neuromeka-vfm 0.1.4__tar.gz → 0.1.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (21) hide show
  1. {neuromeka_vfm-0.1.4/src/neuromeka_vfm.egg-info → neuromeka_vfm-0.1.5}/PKG-INFO +101 -2
  2. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/README.md +98 -1
  3. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/pyproject.toml +4 -2
  4. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/__init__.py +2 -0
  5. neuromeka_vfm-0.1.5/src/neuromeka_vfm/grasp_gen.py +79 -0
  6. neuromeka_vfm-0.1.5/src/neuromeka_vfm/point_cloud_utils.py +377 -0
  7. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/segmentation.py +54 -0
  8. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5/src/neuromeka_vfm.egg-info}/PKG-INFO +101 -2
  9. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm.egg-info/SOURCES.txt +2 -0
  10. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm.egg-info/requires.txt +2 -0
  11. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/LICENSE +0 -0
  12. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/setup.cfg +0 -0
  13. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/compression.py +0 -0
  14. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/examples/__init__.py +0 -0
  15. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/examples/pose_demo.py +0 -0
  16. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/pickle_client.py +0 -0
  17. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/pose_estimation.py +0 -0
  18. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm/upload_mesh.py +0 -0
  19. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm.egg-info/dependency_links.txt +0 -0
  20. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm.egg-info/entry_points.txt +0 -0
  21. {neuromeka_vfm-0.1.4 → neuromeka_vfm-0.1.5}/src/neuromeka_vfm.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: neuromeka_vfm
3
- Version: 0.1.4
3
+ Version: 0.1.5
4
4
  Summary: Client utilities for Neuromeka VFM FoundationPose RPC (upload meshes, call server)
5
5
  Author: Neuromeka
6
6
  License: MIT License
@@ -41,6 +41,8 @@ Requires-Dist: numpy
41
41
  Requires-Dist: pyzmq
42
42
  Requires-Dist: paramiko
43
43
  Requires-Dist: av
44
+ Requires-Dist: trimesh
45
+ Requires-Dist: tqdm
44
46
  Dynamic: license-file
45
47
 
46
48
  # neuromeka_vfm
@@ -89,12 +91,109 @@ seg.register_first_frame(frame=first_rgb,
89
91
  use_image_prompt=False)
90
92
 
91
93
  # 등록된 mask에 대한 SAM2 tracking
92
- masks = seg.get_next(next_rgb)
94
+ resp = seg.get_next(next_rgb)
95
+ if isinstance(resp, dict) and resp.get("result") == "ERROR":
96
+ print(f"Tracking error: {resp.get('message')}")
97
+ seg.reset()
98
+ else:
99
+ masks = resp
100
+
101
+ # Segmentation 설정/모델 선택 (nrmk_realtime_segmentation v0.2+)
102
+ caps = seg.get_capabilities()["data"]
103
+ current = seg.get_config()["data"]
104
+ seg.set_config(
105
+ {
106
+ "grounding_dino": {
107
+ "backbone": "Swin-B", # Swin-T | Swin-B
108
+ "box_threshold": 0.35,
109
+ "text_threshold": 0.25,
110
+ },
111
+ "dino_detection": {
112
+ "threshold": 0.5,
113
+ "target_multiplier": 25,
114
+ "img_multiplier": 50,
115
+ "background_threshold": -1.0,
116
+ "final_erosion_count": 10,
117
+ "segment_min_size": 20,
118
+ },
119
+ "sam2": {
120
+ "model": "facebook/sam2.1-hiera-large",
121
+ "use_legacy": False,
122
+ "compile": False,
123
+ "offload_state_to_cpu": False,
124
+ "offload_video_to_cpu": False,
125
+ },
126
+ }
127
+ )
128
+
129
+ # SAM2 object 제거 (v0.2+, use_legacy=False에서만 지원)
130
+ seg.remove_object("cup_0")
93
131
 
