neurostats-API 0.0.13__tar.gz → 0.0.15__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/PKG-INFO +66 -2
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/README.md +65 -1
- neurostats_API-0.0.15/neurostats_API/__init__.py +13 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/__init__.py +2 -0
- neurostats_API-0.0.15/neurostats_API/fetchers/base.py +152 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/institution.py +19 -13
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/profit_lose.py +7 -7
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/tech.py +34 -7
- neurostats_API-0.0.15/neurostats_API/fetchers/tej_finance_report.py +313 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/tools/balance_sheet.yaml +1 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/tools/profit_lose.yaml +25 -3
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/utils/__init__.py +2 -1
- neurostats_API-0.0.15/neurostats_API/utils/calculate_value.py +26 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/utils/data_process.py +90 -8
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API.egg-info/PKG-INFO +66 -2
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API.egg-info/SOURCES.txt +5 -1
- neurostats_API-0.0.15/neurostats_API.egg-info/requires.txt +6 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/setup.py +7 -1
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/test/test_fetchers.py +0 -1
- neurostats_API-0.0.15/test/test_tej.py +26 -0
- neurostats_API-0.0.13/neurostats_API/__init__.py +0 -1
- neurostats_API-0.0.13/neurostats_API/fetchers/base.py +0 -54
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/MANIFEST.in +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/cli.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/balance_sheet.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/cash_flow.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/finance_overview.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/margin_trading.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/month_revenue.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/fetchers/value_invest.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/main.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/tools/cash_flow_percentage.yaml +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/tools/finance_overview_dict.yaml +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/tools/seasonal_data_field_dict.txt +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/utils/datetime.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/utils/db_client.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API/utils/fetcher.py +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API.egg-info/dependency_links.txt +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/neurostats_API.egg-info/top_level.txt +0 -0
- {neurostats_API-0.0.13 → neurostats_API-0.0.15}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: neurostats_API
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.15
|
4
4
|
Summary: The service of NeuroStats website
