nettracer3d 1.0.1__tar.gz → 1.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nettracer3d-1.0.1/src/nettracer3d.egg-info → nettracer3d-1.0.2}/PKG-INFO +4 -3
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/README.md +3 -2
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/pyproject.toml +1 -1
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/neighborhoods.py +145 -36
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/nettracer.py +14 -2
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/nettracer_gui.py +328 -18
- {nettracer3d-1.0.1 → nettracer3d-1.0.2/src/nettracer3d.egg-info}/PKG-INFO +4 -3
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/LICENSE +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/setup.cfg +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/__init__.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/cellpose_manager.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/community_extractor.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/excelotron.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/modularity.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/morphology.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/network_analysis.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/network_draw.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/node_draw.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/painting.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/proximity.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/run.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/segmenter.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/segmenter_GPU.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/simple_network.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d/smart_dilate.py +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d.egg-info/SOURCES.txt +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d.egg-info/dependency_links.txt +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d.egg-info/entry_points.txt +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d.egg-info/requires.txt +0 -0
- {nettracer3d-1.0.1 → nettracer3d-1.0.2}/src/nettracer3d.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nettracer3d
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.2
|
|
4
4
|
Summary: Scripts for intializing and analyzing networks from segmentations of three dimensional images.
|
|
5
5
|
Author-email: Liam McLaughlin <liamm@wustl.edu>
|
|
6
6
|
Project-URL: Documentation, https://nettracer3d.readthedocs.io/en/latest/
|
|
@@ -110,6 +110,7 @@ McLaughlin, L., Zhang, B., Sharma, S. et al. Three dimensional multiscalar neuro
|
|
|
110
110
|
|
|
111
111
|
NetTracer3D was developed by Liam McLaughlin while working under Dr. Sanjay Jain at Washington University School of Medicine.
|
|
112
112
|
|
|
113
|
-
-- Version 1.0.
|
|
113
|
+
-- Version 1.0.2 Updates --
|
|
114
114
|
|
|
115
|
-
*
|
|
115
|
+
* Minor fixes
|
|
116
|
+
* Added ability to generate violin plots using the table generated from merging node identities, showing the relative expression of markers for multiple channels for the nodes belonging to some channel or community/neighborhood
|
|
@@ -65,6 +65,7 @@ McLaughlin, L., Zhang, B., Sharma, S. et al. Three dimensional multiscalar neuro
|
|
|
65
65
|
|
|
66
66
|
NetTracer3D was developed by Liam McLaughlin while working under Dr. Sanjay Jain at Washington University School of Medicine.
|
|
67
67
|
|
|
68
|
-
-- Version 1.0.
|
|
68
|
+
-- Version 1.0.2 Updates --
|
|
69
69
|
|
|
70
|
-
*
|
|
70
|
+
* Minor fixes
|
|
71
|
+
* Added ability to generate violin plots using the table generated from merging node identities, showing the relative expression of markers for multiple channels for the nodes belonging to some channel or community/neighborhood
|
|
@@ -8,7 +8,8 @@ from matplotlib.colors import LinearSegmentedColormap
|
|
|
8
8
|
from sklearn.cluster import DBSCAN
|
|
9
9
|
from sklearn.neighbors import NearestNeighbors
|
|
10
10
|
import matplotlib.colors as mcolors
|
|
11
|
-
|
|
11
|
+
from collections import Counter
|
|
12
|
+
from . import community_extractor
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
import os
|
|
@@ -992,60 +993,63 @@ def create_node_heatmap(node_intensity, node_centroids, shape=None, is_3d=True,
|
|
|
992
993
|
node_to_intensity[node_id] = node_intensity_clean[node_id]
|
|
993
994
|
|
|
994
995
|
# Create colormap function (RdBu_r - red for high, blue for low, yellow/white for middle)
|
|
995
|
-
def
|
|
996
|
-
"""Convert intensity value to
|
|
996
|
+
def intensity_to_rgba(intensity, min_val, max_val):
|
|
997
|
+
"""Convert intensity value to RGBA using RdBu_r colormap logic, centered at 0"""