94
132
 
95
133
  seg.close()
96
134
  ```
97
135
 
136
+ #### Segmentation v0.2 설정 요약 (defaults/choices)
137
+ `seg.get_capabilities()` 결과는 서버 설정에 따라 달라질 수 있습니다. 아래는 v0.2 기본값입니다.
138
+ ```yaml
139
+ grounding_dino:
140
+ backbone:
141
+ choices:
142
+ - Swin-B
143
+ - Swin-T
144
+ default: Swin-T
145
+ box_threshold:
146
+ default: 0.35
147
+ min: 0.0
148
+ max: 1.0
149
+ text_threshold:
150
+ default: 0.25
151
+ min: 0.0
152
+ max: 1.0
153
+
154
+ dino_detection:
155
+ threshold:
156
+ default: 0.5
157
+ target_multiplier:
158
+ default: 25
159
+ img_multiplier:
160
+ default: 50
161
+ background_threshold:
162
+ default: -1.0
163
+ final_erosion_count:
164
+ default: 10
165
+ segment_min_size:
166
+ default: 20
167
+
168
+ sam2:
169
+ model:
170
+ choices:
171
+ - facebook/sam2-hiera-base-plus
172
+ - facebook/sam2-hiera-large
173
+ - facebook/sam2-hiera-small
174
+ - facebook/sam2-hiera-tiny
175
+ - facebook/sam2.1-hiera-base-plus
176
+ - facebook/sam2.1-hiera-large
177
+ - facebook/sam2.1-hiera-small
178
+ - facebook/sam2.1-hiera-tiny
179
+ default: facebook/sam2.1-hiera-large
180
+ use_legacy:
181
+ default: false
182
+ compile:
183
+ default: false
184
+ offload_state_to_cpu:
185
+ default: false
186
+ offload_video_to_cpu:
187
+ default: false
188
+ ```
189
+
190
+ #### Segmentation v0.2 주의사항/변경사항
191
+ - SAM2 VRAM 추정 실패 시 `seg.get_next()`가 `{"result":"ERROR"}`로 반환될 수 있으니 에러 처리 후 `reset`/재등록을 권장합니다.
192
+ - SAM2 `compile=True`는 첫 프레임 등록 및 `reset`이 느려질 수 있습니다.
193
+ - SAM2 CPU offloading은 `offload_state_to_cpu=True`와 `offload_video_to_cpu=True`를 함께 설정할 때 효과가 큽니다(legacy 모드에서는 `offload_video_to_cpu` 미지원).
194
+ - SAM2 `remove_object`는 `use_legacy=False`에서만 지원됩니다.
195
+ - GroundingDINO는 Swin-B 백본이 추가되었고, 프롬프트 토큰 병합 이슈가 수정되었습니다.
196
+
98
197
  ### Pose Estimation
99
198
 
100
199
  **Mesh 파일 업로드**: 등록/인식하고자 하는 mesh 파일 (stl)을 호스트PC의 '/opt/meshes/' 경로에 업로드 (직접 SSH 통해 파일을 옮겨도 됨)
@@ -44,12 +44,109 @@ seg.register_first_frame(frame=first_rgb,
44
44
  use_image_prompt=False)
45
45
 
46
46
  # 등록된 mask에 대한 SAM2 tracking
47
- masks = seg.get_next(next_rgb)
47
+ resp = seg.get_next(next_rgb)
48
+ if isinstance(resp, dict) and resp.get("result") == "ERROR":
49
+ print(f"Tracking error: {resp.get('message')}")
50
+ seg.reset()
51
+ else:
52
+ masks = resp
53
+
54
+ # Segmentation 설정/모델 선택 (nrmk_realtime_segmentation v0.2+)
55
+ caps = seg.get_capabilities()["data"]
56
+ current = seg.get_config()["data"]
57
+ seg.set_config(
58
+ {
59
+ "grounding_dino": {
60
+ "backbone": "Swin-B", # Swin-T | Swin-B
61
+ "box_threshold": 0.35,
62
+ "text_threshold": 0.25,
63
+ },
64
+ "dino_detection": {
65
+ "threshold": 0.5,
66
+ "target_multiplier": 25,
67
+ "img_multiplier": 50,
68
+ "background_threshold": -1.0,
69
+ "final_erosion_count": 10,
70
+ "segment_min_size": 20,
71
+ },
72
+ "sam2": {
73
+ "model": "facebook/sam2.1-hiera-large",
74
+ "use_legacy": False,
75
+ "compile": False,
76
+ "offload_state_to_cpu": False,
77
+ "offload_video_to_cpu": False,
78
+ },
79
+ }
80
+ )
81
+
82
+ # SAM2 object 제거 (v0.2+, use_legacy=False에서만 지원)
83
+ seg.remove_object("cup_0")
48
84
 
49
85
 
50
86
  seg.close()
51
87
  ```
52
88
 
89
+ #### Segmentation v0.2 설정 요약 (defaults/choices)
90
+ `seg.get_capabilities()` 결과는 서버 설정에 따라 달라질 수 있습니다. 아래는 v0.2 기본값입니다.
91
+ ```yaml
92
+ grounding_dino:
93
+ backbone:
94
+ choices:
95
+ - Swin-B
96
+ - Swin-T
97
+ default: Swin-T
98
+ box_threshold:
99
+ default: 0.35
100
+ min: 0.0
101
+ max: 1.0
102
+ text_threshold:
103
+ default: 0.25
104
+ min: 0.0
105
+ max: 1.0
106
+
107
+ dino_detection:
108
+ threshold:
109
+ default: 0.5
110
+ target_multiplier:
111
+ default: 25
112
+ img_multiplier:
113
+ default: 50
114
+ background_threshold:
115
+ default: -1.0
116
+ final_erosion_count:
117
+ default: 10
118
+ segment_min_size:
119
+ default: 20
120
+
121
+ sam2:
122
+ model:
123
+ choices:
124
+ - facebook/sam2-hiera-base-plus
125
+ - facebook/sam2-hiera-large
126
+ - facebook/sam2-hiera-small
127
+ - facebook/sam2-hiera-tiny
128
+ - facebook/sam2.1-hiera-base-plus
129
+ - facebook/sam2.1-hiera-large
130
+ - facebook/sam2.1-hiera-small
131
+ - facebook/sam2.1-hiera-tiny
132
+ default: facebook/sam2.1-hiera-large
133
+ use_legacy:
134
+ default: false
135
+ compile:
136
+ default: false
137
+ offload_state_to_cpu:
138
+ default: false
139
+ offload_video_to_cpu:
140
+ default: false
141
+ ```
142
+
143
+ #### Segmentation v0.2 주의사항/변경사항
144
+ - SAM2 VRAM 추정 실패 시 `seg.get_next()`가 `{"result":"ERROR"}`로 반환될 수 있으니 에러 처리 후 `reset`/재등록을 권장합니다.
145
+ - SAM2 `compile=True`는 첫 프레임 등록 및 `reset`이 느려질 수 있습니다.
146
+ - SAM2 CPU offloading은 `offload_state_to_cpu=True`와 `offload_video_to_cpu=True`를 함께 설정할 때 효과가 큽니다(legacy 모드에서는 `offload_video_to_cpu` 미지원).
147
+ - SAM2 `remove_object`는 `use_legacy=False`에서만 지원됩니다.
148
+ - GroundingDINO는 Swin-B 백본이 추가되었고, 프롬프트 토큰 병합 이슈가 수정되었습니다.
149
+
53
150
  ### Pose Estimation
54
151
 