|
5
5
|
Home-page: https://github.com/NeurowattStats/NeuroStats_API.git
|
6
6
|
Author: JasonWang@Neurowatt
|
@@ -83,7 +83,7 @@ pip install neurostats-API
|
|
83
83
|
```Python
|
84
84
|
>>> import neurostats_API
|
85
85
|
>>> print(neurostats_API.__version__)
|
86
|
-
0.0.
|
86
|
+
0.0.15
|
87
87
|
```
|
88
88
|
|
89
89
|
### 得到最新一期的評價資料與歷年評價
|
@@ -667,7 +667,71 @@ fetcher.query()
|
|
667
667
|
|
668
668
|
請注意`range`, `last_range`, `52week_range`這三個項目型態為字串,其餘為float
|
669
669
|
|
670
|
+
|
671
|
+
## TEJ 相關
|
672
|
+
### 會計師簽證財務資料
|
673
|
+
```Python
|
674
|
+
from neurostats_API import FinanceReportFetcher
|
675
|
+
|
676
|
+
mongo_uri = <MongoDB 的 URI>
|
677
|
+
db_name = 'company' # 連接的DB名稱
|
678
|
+
collection_name = "TWN/AINVFQ1" # 連接的collection對象
|
679
|
+
|
680
|
+
fetcher = FinanceReportFetcher(
|
681
|
+
mongo_uri = mongo_uri,
|
682
|
+
db_name = db_name,
|
683
|
+
collection_name = collection_name
|
684
|
+
)
|
685
|
+
|
686
|
+
data = fetcher.get(
|
687
|
+
ticker = "2330" # 任意的股票代碼
|
688
|
+
fetch_mode = fetcher.YOY_NOCAL # 取得模式
|
689
|
+
start_date = "2005-01-01",
|
690
|
+
end_date = "2024-12-31",
|
691
|
+
report_type = "Q",
|
692
|
+
indexes = []
|
693
|
+
)
|
694
|
+
```
|
695
|
+
- `ticker`: 股票代碼
|
696
|
+
|
697
|
+
- `fetch_mode` : 取得模式,為`fetcher.YOY_NOCAL` 或 `fetcher.QOQ_NOCAL`
|
698
|
+
- `YOY_NOCAL`: 以end_date為準,取得與end_date為準同季的歷年資料,時間範圍以start_date為準
|
699
|
+
> 例如`start_date = "2020-07-01"`, `end_date = "2024-01-01"`,會回傳2020~2024的第一季資料
|
700
|
+
|
701
|
+
- `QOQ_NOCAL`: 時間範圍內的每季資料
|
702
|
+
|
703
|
+
- `start_date`: 開始日期,不設定時預設為`2005-01-01`
|
704
|
+
|
705
|
+
- `end_date`: 結束日期,不設定時預設為資料庫最新資料的日期
|
706
|
+
|
707
|
+
- `report_type`: 選擇哪種報告,預設為`Q`
|
708
|
+
- `A`: 當年累計
|
709
|
+
- `Q`: 當季數值
|
710
|
+
- `TTM`: 移動四季 (包括當季在內,往前累計四個季度)
|
711
|
+
|
712
|
+
- `indexes`: 選擇的column,需要以TEJ提供的欄位名稱為準,不提供時或提供`[]`會回傳全部column
|
713
|
+
- 範例輸入: `['bp41', 'bp51']`
|
714
|
+
|
715
|
+
[TEJ資料集連結](https://tquant.tejwin.com/%E8%B3%87%E6%96%99%E9%9B%86/)
|
716
|
+
請看 `會計師簽證財務資料`
|
717
|
+
|
718
|
+
#### 回傳資料
|
719
|
+
fetch_mode設定為`YOY_NOCAL`與`QOQ_NOCAL`下
|
720
|
+
為回傳pd.DataFrame,column名稱為<年份>Q<季>, row名稱為指定財報項目
|
721
|
+
|
670
722
|
## 版本紀錄
|
723
|
+
## 0.0.15
|
724
|
+
- TechFetcher中新增指數條件
|
725
|
+
|
726
|
+
- 新增tej_fetcher索取TEJ相關的資料
|
727
|
+
|
728
|
+
- package新增depensnecy,可以安裝需要的相關package
|
729
|
+
|
730
|
+
## 0.0.14
|
731
|
+
- 修改部分財報資料錯誤的乘以1000的問題
|
732
|
+
|
733
|
+
- 新增例外處理: 若資料庫對於季資料一部分index缺失的情況下仍會盡可能去將資料蒐集並呈現
|
734
|
+
|
671
735
|
### 0.0.13
|
672
736
|
- value_fetcher 新增獲得一序列評價的功能
|
673
737
|
|
@@ -73,7 +73,7 @@ pip install neurostats-API
|
|
73
73
|
```Python
|
74
74
|
>>> import neurostats_API
|
75
75
|
>>> print(neurostats_API.__version__)
|
76
|
-
0.0.
|
76
|
+
0.0.15
|
77
77
|
```
|
78
78
|
|
79
79
|
### 得到最新一期的評價資料與歷年評價
|
@@ -657,7 +657,71 @@ fetcher.query()
|
|
657
657
|
|
658
658
|
請注意`range`, `last_range`, `52week_range`這三個項目型態為字串,其餘為float
|
659
659
|
|
660
|
+
|
661
|
+
## TEJ 相關
|
662
|
+
### 會計師簽證財務資料
|
663
|
+
```Python
|
664
|
+
from neurostats_API import FinanceReportFetcher
|
665
|