|
|
997
998
|
|
|
998
999
|
# Handle edge case where all values are the same
|
|
999
1000
|
if max_val == min_val:
|
|
1000
1001
|
if intensity == 0:
|
|
1001
|
-
return np.array([255, 255, 255], dtype=np.uint8) #
|
|
1002
|
+
return np.array([255, 255, 255, 0], dtype=np.uint8) # Transparent white for 0
|
|
1002
1003
|
elif intensity > 0:
|
|
1003
|
-
return np.array([255, 200, 200], dtype=np.uint8) #
|
|
1004
|
+
return np.array([255, 200, 200, 255], dtype=np.uint8) # Opaque light red for positive
|
|
1004
1005
|
else:
|
|
1005
|
-
return np.array([200, 200, 255], dtype=np.uint8) #
|
|
1006
|
+
return np.array([200, 200, 255, 255], dtype=np.uint8) # Opaque light blue for negative
|
|
1006
1007
|
|
|
1007
1008
|
# Find the maximum absolute value for symmetric scaling around 0
|
|
1008
1009
|
max_abs = max(abs(min_val), abs(max_val))
|
|
1009
1010
|
|
|
1010
|
-
# If max_abs is 0, everything is 0, so return
|
|
1011
|
+
# If max_abs is 0, everything is 0, so return transparent
|
|
1011
1012
|
if max_abs == 0:
|
|
1012
|
-
return np.array([255, 255, 255], dtype=np.uint8) #
|
|
1013
|
+
return np.array([255, 255, 255, 0], dtype=np.uint8) # Transparent white
|
|
1013
1014
|
|
|
1014
1015
|
# Normalize intensity to -1 to 1 range, centered at 0
|
|
1015
1016
|
normalized = intensity / max_abs
|
|
1016
1017
|
normalized = np.clip(normalized, -1, 1)
|
|
1017
1018
|
|
|
1018
1019
|
if normalized > 0:
|
|
1019
|
-
# Positive values: white to red (intensity 0 =
|
|
1020
|
+
# Positive values: white to red (intensity 0 = transparent, max positive = red)
|
|
1020
1021
|
r = 255
|
|
1021
1022
|
g = int(255 * (1 - normalized))
|
|
1022
1023
|
b = int(255 * (1 - normalized))
|
|
1024
|
+
alpha = 255 # Fully opaque for all non-zero values
|
|
1023
1025
|
elif normalized < 0:
|
|
1024
|
-
# Negative values: white to blue (intensity 0 =
|
|
1026
|
+
# Negative values: white to blue (intensity 0 = transparent, max negative = blue)
|
|
1025
1027
|
r = int(255 * (1 + normalized))
|
|
1026
1028
|
g = int(255 * (1 + normalized))
|
|
1027
1029
|
b = 255
|
|
1030
|
+
alpha = 255 # Fully opaque for all non-zero values
|
|
1028
1031
|
else:
|
|
1029
|
-
# Exactly 0:
|
|
1030
|
-
r, g, b = 255, 255, 255
|
|
1032
|
+
# Exactly 0: transparent
|
|
1033
|
+
r, g, b, alpha = 255, 255, 255, 0
|
|
1031
1034
|
|
|
1032
|
-
return np.array([r, g, b], dtype=np.uint8)
|
|
1033
|
-
|
|
1034
|
-
#
|
|
1035
|
+
return np.array([r, g, b, alpha], dtype=np.uint8)
|
|
1036
|
+
|
|
1037
|
+
# Modified usage in your main function:
|
|
1038
|
+
# Create lookup table for RGBA colors (note the 4 channels now)
|
|
1035
1039
|
max_label = max(max(labeled_array.flat), max(node_to_intensity.keys()) if node_to_intensity else 0)
|
|
1036
|
-
color_lut = np.zeros((max_label + 1,
|
|
1037
|
-
|
|
1038
|
-
# Fill lookup table with
|
|
1040
|
+
color_lut = np.zeros((max_label + 1, 4), dtype=np.uint8) # Default to transparent (0,0,0,0)
|
|
1041
|
+
|
|
1042
|
+
# Fill lookup table with RGBA colors based on intensity
|
|
1039
1043
|
for node_id, intensity in node_to_intensity.items():
|
|
1040
|
-
|
|
1041
|
-
color_lut[int(node_id)] =
|
|
1042
|
-
|
|
1044
|
+
rgba_color = intensity_to_rgba(intensity, min_intensity, max_intensity)
|
|
1045
|
+
color_lut[int(node_id)] = rgba_color
|
|
1046
|
+
|
|
1043
1047
|
# Apply lookup table to labeled array - single vectorized operation
|
|
1044
1048
|
if is_3d:
|
|
1045
|
-
# Return full 3D
|
|
1049
|
+
# Return full 3D RGBA array [Z, Y, X, 4]
|
|
1046
1050
|
heatmap_array = color_lut[labeled_array]
|
|
1047
1051
|
else:
|
|
1048
|
-
# Return 2D
|
|
1052
|
+
# Return 2D RGBA array
|
|
1049
1053
|
if labeled_array.ndim == 3:
|
|
1050
1054
|
# Take middle slice for 2D representation
|
|
1051
1055
|
middle_slice = labeled_array.shape[0] // 2
|
|
@@ -1053,7 +1057,7 @@ def create_node_heatmap(node_intensity, node_centroids, shape=None, is_3d=True,
|
|
|
1053
1057
|
else:
|
|
1054
1058
|
# Already 2D
|
|
1055
1059
|
heatmap_array = color_lut[labeled_array]
|
|
1056
|
-
|
|
1060
|
+
|
|
1057
1061
|
return heatmap_array
|
|
1058
1062
|
|
|
1059
1063
|
else:
|
|
@@ -1122,19 +1126,124 @@ def create_node_heatmap(node_intensity, node_centroids, shape=None, is_3d=True,
|
|
|
1122
1126
|
plt.tight_layout()
|
|
1123
1127
|
plt.show()
|
|
1124
1128
|
|
|
1125
|
-
|
|
1126
|
-
|
|
1127
|
-
|
|
1128
|
-
sample_dict = {
|
|
1129
|
-
'category_A': np.array([0.1, 0.5, 0.8, 0.3, 0.9]),
|
|
1130
|
-
'category_B': np.array([0.7, 0.2, 0.6, 0.4, 0.1]),
|
|
1131
|
-
'category_C': np.array([0.9, 0.8, 0.2, 0.7, 0.5])
|
|
1132
|
-
}
|
|
1129
|
+
def create_violin_plots(data_dict, graph_title="Violin Plots"):
|
|
1130
|
+
"""
|
|
1131
|
+
Create violin plots from dictionary data with distinct colors.