55
152
  **Mesh 파일 업로드**: 등록/인식하고자 하는 mesh 파일 (stl)을 호스트PC의 '/opt/meshes/' 경로에 업로드 (직접 SSH 통해 파일을 옮겨도 됨)
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "neuromeka_vfm"
7
- version = "0.1.4"
7
+ version = "0.1.5"
8
8
  description = "Client utilities for Neuromeka VFM FoundationPose RPC (upload meshes, call server)"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.8"
@@ -13,7 +13,9 @@ dependencies = [
13
13
  "numpy",
14
14
  "pyzmq",
15
15
  "paramiko",
16
- "av",
16
+ "av",
17
+ "trimesh",
18
+ "tqdm",
17
19
  ]
18
20
  authors = [{name = "Neuromeka"}]
19
21
  classifiers = [
@@ -2,6 +2,7 @@ from .pose_estimation import PoseEstimation, FoundationPoseClient
2
2
  from .upload_mesh import upload_mesh
3
3
  from .segmentation import Segmentation, NrmkRealtimeSegmentation
4
4
  from .compression import STRATEGIES as SEGMENTATION_COMPRESSION_STRATEGIES
5
+ from .grasp_gen import GraspPoseGeneration
5
6
 
6
7
  __all__ = [
7
8
  "PoseEstimation",
@@ -10,4 +11,5 @@ __all__ = [
10
11
  "Segmentation",
11
12
  "NrmkRealtimeSegmentation",
12
13
  "SEGMENTATION_COMPRESSION_STRATEGIES",
14
+ "GraspPoseGeneration",
13
15
  ]
@@ -0,0 +1,79 @@
1
+ from typing import Tuple
2
+
3
+ import numpy as np
4
+ import trimesh
5
+
6
+ from . import point_cloud_utils
7
+
8
+
9
+ class GraspPoseGeneration:
10
+ """
11
+ Wrapper class for point cloud utilities used in grasp pose workflows.
12
+ """
13
+
14
+ def knn_points(self, X: np.ndarray, K: int, norm: int):
15
+ return point_cloud_utils.knn_points(X=X, K=K, norm=norm)
16
+
17
+ def point_cloud_outlier_removal(
18
+ self, obj_pc: np.ndarray, threshold: float = 0.014, K: int = 20
19
+ ) -> Tuple[np.ndarray, np.ndarray]:
20
+ return point_cloud_utils.point_cloud_outlier_removal(
21
+ obj_pc=obj_pc, threshold=threshold, K=K
22
+ )
23
+
24
+ def point_cloud_outlier_removal_with_color(
25
+ self,
26
+ obj_pc: np.ndarray,
27
+ obj_pc_color: np.ndarray,
28
+ threshold: float = 0.014,
29
+ K: int = 20,
30
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
31
+ return point_cloud_utils.point_cloud_outlier_removal_with_color(
32
+ obj_pc=obj_pc,
33
+ obj_pc_color=obj_pc_color,
34
+ threshold=threshold,
35
+ K=K,
36
+ )
37
+
38
+ def depth_and_segmentation_to_point_clouds(
39
+ self,
40
+ depth_image: np.ndarray,
41
+ segmentation_mask: np.ndarray,
42
+ fx: float,
43
+ fy: float,
44
+ cx: float,
45
+ cy: float,
46
+ rgb_image: np.ndarray = None,
47
+ target_object_id: int = 1,
48
+ remove_object_from_scene: bool = False,
49
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
50
+ return point_cloud_utils.depth_and_segmentation_to_point_clouds(
51
+ depth_image=depth_image,
52
+ segmentation_mask=segmentation_mask,
53
+ fx=fx,
54
+ fy=fy,
55
+ cx=cx,
56
+ cy=cy,
57
+ rgb_image=rgb_image,
58
+ target_object_id=target_object_id,
59
+ remove_object_from_scene=remove_object_from_scene,
60
+ )
61
+
62
+ def filter_colliding_grasps(
63
+ self,
64
+ scene_pc: np.ndarray,
65
+ grasp_poses: np.ndarray,
66
+ gripper_collision_mesh: trimesh.Trimesh,
67
+ collision_threshold: float = 0.002,
68
+ num_collision_samples: int = 2000,
69
+ ) -> np.ndarray:
70
+ return point_cloud_utils.filter_colliding_grasps(
71
+ scene_pc=scene_pc,
72
+ grasp_poses=grasp_poses,
73
+ gripper_collision_mesh=gripper_collision_mesh,
74
+ collision_threshold=collision_threshold,
75
+ num_collision_samples=num_collision_samples,
76
+ )
77
+
78
+
79
+ __all__ = ["GraspPoseGeneration"]
@@ -0,0 +1,377 @@
1
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import logging
10
+ from typing import Tuple, Dict
11
+
12
+ import numpy as np
13
+ import trimesh
14
+ import trimesh.transformations as tra
15
+ from tqdm import tqdm
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ def _pairwise_distances(X: np.ndarray, Y: np.ndarray, norm: int) -> np.ndarray:
21
+ if norm == 1:
22
+ return np.sum(np.abs(X[:, None, :] - Y[None, :, :]), axis=2)
23
+ if norm == 2:
24
+ diff = X[:, None, :] - Y[None, :, :]
25
+ return np.sqrt(np.sum(diff * diff, axis=2))
26
+ diff = X[:, None, :] - Y[None, :, :]
27
+ return np.linalg.norm(diff, ord=norm, axis=2)
28
+
29
+
30
+ def knn_points(X: np.ndarray, K: int, norm: int):
31
+ """
32
+ Computes the K-nearest neighbors for each point in the point cloud X.
33
+
34
+ Args:
35
+ X: (N, 3) array representing the point cloud.
36
+ K: Number of nearest neighbors.
37
+
38
+ Returns:
39
+ dists: (N, K) array containing distances to the K nearest neighbors.
40
+ idxs: (N, K) array containing indices of the K nearest neighbors.
41
+ """
42
+ X = np.asarray(X, dtype=np.float32)
43
+ if X.ndim != 2 or X.shape[1] != 3:
44
+ raise ValueError("X must be a (N, 3) array")
45
+ if K <= 0:
46
+ raise ValueError("K must be positive")
47
+ N, _ = X.shape
48
+ if K >= N:
49
+ raise ValueError("K must be smaller than number of points")
50
+
51
+ dists_out = np.empty((N, K), dtype=np.float32)
52
+ idxs_out = np.empty((N, K), dtype=np.int64)
53
+
54
+ max_bytes = 64 * 1024 * 1024
55
+ bytes_per_row = N * X.dtype.itemsize
56
+ chunk_size = max(1, min(N, max_bytes // max(bytes_per_row, 1)))
57
+
58
+ for start in range(0, N, chunk_size):
59
+ end = min(start + chunk_size, N)
60
+ chunk = X[start:end]
61
+ dist_matrix = _pairwise_distances(chunk, X, norm=norm)
62
+
63
+ row_idx = np.arange(end - start)
64
+ col_idx = row_idx + start
65
+ dist_matrix[row_idx, col_idx] = np.inf
66
+
67
+ idx_part = np.argpartition(dist_matrix, K, axis=1)[:, :K]
68
+ dist_part = np.take_along_axis(dist_matrix, idx_part, axis=1)
69
+ order = np.argsort(dist_part, axis=1)
70
+ idxs = np.take_along_axis(idx_part, order, axis=1)
71
+ dists = np.take_along_axis(dist_part, order, axis=1)
72
+
73
+ dists_out[start:end] = dists
74
+ idxs_out[start:end] = idxs