+
|
666
|
+
mongo_uri = <MongoDB 的 URI>
|
667
|
+
db_name = 'company' # 連接的DB名稱
|
668
|
+
collection_name = "TWN/AINVFQ1" # 連接的collection對象
|
669
|
+
|
670
|
+
fetcher = FinanceReportFetcher(
|
671
|
+
mongo_uri = mongo_uri,
|
672
|
+
db_name = db_name,
|
673
|
+
collection_name = collection_name
|
674
|
+
)
|
675
|
+
|
676
|
+
data = fetcher.get(
|
677
|
+
ticker = "2330" # 任意的股票代碼
|
678
|
+
fetch_mode = fetcher.YOY_NOCAL # 取得模式
|
679
|
+
start_date = "2005-01-01",
|
680
|
+
end_date = "2024-12-31",
|
681
|
+
report_type = "Q",
|
682
|
+
indexes = []
|
683
|
+
)
|
684
|
+
```
|
685
|
+
- `ticker`: 股票代碼
|
686
|
+
|
687
|
+
- `fetch_mode` : 取得模式,為`fetcher.YOY_NOCAL` 或 `fetcher.QOQ_NOCAL`
|
688
|
+
- `YOY_NOCAL`: 以end_date為準,取得與end_date為準同季的歷年資料,時間範圍以start_date為準
|
689
|
+
> 例如`start_date = "2020-07-01"`, `end_date = "2024-01-01"`,會回傳2020~2024的第一季資料
|
690
|
+
|
691
|
+
- `QOQ_NOCAL`: 時間範圍內的每季資料
|
692
|
+
|
693
|
+
- `start_date`: 開始日期,不設定時預設為`2005-01-01`
|
694
|
+
|
695
|
+
- `end_date`: 結束日期,不設定時預設為資料庫最新資料的日期
|
696
|
+
|
697
|
+
- `report_type`: 選擇哪種報告,預設為`Q`
|
698
|
+
- `A`: 當年累計
|
699
|
+
- `Q`: 當季數值
|
700
|
+
- `TTM`: 移動四季 (包括當季在內,往前累計四個季度)
|
701
|
+
|
702
|
+
- `indexes`: 選擇的column,需要以TEJ提供的欄位名稱為準,不提供時或提供`[]`會回傳全部column
|
703
|
+
- 範例輸入: `['bp41', 'bp51']`
|
704
|
+
|
705
|
+
[TEJ資料集連結](https://tquant.tejwin.com/%E8%B3%87%E6%96%99%E9%9B%86/)
|
706
|
+
請看 `會計師簽證財務資料`
|
707
|
+
|
708
|
+
#### 回傳資料
|
709
|
+
fetch_mode設定為`YOY_NOCAL`與`QOQ_NOCAL`下
|
710
|
+
為回傳pd.DataFrame,column名稱為<年份>Q<季>, row名稱為指定財報項目
|
711
|
+
|
660
712
|
## 版本紀錄
|
713
|
+
## 0.0.15
|
714
|
+
- TechFetcher中新增指數條件
|
715
|
+
|
716
|
+
- 新增tej_fetcher索取TEJ相關的資料
|
717
|
+
|
718
|
+
- package新增depensnecy,可以安裝需要的相關package
|
719
|
+
|
720
|
+
## 0.0.14
|
721
|
+
- 修改部分財報資料錯誤的乘以1000的問題
|
722
|
+
|
723
|
+
- 新增例外處理: 若資料庫對於季資料一部分index缺失的情況下仍會盡可能去將資料蒐集並呈現
|
724
|
+
|
661
725
|
### 0.0.13
|
662
726
|
- value_fetcher 新增獲得一序列評價的功能
|
663
727
|
|
@@ -2,6 +2,8 @@ from .base import StatsDateTime, StatsFetcher
|
|
2
2
|
from .balance_sheet import BalanceSheetFetcher
|
3
3
|
from .cash_flow import CashFlowFetcher
|
4
4
|
from .finance_overview import FinanceOverviewFetcher
|
5
|
+
from .tej_finance_report import FinanceReportFetcher
|
6
|
+
from .tech import TechFetcher
|
5
7
|
from .institution import InstitutionFetcher
|
6
8
|
from .margin_trading import MarginTradingFetcher
|
7
9
|
from .month_revenue import MonthRevenueFetcher
|
@@ -0,0 +1,152 @@
|
|
1
|
+
import abc
|
2
|
+
from pymongo import MongoClient
|
3
|
+
import pandas as pd
|
4
|
+
import json
|
5
|
+
import pytz
|
6
|
+
from datetime import datetime, timedelta, date
|
7
|
+
from ..utils import StatsDateTime, StatsProcessor, YoY_Calculator
|
8
|
+
import yaml
|
9
|
+
|
10
|
+
class StatsFetcher:
|
11
|
+
def __init__(self, ticker, db_client):
|
12
|
+
self.ticker = ticker
|
13
|
+
self.db = db_client["company"] # Replace with your database name
|
14
|
+
self.collection = self.db["twse_stats"]
|
15
|
+
|
16
|
+
self.timezone = pytz.timezone("Asia/Taipei")
|
17
|
+
|
18
|
+
self.target_metric_dict = {
|
19
|
+