|
|
1133
1132
|
|
|
1134
|
-
|
|
1133
|
+
Parameters:
|
|
1134
|
+
data_dict (dict): Dictionary where keys are column headers (strings) and
|
|
1135
|
+
values are lists of floats
|
|
1136
|
+
graph_title (str): Title for the overall plot
|
|
1137
|
+
"""
|
|
1138
|
+
if not data_dict:
|
|
1139
|
+
print("No data to plot")
|
|
1140
|
+
return
|
|
1135
1141
|
|
|
1136
|
-
#
|
|
1137
|
-
|
|
1138
|
-
|
|
1142
|
+
# Prepare data
|
|
1143
|
+
labels = list(data_dict.keys())
|
|
1144
|
+
data_lists = list(data_dict.values())
|
|
1139
1145
|
|
|
1146
|
+
# Generate colors using the community color strategy
|
|
1147
|
+
try:
|
|
1148
|
+
# Create a mock community dict for color generation
|
|
1149
|
+
mock_community_dict = {i: i+1 for i in range(len(labels))} # No outliers for simplicity
|
|
1150
|
+
|
|
1151
|
+
# Get distinct colors
|
|
1152
|
+
n_colors = len(labels)
|
|
1153
|
+
colors_rgb = community_extractor.generate_distinct_colors(n_colors)
|
|
1154
|
+
|
|
1155
|
+
# Sort by data size for consistent color assignment (like community sizes)
|
|
1156
|
+
data_sizes = [(i, len(data_lists[i])) for i in range(len(data_lists))]
|
|
1157
|
+
sorted_indices = sorted(data_sizes, key=lambda x: (-x[1], x[0]))
|
|
1158
|
+
|
|
1159
|
+
# Create color mapping
|
|
1160
|
+
colors = []
|
|
1161
|
+
for i, _ in sorted_indices:
|
|
1162
|
+
color_idx = sorted_indices.index((i, _))
|
|
1163
|
+
if color_idx < len(colors_rgb):
|
|
1164
|
+
# Convert RGB (0-255) to matplotlib format (0-1)
|
|
1165
|
+
rgb_normalized = tuple(c/255.0 for c in colors_rgb[color_idx])
|
|
1166
|
+
colors.append(rgb_normalized)
|
|
1167
|
+
else:
|
|
1168
|
+
colors.append('gray') # Fallback color
|
|
1169
|
+
|
|
1170
|
+
# Reorder colors to match original label order
|
|
1171
|
+
final_colors = ['gray'] * len(labels)
|
|
1172
|
+
for idx, (original_idx, _) in enumerate(sorted_indices):
|
|
1173
|
+
final_colors[original_idx] = colors[idx]
|
|
1174
|
+
|
|
1175
|
+
except Exception as e:
|
|
1176
|
+
print(f"Color generation failed, using default colors: {e}")
|
|
1177
|
+
# Fallback to default matplotlib colors
|
|
1178
|
+
final_colors = plt.cm.Set3(np.linspace(0, 1, len(labels)))
|
|
1179
|
+
|
|
1180
|
+
# Create the plot
|
|
1181
|
+
fig, ax = plt.subplots(figsize=(max(8, len(labels) * 1.5), 6))
|
|
1182
|
+
|
|
1183
|
+
# Create violin plots
|
|
1184
|
+
violin_parts = ax.violinplot(data_lists, positions=range(len(labels)),
|
|
1185
|
+
showmeans=False, showmedians=True, showextrema=True)
|
|
1186
|
+
|
|
1187
|
+
# Color the violins
|
|
1188
|
+
for i, pc in enumerate(violin_parts['bodies']):
|
|
1189
|
+
if i < len(final_colors):
|
|
1190
|
+
pc.set_facecolor(final_colors[i])
|
|
1191
|
+
pc.set_alpha(0.7)
|
|
1192
|
+
|
|
1193
|
+
# Color the other violin elements
|
|
1194
|
+
for partname in ('cbars', 'cmins', 'cmaxes', 'cmedians'):
|
|
1195
|
+
if partname in violin_parts:
|
|
1196
|
+
violin_parts[partname].set_edgecolor('black')
|
|
1197
|
+
violin_parts[partname].set_linewidth(1)
|
|
1198
|
+
|
|
1199
|
+
# Add data points as scatter plot overlay with much lower transparency
|
|
1200
|
+
"""
|
|
1201
|
+
for i, data in enumerate(data_lists):
|
|
1202
|
+
y = data
|
|
1203
|
+
# Add some jitter to x positions for better visibility
|
|
1204
|
+
x = np.random.normal(i, 0.04, size=len(y))
|
|
1205
|
+
ax.scatter(x, y, alpha=0.2, s=15, color='black', edgecolors='none', zorder=3) # No borders, more transparent
|
|
1206
|
+
"""
|
|
1207
|
+
|
|
1208
|
+
# Calculate reasonable y-axis limits to focus on the bulk of the data
|
|
1209
|
+
all_data = [val for sublist in data_lists for val in sublist]
|
|
1210
|
+
if all_data:
|
|
1211
|
+
# Use percentiles to exclude extreme outliers from the view
|
|
1212
|
+
y_min = np.percentile(all_data, 5) # 5th percentile
|
|
1213
|
+
y_max = np.percentile(all_data, 95) # 95th percentile
|
|
1214
|
+
|
|
1215
|
+
# Add some padding
|
|
1216
|
+
y_range = y_max - y_min
|
|
1217
|
+
y_padding = y_range * 0.15
|
|
1218
|
+
ax.set_ylim(y_min - y_padding, y_max + y_padding)
|
|
1219
|
+
|
|
1220
|
+
# Add IQR and median text annotations BELOW the violins
|
|
1221
|
+
for i, data in enumerate(data_lists):
|
|
1222
|
+
if len(data) > 0:
|
|
1223
|
+
q1, median, q3 = np.percentile(data, [25, 50, 75])
|
|
1224
|
+
iqr = q3 - q1
|
|
1225
|
+
|
|
1226
|
+
# Position text below the violin (using current y-axis limits)
|
|
1227
|
+
y_min_current = ax.get_ylim()[0]
|
|
1228
|
+
y_text = y_min_current - (ax.get_ylim()[1] - ax.get_ylim()[0]) * 0.15
|
|
1229
|
+
|
|
1230
|
+
ax.text(i, y_text, f'Median: {median:.2f}\nIQR: {iqr:.2f}',
|
|
1231
|
+
horizontalalignment='center', fontsize=8,
|
|
1232
|
+
bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.8))
|
|
1233
|
+
|
|
1234
|
+
# Customize the plot
|
|
1235
|
+
ax.set_xticks(range(len(labels)))
|
|
1236
|
+
ax.set_xticklabels(labels, rotation=45, ha='right')
|
|
1237
|
+
ax.set_title(graph_title, fontsize=14, fontweight='bold')
|
|
1238
|
+
ax.set_ylabel('Normalized Values (Z-score-like)', fontsize=12)
|
|
1239
|
+
ax.grid(True, alpha=0.3)
|
|
1240
|
+
|
|
1241
|
+
# Add a horizontal line at y=0 (the identity centerpoint)
|
|
1242
|
+
ax.axhline(y=0, color='red', linestyle='--', alpha=0.5, linewidth=1,
|
|
1243
|
+
label='Identity Centerpoint')
|
|
1244
|
+
ax.legend(loc='upper right')
|
|
1245
|
+
|
|
1246
|
+
# Adjust layout to prevent label cutoff and accommodate bottom text
|
|
1247
|
+
plt.subplots_adjust(bottom=0.2) # Extra space for bottom text
|
|
1248
|
+
plt.tight_layout()
|
|
1140
1249
|
plt.show()
|
|
@@ -35,6 +35,7 @@ from . import proximity
|
|
|
35
35
|
from skimage.segmentation import watershed as water
|
|
36
36
|
|
|
37
37
|
|
|
38
|
+
|
|
38
39
|
#These next several methods relate to searching with 3D objects by dilating each one in a subarray around their neighborhood although I don't explicitly use this anywhere... can call them deprecated although I may want to use them later again so I have them still written out here.
|
|
39
40
|
|
|
40
41
|
|
|
@@ -6120,14 +6121,25 @@ class Network_3D:
|
|
|
6120
6121
|
|
|
6121
6122
|
for node, iden in self.node_identities.items():
|
|
6122
6123
|
|
|
6123
|
-
if iden == root:
|
|
6124
|
+
if iden == root: # Standard behavior
|
|
6124
6125
|
|
|
6125
6126
|
root_set.append(node)
|
|
6126
6127
|
|
|
6127
|
-
elif
|
|
6128
|
+
elif '[' in iden and root != "All (Excluding Targets)": # For multiple nodes
|
|
6129
|
+
if root in iden:
|
|
6130
|
+
root_set.append(node)
|
|
6131
|
+
|
|
6132
|
+
elif (iden == targ) or (targ == 'All Others (Excluding Self)'): # The other group
|
|
6128
6133
|
|
|
6129
6134
|
compare_set.append(node)
|
|
6130
6135
|
|
|
6136
|
+
elif '[' in iden: # The other group, for multiple nodes
|
|
6137
|
+
if targ in iden:
|
|
6138
|
+
compare_set.append(node)
|
|
6139
|
+
|
|
6140
|
+
elif root == "All (Excluding Targets)": # If not assigned to the other group but the comprehensive root option is used
|
|
6141
|
+
root_set.append(node)
|
|
6142
|
+
|
|
6131
6143
|
if root == targ:
|
|
6132
6144
|
|
|
6133
6145
|
compare_set = root_set
|
|
@@ -511,12 +511,8 @@ class ImageViewerWindow(QMainWindow):
|
|
|
511
511
|
data = df.iloc[:, 0].tolist() # First column as list
|
|
512
512
|
value = None
|
|
513
513
|
|
|
514
|
-
self.format_for_upperright_table(