75
+
76
+ return dists_out, idxs_out
77
+
78
+
79
+ def point_cloud_outlier_removal(
80
+ obj_pc: np.ndarray, threshold: float = 0.014, K: int = 20
81
+ ) -> Tuple[np.ndarray, np.ndarray]:
82
+ """
83
+ Remove outliers from a point cloud. K-nearest neighbors is used to compute
84
+ the distance to the nearest neighbor for each point. If the distance is
85
+ greater than a threshold, the point is considered an outlier and removed.
86
+
87
+ Args:
88
+ obj_pc (np.ndarray): (N, 3) array representing the point cloud.
89
+ threshold (float): Distance threshold for outlier detection. Points with mean distance to
90
+ K nearest neighbors greater than this threshold are removed.
91
+ K (int): Number of nearest neighbors to consider for outlier detection.
92
+
93
+ Returns:
94
+ Tuple[np.ndarray, np.ndarray]: Tuple containing filtered and removed point clouds.
95
+ """
96
+ obj_pc = np.asarray(obj_pc, dtype=np.float32)
97
+ if obj_pc.ndim != 2 or obj_pc.shape[1] != 3:
98
+ raise ValueError("obj_pc must be a (N, 3) array")
99
+
100
+ nn_dists, _ = knn_points(obj_pc, K=K, norm=1)
101
+
102
+ mask = nn_dists.mean(axis=1) < threshold
103
+ filtered_pc = obj_pc[mask]
104
+ removed_pc = obj_pc[~mask]
105
+
106
+ logger.info(
107
+ "Removed %s points from point cloud",
108
+ obj_pc.shape[0] - filtered_pc.shape[0],
109
+ )
110
+ return filtered_pc, removed_pc
111
+
112
+
113
+ def point_cloud_outlier_removal_with_color(
114
+ obj_pc: np.ndarray,
115
+ obj_pc_color: np.ndarray,
116
+ threshold: float = 0.014,
117
+ K: int = 20,
118
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
119
+ """
120
+ Remove outliers from a point cloud with colors.
121
+
122
+ Args:
123
+ obj_pc (np.ndarray): (N, 3) array representing the point cloud.
124
+ obj_pc_color (np.ndarray): (N, 3) array representing the point cloud color.
125
+ threshold (float): Distance threshold for outlier detection. Points with mean distance to
126
+ K nearest neighbors greater than this threshold are removed.
127
+ K (int): Number of nearest neighbors to consider for outlier detection.
128
+
129
+ Returns:
130
+ Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: Tuple containing filtered and
131
+ removed point clouds and colors.
132
+ """
133
+ obj_pc = np.asarray(obj_pc, dtype=np.float32)
134
+ obj_pc_color = np.asarray(obj_pc_color, dtype=np.float32)
135
+ if obj_pc.ndim != 2 or obj_pc.shape[1] != 3:
136
+ raise ValueError("obj_pc must be a (N, 3) array")
137
+ if obj_pc_color.shape != obj_pc.shape:
138
+ raise ValueError("obj_pc_color must match obj_pc shape")
139
+
140
+ nn_dists, _ = knn_points(obj_pc, K=K, norm=1)
141
+
142
+ mask = nn_dists.mean(axis=1) < threshold
143
+ filtered_pc = obj_pc[mask]
144
+ removed_pc = obj_pc[~mask]
145
+
146
+ filtered_pc_color = obj_pc_color[mask]
147
+ removed_pc_color = obj_pc_color[~mask]
148
+
149
+ logger.info(
150
+ "Removed %s points from point cloud",
151
+ obj_pc.shape[0] - filtered_pc.shape[0],
152
+ )
153
+ return filtered_pc, removed_pc, filtered_pc_color, removed_pc_color
154
+
155
+
156
+ def depth2points(
157
+ depth: np.array,
158
+ fx: int,
159
+ fy: int,
160
+ cx: int,
161
+ cy: int,
162
+ xmap: np.array = None,
163
+ ymap: np.array = None,
164
+ rgb: np.array = None,
165
+ seg: np.array = None,
166
+ mask: np.arange = None,
167
+ ) -> Dict:
168
+ """Compute point cloud from a depth image."""
169
+ if rgb is not None:
170
+ assert rgb.shape[0] == depth.shape[0] and rgb.shape[1] == depth.shape[1]
171
+ if xmap is not None:
172
+ assert xmap.shape[0] == depth.shape[0] and xmap.shape[1] == depth.shape[1]
173
+ if ymap is not None:
174
+ assert ymap.shape[0] == depth.shape[0] and ymap.shape[1] == depth.shape[1]
175
+
176
+ im_height, im_width = depth.shape[0], depth.shape[1]
177
+
178
+ if xmap is None or ymap is None:
179
+ ww = np.linspace(0, im_width - 1, im_width)
180
+ hh = np.linspace(0, im_height - 1, im_height)
181
+ xmap, ymap = np.meshgrid(ww, hh)
182
+
183
+ pt2 = depth
184
+ pt0 = (xmap - cx) * pt2 / fx
185
+ pt1 = (ymap - cy) * pt2 / fy
186
+
187
+ mask_depth = np.ma.getmaskarray(np.ma.masked_greater(pt2, 0))
188
+ if mask is None:
189
+ mask = mask_depth
190
+ else:
191
+ mask_semantic = np.ma.getmaskarray(np.ma.masked_equal(mask, 1))
192
+ mask = mask_depth * mask_semantic
193
+
194
+ index = mask.flatten().nonzero()[0]
195
+
196
+ pt2_valid = pt2.flatten()[:, np.newaxis].astype(np.float32)
197
+ pt0_valid = pt0.flatten()[:, np.newaxis].astype(np.float32)
198
+ pt1_valid = pt1.flatten()[:, np.newaxis].astype(np.float32)
199
+ pc_xyz = np.concatenate((pt0_valid, pt1_valid, pt2_valid), axis=1)
200
+ if rgb is not None:
201
+ r = rgb[:, :, 0].flatten()[:, np.newaxis]
202
+ g = rgb[:, :, 1].flatten()[:, np.newaxis]
203
+ b = rgb[:, :, 2].flatten()[:, np.newaxis]
204
+ pc_rgb = np.concatenate((r, g, b), axis=1)
205
+ else:
206
+ pc_rgb = None
207
+
208
+ if seg is not None:
209
+ pc_seg = seg.flatten()[:, np.newaxis]
210
+ else:
211
+ pc_seg = None
212
+
213
+ return {"xyz": pc_xyz, "rgb": pc_rgb, "seg": pc_seg, "index": index}
214
+
215
+
216
+ def depth_and_segmentation_to_point_clouds(
217
+ depth_image: np.ndarray,
218
+ segmentation_mask: np.ndarray,
219
+ fx: float,
220
+ fy: float,
221
+ cx: float,
222
+ cy: float,
223
+ rgb_image: np.ndarray = None,
224
+ target_object_id: int = 1,
225
+ remove_object_from_scene: bool = False,
226
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
227
+ """
228
+ Convert depth image and instance segmentation mask to scene and object point clouds.
229
+
230
+ Args:
231
+ depth_image: HxW depth image in meters
232
+ segmentation_mask: HxW instance segmentation mask with integer labels
233
+ fx, fy, cx, cy: Camera intrinsic parameters
234