'value': ['value'],
|
20
|
+
'value_and_percentage': ['value', 'percentage'],
|
21
|
+
'percentage': ['percentage'],
|
22
|
+
'grand_total': ['grand_total'],
|
23
|
+
'grand_total_values': ['grand_total', 'grand_total_percentage'],
|
24
|
+
'grand_total_percentage': ['grand_total_percentage'],
|
25
|
+
'growth': [f'YoY_{i}' for i in [1, 3, 5, 10]],
|
26
|
+
'grand_total_growth': [f"YoY_{i}" for i in [1, 3, 5, 10]]
|
27
|
+
}
|
28
|
+
|
29
|
+
|
30
|
+
def prepare_query(self):
|
31
|
+
return [
|
32
|
+
{
|
33
|
+
"$match": {
|
34
|
+
"ticker": self.ticker,
|
35
|
+
}
|
36
|
+
},
|
37
|
+
]
|
38
|
+
|
39
|
+
def collect_data(self, start_date, end_date):
|
40
|
+
pipeline = self.prepare_query()
|
41
|
+
|
42
|
+
fetched_data = list(self.collection.aggregate(pipeline))
|
43
|
+
|
44
|
+
return fetched_data[0]
|
45
|
+
|
46
|
+
def str_to_datetime(self, date_str):
|
47
|
+
year, month, day = [int(num) for num in date_str.split("-")]
|
48
|
+
|
49
|
+
date = datetime.strptime(date_str, "%Y-%m-%d")
|
50
|
+
date = self.timezone.localize(date)
|
51
|
+
|
52
|
+
season = (month - 1) // 3 + 1
|
53
|
+
|
54
|
+
return StatsDateTime(date, year, month, day, season)
|
55
|
+
|
56
|
+
class BaseTEJFetcher(abc.ABC):
|
57
|
+
def __init__(self):
|
58
|
+
self.client = None
|
59
|
+
self.db = None
|
60
|
+
self.collection = None
|
61
|
+
|
62
|
+
@abc.abstractmethod
|
63
|
+
def get(self):
|
64
|
+
pass
|
65
|
+
|
66
|
+
def get_latest_data_time(self, ticker):
|
67
|
+
latest_data = self.collection.find_one(
|
68
|
+
{"ticker": ticker},
|
69
|
+
{"last_update": 1, "_id" : 0}
|
70
|
+
)
|
71
|
+
|
72
|
+
try:
|
73
|
+
latest_date = latest_data['last_update']["latest_data_date"]
|
74
|
+
except Exception as e:
|
75
|
+
latest_date = None
|
76
|
+
|
77
|
+
return latest_date
|
78
|
+
|
79
|
+
def cal_YoY(self, data_dict: dict, start_year: int, end_year: int):
|
80
|
+
year_shifts = [1,3,5,10]
|
81
|
+
return_dict = {}
|
82
|
+
for year in range(start_year, end_year+1):
|
83
|
+
year_data = data_dict[str(year)]
|
84
|
+
year_keys = list(year_data.keys())
|
85
|
+
for key in year_keys:
|
86
|
+
if (key in 'season'):
|
87
|
+
continue
|
88
|
+
|
89
|
+
if (isinstance(year_data[key], (int, float))):
|
90
|
+
temp_dict = {"value": year_data[key]}
|
91
|
+
|
92
|
+
for shift in year_shifts:
|
93
|
+
this_value = year_data[key]
|
94
|
+
try:
|
95
|
+
past_year = str(year - shift)
|
96
|
+
last_value = data_dict[past_year][key]['value']
|
97
|
+
temp_dict[f"YoY_{shift}"] = YoY_Calculator.cal_growth(
|
98
|
+
this_value, last_value, delta = shift
|
99
|
+
)
|
100
|
+
except Exception as e:
|
101
|
+
temp_dict[f"YoY_{shift}"] = None
|
102
|
+
|
103
|
+
year_data[key] = temp_dict
|
104
|
+
|
105
|
+
else:
|
106
|
+
year_data.pop(key)
|
107
|
+
|
108
|
+
return_dict[year] = year_data
|
109
|
+
|
110
|
+
|
111
|
+
return return_dict
|
112
|
+
|
113
|
+
def cal_QoQ(self, data_dict):
|
114
|
+
return_dict = {}
|
115
|
+
for i, time_index in enumerate(data_dict.keys()):
|
116
|
+
year, season = time_index.split("Q")
|
117
|
+
year = int(year)
|
118
|
+
season = int(season)