|
|
515
|
-
|
|
516
|
-
metric=metric,
|
|
517
|
-
value=value,
|
|
518
|
-
title=title
|
|
519
|
-
)
|
|
514
|
+
df = self.format_for_upperright_table(data=data, metric=metric, value=value, title=title)
|
|
515
|
+
return df
|
|
520
516
|
else:
|
|
521
517
|
# Multiple columns: create dictionary as before
|
|
522
518
|
# First column header (for metric parameter)
|
|
@@ -542,12 +538,8 @@ class ImageViewerWindow(QMainWindow):
|
|
|
542
538
|
value = value[0]
|
|
543
539
|
|
|
544
540
|
# Call the parent method
|
|
545
|
-
self.format_for_upperright_table(
|
|
546
|
-
|
|
547
|
-
metric=metric,
|
|
548
|
-
value=value,
|
|
549
|
-
title=title
|
|
550
|
-
)
|
|
541
|
+
df = self.format_for_upperright_table(data=data_dict, metric=metric, value=value, title=title)
|
|
542
|
+
return df
|
|
551
543
|
|
|
552
544
|
QMessageBox.information(
|
|
553
545
|
self,
|
|
@@ -4592,6 +4584,8 @@ class ImageViewerWindow(QMainWindow):
|
|
|
4592
4584
|
rad_action.triggered.connect(self.show_rad_dialog)
|
|
4593
4585
|
inter_action = stats_menu.addAction("Calculate Node < > Edge Interaction")
|
|
4594
4586
|
inter_action.triggered.connect(self.show_interaction_dialog)
|
|
4587
|
+
violin_action = stats_menu.addAction("Show Identity Violins/UMAP")
|
|
4588
|
+
violin_action.triggered.connect(self.show_violin_dialog)
|
|
4595
4589
|
overlay_menu = analysis_menu.addMenu("Data/Overlays")
|
|
4596
4590
|
degree_action = overlay_menu.addAction("Get Degree Information")
|
|
4597
4591
|
degree_action.triggered.connect(self.show_degree_dialog)
|
|
@@ -5047,6 +5041,8 @@ class ImageViewerWindow(QMainWindow):
|
|
|
5047
5041
|
for column in range(table.model().columnCount(None)):
|
|
5048
5042
|
table.resizeColumnToContents(column)
|
|
5049
5043
|
|
|
5044
|
+
return df
|
|
5045
|
+
|
|
5050
5046
|
except:
|
|
5051
5047
|
pass
|
|
5052
5048
|
|
|
@@ -6068,7 +6064,7 @@ class ImageViewerWindow(QMainWindow):
|
|
|
6068
6064
|
|
|
6069
6065
|
if self.shape == self.channel_data[channel_index].shape:
|
|
6070
6066
|
preserve_zoom = (self.ax.get_xlim(), self.ax.get_ylim())
|
|
6071
|
-
self.shape = self.channel_data[channel_index].shape
|
|
6067
|
+
self.shape = (self.channel_data[channel_index].shape[0], self.channel_data[channel_index].shape[1], self.channel_data[channel_index].shape[2])
|
|
6072
6068
|
if self.shape[1] * self.shape[2] > 3000 * 3000 * self.downsample_factor:
|
|
6073
6069
|
self.throttle = True
|
|
6074
6070
|
else:
|
|
@@ -6826,6 +6822,10 @@ class ImageViewerWindow(QMainWindow):
|
|
|
6826
6822
|
dialog = InteractionDialog(self)
|
|
6827
6823
|
dialog.exec()
|
|
6828
6824
|
|
|
6825
|
+
def show_violin_dialog(self):
|
|
6826
|
+
dialog = ViolinDialog(self)
|
|
6827
|
+
dialog.show()
|
|
6828
|
+
|
|
6829
6829
|
def show_degree_dialog(self):
|
|
6830
6830
|
dialog = DegreeDialog(self)
|
|
6831
6831
|
dialog.exec()
|
|
@@ -8356,7 +8356,7 @@ class MergeNodeIdDialog(QDialog):
|
|
|
8356
8356
|
result = {key: np.array([d[key] for d in id_dicts]) for key in all_keys}
|
|
8357
8357
|
|
|
8358
8358
|
|
|
8359
|
-
self.parent().format_for_upperright_table(result, 'NodeID', good_list, 'Mean Intensity')
|
|
8359
|
+
self.parent().format_for_upperright_table(result, 'NodeID', good_list, 'Mean Intensity (Save this Table for "Analyze -> Stats -> Show Violins")')
|
|
8360
8360
|
if umap:
|
|
8361
8361
|
my_network.identity_umap(result)
|
|
8362
8362
|
|
|
@@ -8364,7 +8364,7 @@ class MergeNodeIdDialog(QDialog):
|
|
|
8364
8364
|
QMessageBox.information(
|
|
8365
8365
|
self,
|
|
8366
8366
|
"Success",
|
|
8367
|
-
"Node Identities Merged. New IDs represent presence of corresponding img foreground with +, absence with -.