+ rgb_image: HxWx3 RGB image (optional, for colored point clouds)
235
+ target_object_id: ID of the target object in the segmentation mask
236
+ remove_object_from_scene: If True, removes object points from scene point cloud
237
+
238
+ Returns:
239
+ scene_pc: Nx3 point cloud of the entire scene (excluding object if remove_object_from_scene=True)
240
+ object_pc: Mx3 point cloud of the target object only
241
+ scene_colors: Nx3 RGB colors for scene points (or None)
242
+ object_colors: Mx3 RGB colors for object points (or None)
243
+
244
+ Raises:
245
+ ValueError: If no target object found or multiple objects detected
246
+ """
247
+ unique_ids = np.unique(segmentation_mask)
248
+ if target_object_id not in unique_ids:
249
+ raise ValueError(
250
+ f"Target object ID {target_object_id} not found in segmentation mask. Available IDs: {unique_ids}"
251
+ )
252
+
253
+ non_background_ids = unique_ids[unique_ids != 0]
254
+ if len(non_background_ids) > 1:
255
+ raise ValueError(
256
+ "Multiple objects detected in segmentation mask: "
257
+ f"{non_background_ids}. Please ensure only one object is present."
258
+ )
259
+
260
+ pts_data = depth2points(
261
+ depth=depth_image,
262
+ fx=int(fx),
263
+ fy=int(fy),
264
+ cx=int(cx),
265
+ cy=int(cy),
266
+ rgb=rgb_image,
267
+ seg=segmentation_mask,
268
+ )
269
+
270
+ xyz = pts_data["xyz"]
271
+ rgb = pts_data["rgb"]
272
+ seg = pts_data["seg"]
273
+ index = pts_data["index"]
274
+
275
+ xyz_valid = xyz[index]
276
+ seg_valid = seg[index] if seg is not None else None
277
+ rgb_valid = rgb[index] if rgb is not None else None
278
+
279
+ scene_pc = xyz_valid
280
+ scene_colors = rgb_valid
281
+
282
+ if seg_valid is not None:
283
+ object_mask = seg_valid.flatten() == target_object_id
284
+ object_pc = xyz_valid[object_mask]
285
+ object_colors = rgb_valid[object_mask] if rgb_valid is not None else None
286
+
287
+ if remove_object_from_scene:
288
+ scene_mask = ~object_mask
289
+ scene_pc = xyz_valid[scene_mask]
290
+ scene_colors = rgb_valid[scene_mask] if rgb_valid is not None else None
291
+ logger.info(
292
+ "Removed %s object points from scene point cloud",
293
+ np.sum(object_mask),
294
+ )
295
+ else:
296
+ raise ValueError("Segmentation data not available from depth2points")
297
+
298
+ if len(object_pc) == 0:
299
+ raise ValueError(f"No points found for target object ID {target_object_id}")
300
+
301
+ logger.info("Scene point cloud: %s points", len(scene_pc))
302
+ logger.info("Object point cloud: %s points", len(object_pc))
303
+
304
+ return scene_pc, object_pc, scene_colors, object_colors
305
+
306
+
307
+ def filter_colliding_grasps(
308
+ scene_pc: np.ndarray,
309
+ grasp_poses: np.ndarray,
310
+ gripper_collision_mesh: trimesh.Trimesh,
311
+ collision_threshold: float = 0.002,
312
+ num_collision_samples: int = 2000,
313
+ ) -> np.ndarray:
314
+ """
315
+ Filter grasps based on collision detection with scene point cloud.
316
+
317
+ Args:
318
+ scene_pc: Nx3 scene point cloud
319
+ grasp_poses: Kx4x4 array of grasp poses
320
+ gripper_collision_mesh: Trimesh of gripper collision geometry
321
+ collision_threshold: Distance threshold for collision detection (meters)
322
+ num_collision_samples: Number of points to sample from gripper mesh surface
323
+
324
+ Returns:
325
+ collision_mask: K-length boolean array, True if grasp is collision-free
326
+ """
327
+ gripper_surface_points, _ = trimesh.sample.sample_surface(
328
+ gripper_collision_mesh, num_collision_samples
329
+ )
330
+ gripper_surface_points = np.array(gripper_surface_points)
331
+
332
+ scene_pc = np.asarray(scene_pc, dtype=np.float32)
333
+ collision_free_mask = []
334
+
335
+ logger.info(
336
+ "Checking collision for %s grasps against %s scene points...",
337
+ len(grasp_poses),
338
+ len(scene_pc),
339
+ )
340
+
341
+ for _, grasp_pose in tqdm(
342
+ enumerate(grasp_poses), total=len(grasp_poses), desc="Collision checking"
343
+ ):
344
+ gripper_points_transformed = tra.transform_points(
345
+ gripper_surface_points, grasp_pose
346
+ ).astype(np.float32, copy=False)
347
+
348
+ min_distances_sq = []
349
+ batch_size = 100
350
+ for j in range(0, len(gripper_points_transformed), batch_size):
351
+ batch_gripper_points = gripper_points_transformed[j : j + batch_size]
352
+ diff = batch_gripper_points[:, None, :] - scene_pc[None, :, :]
353
+ dist_sq = np.einsum("ijk,ijk->ij", diff, diff)
354
+ batch_min_dist_sq = np.min(dist_sq, axis=1)
355
+ min_distances_sq.append(batch_min_dist_sq)
356
+
357
+ all_min_distances_sq = np.concatenate(min_distances_sq, axis=0)
358
+ collision_detected = np.any(
359
+ all_min_distances_sq < collision_threshold * collision_threshold
360
+ )
361
+ collision_free_mask.append(not bool(collision_detected))
362
+
363
+ collision_free_mask = np.array(collision_free_mask)
364
+ num_collision_free = np.sum(collision_free_mask)
365
+ logger.info("Found %s/%s collision-free grasps", num_collision_free, len(grasp_poses))
366
+
367
+ return collision_free_mask
368
+
369
+
370
+ __all__ = [
371
+ "knn_points",
372
+ "point_cloud_outlier_removal",
373
+ "point_cloud_outlier_removal_with_color",
374
+ "depth2points",
375
+ "depth_and_segmentation_to_point_clouds",
376
+ "filter_colliding_grasps",
377
+ ]
@@ -16,6 +16,7 @@ class Segmentation:
16
16
  self.client = PickleClient(hostname, port)
17
17
  self.tracking_object_ids = []
18
18
  self.current_frame_masks = {}
19
+ self.invisible_object_ids = []
19
20
  self.image_prompt_names = set()
20
21
  if compression_strategy in STRATEGIES:
21
22
  self.compression_strategy_name = compression_strategy
@@ -51,14 +52,28 @@ class Segmentation:
51
52
  else:
52
53
  raise ValueError(f"Only valid compression strategies are {list(STRATEGIES.keys())}")
53
54
 