|
119
|
+
if (season == 1):
|
120
|
+
last_year = year - 1
|
121
|
+
last_season = 4
|
122
|
+
else:
|
123
|
+
last_year = year
|
124
|
+
last_season = season - 1
|
125
|
+
|
126
|
+
this_data = data_dict[time_index]
|
127
|
+
this_keys = list(this_data.keys())
|
128
|
+
for key in this_keys:
|
129
|
+
if (key in 'season'):
|
130
|
+
continue
|
131
|
+
|
132
|
+
this_value = this_data[key]
|
133
|
+
|
134
|
+
if (isinstance(this_value, (int, float))):
|
135
|
+
temp_dict = {"value": this_value}
|
136
|
+
|
137
|
+
try:
|
138
|
+
last_value = data_dict[f"{last_year}Q{last_season}"][key]['value']
|
139
|
+
|
140
|
+
temp_dict['growth'] = YoY_Calculator.cal_growth(
|
141
|
+
this_value, last_value, delta=1
|
142
|
+
)
|
143
|
+
except Exception as e:
|
144
|
+
temp_dict['growth'] = None
|
145
|
+
|
146
|
+
this_data[key] = temp_dict
|
147
|
+
|
148
|
+
else:
|
149
|
+
this_data.pop(key)
|
150
|
+
return_dict[time_index] = this_data
|
151
|
+
return return_dict
|
152
|
+
|
@@ -164,25 +164,26 @@ class InstitutionFetcher(StatsFetcher):
|
|
164
164
|
latest_daily_data['volume'])
|
165
165
|
}
|
166
166
|
# 一年內法人
|
167
|
-
annual_dates = [
|
167
|
+
annual_dates = [
|
168
|
+
data['date'].strftime("%Y-%m-%d") for data in daily_datas
|
169
|
+
]
|
168
170
|
annual_closes = {
|
169
|
-
data['date'].strftime("%Y-%m-%d")
|
171
|
+
data['date'].strftime("%Y-%m-%d"): data['close']
|
170
172
|
for data in daily_datas
|
171
173
|
if (data['date'].strftime("%Y-%m-%d") in annual_dates)
|
172
174
|
}
|
173
175
|
annual_volumes = {
|
174
|
-
data['date'].strftime("%Y-%m-%d")
|
176
|
+
data['date'].strftime("%Y-%m-%d"): data['volume']
|
175
177
|
for data in daily_datas
|
176
178
|
if (data['date'].strftime("%Y-%m-%d") in annual_dates)
|
177
179
|
}
|
178
180
|
annual_trading = {
|
179
|
-
data['date'].strftime("%Y-%m-%d")
|
181
|
+
data['date'].strftime("%Y-%m-%d"): data
|
180
182
|
for data in institution_tradings
|
181
|
-
}
|
183
|
+
}
|
182
184
|
|
183
185
|
annual_trading = {
|
184
186
|
date: {
|
185
|
-
|
186
187
|
"close": annual_closes[date],
|
187
188
|
"volume": annual_volumes[date],
|
188
189
|
**annual_trading[date]
|
@@ -217,13 +218,18 @@ class InstitutionFetcher(StatsFetcher):
|
|
217
218
|
self.target_institution(latest_trading,
|
218
219
|
latest_table['institutional_investor'],
|
219
220
|
key, volume)
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
221
|
+
# 計算合計
|
222
|
+
for unit in ['stock', 'percentage']:
|
223
|
+
# 買進總和
|
224
|
+
latest_table['institutional_investor']['buy'][unit] = (
|
225
|
+
latest_table['foreign']['buy'][unit] +
|
226
|
+
latest_table['prop']['buy'][unit] +
|
227
|
+
latest_table['mutual']['buy'][unit])
|
228
|
+
# 賣出總和
|
229
|
+
latest_table['institutional_investor']['sell'][unit] = (
|
230
|
+
latest_table['foreign']['sell'][unit] +
|
231
|
+
latest_table['prop']['sell'][unit] +
|
232
|
+
latest_table['mutual']['sell'][unit])
|
227
233
|
|
228
234
|
frames = []
|
229
235
|
for category, trades in latest_table.items():
|
@@ -21,12 +21,6 @@ class ProfitLoseFetcher(StatsFetcher):
|
|
21
21
|