|
|
8367
|
+
"Node Identities Merged. New IDs represent presence of corresponding img foreground with +, absence with -. If desired, please save your new identities as csv, then use File -> Load -> Load From Excel Helper to bulk search and rename desired combinations. If desired, please save the outputted mean intensity table to use with 'Analyze -> Stats -> Show Violins'. (Press Help [above] for more info)"
|
|
8368
8368
|
)
|
|
8369
8369
|
|
|
8370
8370
|
self.accept()
|
|
@@ -9143,12 +9143,16 @@ class NearNeighDialog(QDialog):
|
|
|
9143
9143
|
if my_network.node_identities is not None:
|
|
9144
9144
|
|
|
9145
9145
|
self.root = QComboBox()
|
|
9146
|
-
|
|
9146
|
+
roots = list(set(my_network.node_identities.values()))
|
|
9147
|
+
roots.sort()
|
|
9148
|
+
roots.append("All (Excluding Targets)")
|
|
9149
|
+
self.root.addItems(roots)
|
|
9147
9150
|
self.root.setCurrentIndex(0)
|
|
9148
9151
|
identities_layout.addRow("Root Identity to Search for Neighbor's IDs?", self.root)
|
|
9149
9152
|
|
|
9150
9153
|
self.targ = QComboBox()
|
|
9151
9154
|
neighs = list(set(my_network.node_identities.values()))
|
|
9155
|
+
neighs.sort()
|
|
9152
9156
|
neighs.append("All Others (Excluding Self)")
|
|
9153
9157
|
self.targ.addItems(neighs)
|
|
9154
9158
|
self.targ.setCurrentIndex(0)
|
|
@@ -9273,6 +9277,10 @@ class NearNeighDialog(QDialog):
|
|
|
9273
9277
|
except:
|
|
9274
9278
|
targ = None
|
|
9275
9279
|
|
|
9280
|
+
if root == "All (Excluding Targets)" and targ == 'All Others (Excluding Self)':
|
|
9281
|
+
root = None
|
|
9282
|
+
targ = None
|
|
9283
|
+
|
|
9276
9284
|
heatmap = self.map.isChecked()
|
|
9277
9285
|
threed = self.threed.isChecked()
|
|
9278
9286
|
numpy = self.numpy.isChecked()
|
|
@@ -9892,6 +9900,266 @@ class InteractionDialog(QDialog):
|
|
|
9892
9900
|
print(f"Error finding interactions: {e}")
|
|
9893
9901
|
|
|
9894
9902
|
|
|
9903
|
+
class ViolinDialog(QDialog):
|
|
9904
|
+
|
|
9905
|
+
def __init__(self, parent=None):
|
|
9906
|
+
|
|
9907
|
+
super().__init__(parent)
|
|
9908
|
+
|
|
9909
|
+
QMessageBox.critical(
|
|
9910
|
+
self,
|
|
9911
|
+
"Notice",
|
|
9912
|
+
"Please select spreadsheet (Should be table output of 'File -> Images -> Node Identities -> Assign Node Identities from Overlap with Other Images'. Make sure to save that table as .csv/.xlsx and then load it here to use this.)"
|
|
9913
|
+
)
|
|
9914
|
+
|
|
9915
|
+
try:
|
|
9916
|
+
try:
|
|
9917
|
+
self.df = self.parent().load_file()
|
|
9918
|
+
except:
|
|
9919
|
+
return
|
|
9920
|
+
|
|
9921
|
+
self.backup_df = copy.deepcopy(self.df)
|
|
9922
|
+
# Get all identity lists and normalize the dataframe
|
|
9923
|
+
identity_lists = self.get_all_identity_lists()
|
|
9924
|
+
self.df = self.normalize_df_with_identity_centerpoints(self.df, identity_lists)
|
|
9925
|
+
|
|
9926
|
+
self.setWindowTitle("Violin Parameters")
|
|
9927
|
+
self.setModal(False)
|
|
9928
|
+
|
|
9929
|
+
layout = QFormLayout(self)
|
|
9930
|
+
|
|
9931
|
+
if my_network.node_identities is not None:
|
|
9932
|
+
|
|
9933
|
+
self.idens = QComboBox()
|
|
9934
|
+
all_idens = list(set(my_network.node_identities.values()))
|
|
9935
|
+
idens = []
|
|
9936
|
+
for iden in all_idens:
|
|
9937
|
+
if '[' not in iden:
|
|
9938
|
+
idens.append(iden)
|
|
9939
|
+
idens.sort()
|
|
9940
|
+
idens.insert(0, "None")
|
|
9941
|
+
self.idens.addItems(idens)
|
|
9942
|
+
self.idens.setCurrentIndex(0)
|
|
9943
|
+
layout.addRow("Return Identity Violin Plots?", self.idens)
|
|
9944
|
+
|
|
9945
|
+
if my_network.communities is not None:
|
|
9946
|
+
self.coms = QComboBox()
|
|
9947
|
+
coms = list(set(my_network.communities.values()))
|
|
9948
|
+
coms.sort()
|
|
9949
|
+
coms.insert(0, "None")
|
|
9950
|
+
coms = [str(x) for x in coms]
|
|
9951
|
+
self.coms.addItems(coms)
|
|
9952
|
+
self.coms.setCurrentIndex(0)
|
|
9953
|
+
layout.addRow("Return Neighborhood/Community Violin Plots?", self.coms)
|
|
9954
|
+
|
|
9955
|
+
# Add Run button
|
|
9956
|
+
run_button = QPushButton("Show Z-score-like Violin")
|
|
9957
|
+
run_button.clicked.connect(self.run)
|
|
9958
|
+
layout.addWidget(run_button)
|
|
9959
|
+
|
|
9960
|
+
run_button2 = QPushButton("Show Z-score UMAP")
|
|
9961
|
+
run_button2.clicked.connect(self.run2)
|
|
9962
|
+
layout.addWidget(run_button2)
|
|
9963
|
+
except:
|
|
9964
|
+
QTimer.singleShot(0, self.close)
|
|
9965
|
+
|
|
9966
|
+
def get_all_identity_lists(self):
|
|
9967
|
+
"""
|
|
9968
|
+
Get all identity lists for normalization purposes.