55
+ def set_config(self, config):
56
+ data = {"operation": "set_config", "config": config}
57
+ return self.client.send_data(data)
58
+
59
+ def get_capabilities(self):
60
+ data = {"operation": "get_capabilities"}
61
+ return self.client.send_data(data)
62
+
63
+ def get_config(self):
64
+ data = {"operation": "get_config"}
65
+ return self.client.send_data(data)
66
+
54
67
  def reset(self):
55
68
  self.first_frame_registered = False
56
69
  self.tracking_object_ids = []
57
70
  self.current_frame_masks = {}
71
+ self.invisible_object_ids = []
58
72
  self.encoder = None
59
73
  if self.benchmark:
60
74
  self.call_time = {"add_image_prompt": 0, "register_first_frame": 0, "get_next": 0}
61
75
  self.call_count = {"add_image_prompt": 0, "register_first_frame": 0, "get_next": 0}
76
+ self.client.send_data({"operation": "reset"})
62
77
 
63
78
  def add_image_prompt(self, object_name, object_image):
64
79
  if self.benchmark:
@@ -100,6 +115,9 @@ class Segmentation:
100
115
  if np.any(mask):
101
116
  masks[obj_id] = mask
102
117
  self.current_frame_masks = masks
118
+ self.invisible_object_ids = [
119
+ obj_id for obj_id in self.tracking_object_ids if obj_id not in masks
120
+ ]
103
121
  if self.benchmark:
104
122
  self.call_time["register_first_frame"] += time.time() - start
105
123
  self.call_count["register_first_frame"] += 1
@@ -124,21 +142,57 @@ class Segmentation:
124
142
  if np.any(mask):
125
143
  masks[obj_id] = mask
126
144
  self.current_frame_masks = masks
145
+ self.invisible_object_ids = [
146
+ obj_id for obj_id in self.tracking_object_ids if obj_id not in masks
147
+ ]
127
148
  if self.benchmark:
128
149
  self.call_time["get_next"] += time.time() - start
129
150
  self.call_count["get_next"] += 1
130
151
  return masks
152
+ if isinstance(response, dict) and any(
153
+ key in response for key in ("result", "status", "success", "message")
154
+ ):
155
+ if self.benchmark:
156
+ self.call_time["get_next"] += time.time() - start
157
+ self.call_count["get_next"] += 1
158
+ return response
131
159
  if self.benchmark:
132
160
  self.call_time["get_next"] += time.time() - start
133
161
  self.call_count["get_next"] += 1
134
162
  return None
135
163
 
