
},
|
214
|
+
}
|