|
|
9969
|
+
|
|
9970
|
+
Returns:
|
|
9971
|
+
dict: Dictionary where keys are identity names and values are lists of node IDs
|
|
9972
|
+
"""
|
|
9973
|
+
identity_lists = {}
|
|
9974
|
+
|
|
9975
|
+
# Get all unique identities
|
|
9976
|
+
all_identities = set()
|
|
9977
|
+
import ast
|
|
9978
|
+
for item in my_network.node_identities:
|
|
9979
|
+
try:
|
|
9980
|
+
parse = ast.literal_eval(my_network.node_identities[item])
|
|
9981
|
+
if isinstance(parse, (list, tuple, set)):
|
|
9982
|
+
all_identities.update(parse)
|
|
9983
|
+
else:
|
|
9984
|
+
all_identities.add(str(parse))
|
|
9985
|
+
except:
|
|
9986
|
+
all_identities.add(str(my_network.node_identities[item]))
|
|
9987
|
+
|
|
9988
|
+
# For each identity, get the list of nodes that have it
|
|
9989
|
+
for identity in all_identities:
|
|
9990
|
+
iden_list = []
|
|
9991
|
+
for item in my_network.node_identities:
|
|
9992
|
+
try:
|
|
9993
|
+
parse = ast.literal_eval(my_network.node_identities[item])
|
|
9994
|
+
if identity in parse:
|
|
9995
|
+
iden_list.append(item)
|
|
9996
|
+
except:
|
|
9997
|
+
if identity == str(my_network.node_identities[item]):
|
|
9998
|
+
iden_list.append(item)
|
|
9999
|
+
|
|
10000
|
+
if iden_list: # Only add if we found nodes
|
|
10001
|
+
identity_lists[identity] = iden_list
|
|
10002
|
+
|
|
10003
|
+
return identity_lists
|
|
10004
|
+
|
|
10005
|
+
def normalize_df_with_identity_centerpoints(self, df, identity_lists):
|
|
10006
|
+
"""
|
|
10007
|
+
Normalize the entire dataframe using identity-specific centerpoints.
|
|
10008
|
+
Uses Z-score-like normalization with identity centerpoint as the "mean".
|
|
10009
|
+
|
|
10010
|
+
Parameters:
|
|
10011
|
+
df (pd.DataFrame): Original dataframe
|
|
10012
|
+
identity_lists (dict): Dictionary where keys are identity names and values are lists of node IDs
|
|
10013
|
+
|
|
10014
|
+
Returns:
|
|
10015
|
+
pd.DataFrame: Normalized dataframe
|
|
10016
|
+
"""
|
|
10017
|
+
# Make a copy to avoid modifying the original dataframe
|
|
10018
|
+
df_copy = df.copy()
|
|
10019
|
+
|
|
10020
|
+
# Set the first column as the index (row headers)
|
|
10021
|
+
df_copy = df_copy.set_index(df_copy.columns[0])
|
|
10022
|
+
|
|
10023
|
+
# Convert all remaining columns to float type (batch conversion)
|
|
10024
|
+
df_copy = df_copy.astype(float)
|
|
10025
|
+
|
|
10026
|
+
# First, calculate the centerpoint for each column by finding the median across all identity groups
|
|
10027
|
+
column_centerpoints = {}
|
|
10028
|
+
|
|
10029
|
+
for column in df_copy.columns:
|
|
10030
|
+
centerpoint = None
|
|
10031
|
+
|
|
10032
|
+
for identity, node_list in identity_lists.items():
|
|
10033
|
+
# Get nodes that exist in both the identity list and the dataframe
|
|
10034
|
+
valid_nodes = [node for node in node_list if node in df_copy.index]
|
|
10035
|
+
if valid_nodes and ((str(identity) == str(column)) or str(identity) == f'{str(column)}+'):
|
|
10036
|
+
# Get the median value for this identity in this column
|
|
10037
|
+
identity_min = df_copy.loc[valid_nodes, column].median()
|
|
10038
|
+
centerpoint = identity_min
|
|
10039
|
+
break # Found the match, no need to continue
|
|
10040
|
+
|
|
10041
|
+
if centerpoint is not None:
|
|
10042
|
+
# Use the identity-specific centerpoint
|
|
10043
|
+
column_centerpoints[column] = centerpoint
|
|
10044
|
+
else:
|
|
10045
|
+
# Fallback: if no matching identity, use column median
|
|
10046
|
+
column_centerpoints[column] = df_copy[column].median()
|
|
10047
|
+
|
|
10048
|
+
# Now normalize each column using Z-score-like calculation with identity centerpoint
|
|
10049
|
+
df_normalized = df_copy.copy()
|
|
10050
|
+
for column in df_copy.columns:
|
|
10051
|
+
centerpoint = column_centerpoints[column]
|
|
10052
|
+
# Calculate standard deviation of the column
|
|
10053
|
+
std_dev = df_copy[column].std()
|
|
10054
|
+
|
|
10055
|
+
if std_dev > 0: # Avoid division by zero
|
|
10056
|
+
# Z-score-like: (value - centerpoint) / std_dev
|
|
10057
|
+
df_normalized[column] = (df_copy[column] - centerpoint) / std_dev
|
|
10058
|
+
else:
|
|
10059
|
+
# If std_dev is 0, just subtract centerpoint
|
|
10060
|
+
df_normalized[column] = df_copy[column] - centerpoint
|
|
10061
|
+
|
|
10062
|
+
# Convert back to original format with first column as regular column
|
|
10063
|
+
df_normalized = df_normalized.reset_index()
|
|
10064
|
+
|
|
10065
|
+
return df_normalized
|
|
10066
|
+
|
|
10067
|
+
def run(self):
|
|
10068
|
+
|
|
10069
|
+
def df_to_dict_by_rows(df, row_indices):
|
|
10070
|
+
"""
|
|
10071
|
+
Convert a pandas DataFrame to a dictionary by selecting specific rows.