164
+ def remove_object(self, obj_id, strict=False, need_output=False):
165
+ if not self.first_frame_registered:
166
+ print("Segmentation: register_first_frame must be called first")
167
+ return None
168
+ data = {
169
+ "operation": "remove_object",
170
+ "obj_id": obj_id,
171
+ "strict": strict,
172
+ "need_output": need_output,
173
+ }
174
+ response = self.client.send_data(data)
175
+ if self._is_success(response):
176
+ obj_ids = response.get("data", {}).get("obj_ids")
177
+ if obj_ids is not None:
178
+ self.tracking_object_ids = obj_ids
179
+ self.current_frame_masks = {
180
+ obj_id: mask
181
+ for obj_id, mask in self.current_frame_masks.items()
182
+ if obj_id in obj_ids
183
+ }
184
+ self.invisible_object_ids = [
185
+ obj_id for obj_id in obj_ids if obj_id not in self.current_frame_masks
186
+ ]
187
+ return response
188
+
136
189
  def finish(self):
137
190
  if not self.first_frame_registered:
138
191
  print("Warning: Segmentation: register_first_frame must be called first")
139
192
  self.first_frame_registered = False
140
193
  self.tracking_object_ids = []
141
194
  self.current_frame_masks = {}
195
+ self.invisible_object_ids = []
142
196
 
143
197
  def close(self):
144
198
  """Close underlying ZeroMQ socket/context."""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: neuromeka_vfm
3
- Version: 0.1.4
3
+ Version: 0.1.5
4
4
  Summary: Client utilities for Neuromeka VFM FoundationPose RPC (upload meshes, call server)
5
5
  Author: Neuromeka
6
6
  License: MIT License
@@ -41,6 +41,8 @@ Requires-Dist: numpy
41
41
  Requires-Dist: pyzmq
42
42
  Requires-Dist: paramiko
43
43
  Requires-Dist: av
44
+ Requires-Dist: trimesh
45
+ Requires-Dist: tqdm
44
46
  Dynamic: license-file
45
47
 
46
48
  # neuromeka_vfm
@@ -89,12 +91,109 @@ seg.register_first_frame(frame=first_rgb,
89
91
  use_image_prompt=False)
90
92
 