def prepare_query(self, target_season):
|
22
22
|
pipeline = super().prepare_query()
|
23
23
|
|
24
|
-
target_query = {
|
25
|
-
"year": "$$target_season_data.year",
|
26
|
-
"season": "$$target_season_data.season",
|
27
|
-
"balance_sheet": "$$$$target_season_data.balance_sheet"
|
28
|
-
}
|
29
|
-
|
30
24
|
pipeline.append({
|
31
25
|
"$project": {
|
32
26
|
"_id": 0,
|
@@ -121,6 +115,9 @@ class ProfitLoseFetcher(StatsFetcher):
|
|
121
115
|
elif ('YoY' in item_name):
|
122
116
|
if (isinstance(item, (float, int))):
|
123
117
|
item = StatsProcessor.cal_percentage(item)
|
118
|
+
elif ('每股盈餘' in index_name):
|
119
|
+
if (isinstance(item, (float, int))):
|
120
|
+
item = StatsProcessor.cal_non_percentage(item, postfix="元")
|
124
121
|
else:
|
125
122
|
if (isinstance(item, (float, int))):
|
126
123
|
item = StatsProcessor.cal_non_percentage(item, postfix="千元")
|
@@ -153,6 +150,9 @@ class ProfitLoseFetcher(StatsFetcher):
|
|
153
150
|
target_index=target_index)
|
154
151
|
break
|
155
152
|
except Exception as e:
|
156
|
-
|
153
|
+
return_dict[name] = StatsProcessor.slice_multi_col_table(
|
154
|
+
total_table=total_table,
|
155
|
+
mode=setting['mode'],
|
156
|
+
target_index=target_index)
|
157
157
|
|
158
158
|
return return_dict
|
@@ -1,9 +1,16 @@
|
|
1
1
|
from .base import StatsFetcher
|
2
2
|
import pandas as pd
|
3
|
+
import yfinance as yf
|
3
4
|
|
4
5
|
class TechFetcher(StatsFetcher):
|
5
6
|
|
6
7
|
def __init__(self, ticker:str, db_client):
|
8
|
+
|
9
|
+
"""
|
10
|
+
The Capitalization-Weighted Index includes the following tickers:
|
11
|
+
['GSPC', 'IXIC', 'DJI', 'TWII']
|
12
|
+
"""
|
13
|
+
|
7
14
|
super().__init__(ticker, db_client)
|
8
15
|
self.full_ohlcv = self._get_ohlcv()
|
9
16
|
self.basic_indexes = ['SMA5', 'SMA20', 'SMA60', 'EMA5', 'EMA20',
|
@@ -40,16 +47,36 @@ class TechFetcher(StatsFetcher):
|
|
40
47
|
)
|
41
48
|
|
42
49
|
def _get_ohlcv(self):
|
43
|
-
|
44
|
-
|
50
|
+
|
51
|
+
if self.ticker in ['GSPC', 'IXIC', 'DJI', 'TWII']:
|
52
|
+
|
53
|
+
full_tick = f'^{self.ticker}'
|
54
|
+
yf_ticker = yf.Ticker(full_tick)
|
55
|
+
origin_df = yf_ticker.history(period="10y")
|
56
|
+
origin_df = origin_df.reset_index()
|
57
|
+
origin_df["Date"] = pd.to_datetime(origin_df["Date"]).dt.date
|
58
|
+
df = origin_df.rename(
|
59
|
+
columns={
|
60
|
+
"Date": "date",
|
61
|
+
"Open": "open",
|
62
|
+
"High": "high",
|
63
|
+
"Low": "low",
|
64
|
+
"Close": "close",
|
65
|
+
"Volume": "volume"
|
66
|
+
}
|
67
|
+
)
|
68
|
+
else:
|
69
|
+
|
70
|
+
query = {'ticker': self.ticker}
|
71
|
+
ticker_full = list(self.collection.find(query))
|
45
72
|
|
46
|
-
|
47
|
-
|
73
|
+
if not ticker_full:
|
74
|
+
raise ValueError(f"No data found for ticker: {self.ticker}")
|
48
75
|
|
49
|
-
|
50
|
-
|
76
|
+
if 'daily_data' not in ticker_full[0] or ticker_full[0]['daily_data'] is None:
|
77
|
+
raise KeyError("Missing 'daily_data' in the retrieved data")
|
51
78
|
|
52
|
-
|
79
|
+
df = pd.DataFrame(ticker_full[0]['daily_data'])
|
53
80
|
|
54
81
|
selected_cols = ['date','open','high','low','close','volume']
|
55
82
|
|