91
93
  # 등록된 mask에 대한 SAM2 tracking
92
- masks = seg.get_next(next_rgb)
94
+ resp = seg.get_next(next_rgb)
95
+ if isinstance(resp, dict) and resp.get("result") == "ERROR":
96
+ print(f"Tracking error: {resp.get('message')}")
97
+ seg.reset()
98
+ else:
99
+ masks = resp
100
+
101
+ # Segmentation 설정/모델 선택 (nrmk_realtime_segmentation v0.2+)
102
+ caps = seg.get_capabilities()["data"]
103
+ current = seg.get_config()["data"]
104
+ seg.set_config(
105
+ {
106
+ "grounding_dino": {
107
+ "backbone": "Swin-B", # Swin-T | Swin-B
108
+ "box_threshold": 0.35,
109
+ "text_threshold": 0.25,
110
+ },
111
+ "dino_detection": {
112
+ "threshold": 0.5,
113
+ "target_multiplier": 25,
114
+ "img_multiplier": 50,
115
+ "background_threshold": -1.0,
116
+ "final_erosion_count": 10,
117
+ "segment_min_size": 20,
118
+ },
119
+ "sam2": {
120
+ "model": "facebook/sam2.1-hiera-large",
121
+ "use_legacy": False,
122
+ "compile": False,
123
+ "offload_state_to_cpu": False,
124
+ "offload_video_to_cpu": False,
125
+ },
126
+ }
127
+ )
128
+
129
+ # SAM2 object 제거 (v0.2+, use_legacy=False에서만 지원)
130
+ seg.remove_object("cup_0")
93
131
 
94
132
 
95
133
  seg.close()
96
134
  ```
97
135
 
136
+ #### Segmentation v0.2 설정 요약 (defaults/choices)
137
+ `seg.get_capabilities()` 결과는 서버 설정에 따라 달라질 수 있습니다. 아래는 v0.2 기본값입니다.
138
+ ```yaml
139
+ grounding_dino:
140
+ backbone:
141
+ choices:
142
+ - Swin-B
143
+ - Swin-T
144
+ default: Swin-T
145
+ box_threshold:
146
+ default: 0.35
147
+ min: 0.0
148
+ max: 1.0
149
+ text_threshold:
150
+ default: 0.25
151
+ min: 0.0
152
+ max: 1.0
153
+
154
+ dino_detection:
155
+ threshold:
156
+ default: 0.5
157
+ target_multiplier:
158
+ default: 25
159
+ img_multiplier:
160
+ default: 50
161
+ background_threshold:
162
+ default: -1.0
163
+ final_erosion_count:
164
+ default: 10
165
+ segment_min_size:
166
+ default: 20
167
+
168
+ sam2:
169
+ model:
170
+ choices:
171
+ - facebook/sam2-hiera-base-plus
172
+ - facebook/sam2-hiera-large
173
+ - facebook/sam2-hiera-small
174
+ - facebook/sam2-hiera-tiny
175
+ - facebook/sam2.1-hiera-base-plus
176
+ - facebook/sam2.1-hiera-large
177
+ - facebook/sam2.1-hiera-small
178
+ - facebook/sam2.1-hiera-tiny
179
+ default: facebook/sam2.1-hiera-large
180
+ use_legacy:
181
+ default: false
182
+ compile:
183
+ default: false
184
+ offload_state_to_cpu:
185
+ default: false
186
+ offload_video_to_cpu:
187
+ default: false
188
+ ```
189
+
190
+ #### Segmentation v0.2 주의사항/변경사항
191
+ - SAM2 VRAM 추정 실패 시 `seg.get_next()`가 `{"result":"ERROR"}`로 반환될 수 있으니 에러 처리 후 `reset`/재등록을 권장합니다.
192
+ - SAM2 `compile=True`는 첫 프레임 등록 및 `reset`이 느려질 수 있습니다.
193
+ - SAM2 CPU offloading은 `offload_state_to_cpu=True`와 `offload_video_to_cpu=True`를 함께 설정할 때 효과가 큽니다(legacy 모드에서는 `offload_video_to_cpu` 미지원).
194
+ - SAM2 `remove_object`는 `use_legacy=False`에서만 지원됩니다.
195
+ - GroundingDINO는 Swin-B 백본이 추가되었고, 프롬프트 토큰 병합 이슈가 수정되었습니다.
196
+
98
197
  ### Pose Estimation
99
198
 
100
199
  **Mesh 파일 업로드**: 등록/인식하고자 하는 mesh 파일 (stl)을 호스트PC의 '/opt/meshes/' 경로에 업로드 (직접 SSH 통해 파일을 옮겨도 됨)
@@ -3,7 +3,9 @@ README.md
3
3
  pyproject.toml
4
4
  src/neuromeka_vfm/__init__.py
5
5
  src/neuromeka_vfm/compression.py
6
+ src/neuromeka_vfm/grasp_gen.py
6
7
  src/neuromeka_vfm/pickle_client.py
8
+ src/neuromeka_vfm/point_cloud_utils.py
7
9
  src/neuromeka_vfm/pose_estimation.py
8
10
  src/neuromeka_vfm/segmentation.py
9
11
  src/neuromeka_vfm/upload_mesh.py
@@ -2,3 +2,5 @@ numpy
2
2
  pyzmq
3
3
  paramiko
4
4
  av
5
+ trimesh
6
+ tqdm
File without changes
File without changes