|
|
10072
|
+
No normalization - dataframe is already normalized.
|
|
10073
|
+
|
|
10074
|
+
Parameters:
|
|
10075
|
+
df (pd.DataFrame): DataFrame with first column as row headers, remaining columns contain floats
|
|
10076
|
+
row_indices (list): List of values from the first column representing rows to include
|
|
10077
|
+
|
|
10078
|
+
Returns:
|
|
10079
|
+
dict: Dictionary where keys are column headers and values are lists of column values (as floats)
|
|
10080
|
+
for the specified rows
|
|
10081
|
+
"""
|
|
10082
|
+
# Make a copy to avoid modifying the original dataframe
|
|
10083
|
+
df_copy = df.copy()
|
|
10084
|
+
|
|
10085
|
+
# Set the first column as the index (row headers)
|
|
10086
|
+
df_copy = df_copy.set_index(df_copy.columns[0])
|
|
10087
|
+
|
|
10088
|
+
# Mask the dataframe to include only the specified rows
|
|
10089
|
+
masked_df = df_copy.loc[row_indices]
|
|
10090
|
+
|
|
10091
|
+
# Create empty dictionary
|
|
10092
|
+
result_dict = {}
|
|
10093
|
+
|
|
10094
|
+
# For each column, add the column header as key and column values as list
|
|
10095
|
+
for column in masked_df.columns:
|
|
10096
|
+
result_dict[column] = masked_df[column].tolist()
|
|
10097
|
+
|
|
10098
|
+
return result_dict
|
|
10099
|
+
|
|
10100
|
+
from . import neighborhoods
|
|
10101
|
+
|
|
10102
|
+
if self.idens.currentIndex() != 0:
|
|
10103
|
+
|
|
10104
|
+
iden = self.idens.currentText()
|
|
10105
|
+
iden_list = []
|
|
10106
|
+
import ast
|
|
10107
|
+
|
|
10108
|
+
for item in my_network.node_identities:
|
|
10109
|
+
|
|
10110
|
+
try:
|
|
10111
|
+
parse = ast.literal_eval(my_network.node_identities[item])
|
|
10112
|
+
if iden in parse:
|
|
10113
|
+
iden_list.append(item)
|
|
10114
|
+
except:
|
|
10115
|
+
if iden == item:
|
|
10116
|
+
iden_list.append(item)
|
|
10117
|
+
|
|
10118
|
+
violin_dict = df_to_dict_by_rows(self.df, iden_list)
|
|
10119
|
+
|
|
10120
|
+
neighborhoods.create_violin_plots(violin_dict, graph_title=f"Z-Score-like Channel Intensities of Identity {iden}, {len(iden_list)} Nodes")
|
|
10121
|
+
|
|
10122
|
+
|
|
10123
|
+
if self.coms.currentIndex() != 0:
|
|
10124
|
+
|
|
10125
|
+
com = self.coms.currentText()
|
|
10126
|
+
|
|
10127
|
+
com_dict = n3d.invert_dict(my_network.communities) # Fixed: should be communities
|
|
10128
|
+
|
|
10129
|
+
com_list = com_dict[int(com)]
|
|
10130
|
+
|
|
10131
|
+
violin_dict = df_to_dict_by_rows(self.df, com_list)
|
|
10132
|
+
|
|
10133
|
+
neighborhoods.create_violin_plots(violin_dict, graph_title=f"Z-Score-like Channel Intensities of Community/Neighborhood {com}, {len(com_list)} Nodes")
|
|
10134
|
+
|
|
10135
|
+
|
|
10136
|
+
def run2(self):
|
|
10137
|
+
def df_to_dict(df):
|
|
10138
|
+
# Make a copy to avoid modifying the original dataframe
|
|
10139
|
+
df_copy = df.copy()
|
|
10140
|
+
|
|
10141
|
+
# Set the first column as the index (row headers)
|
|
10142
|
+
df_copy = df_copy.set_index(df_copy.columns[0])
|
|
10143
|
+
|
|
10144
|
+
# Convert all remaining columns to float type (batch conversion)
|
|
10145
|
+
df_copy = df_copy.astype(float)
|
|
10146
|
+
|
|
10147
|
+
# Create the result dictionary
|
|
10148
|
+
result_dict = {}
|
|
10149
|
+
for row_idx in df_copy.index:
|
|
10150
|
+
result_dict[row_idx] = df_copy.loc[row_idx].tolist()
|
|
10151
|
+
|
|
10152
|
+
return result_dict
|
|
10153
|
+
|
|
10154
|
+
try:
|
|
10155
|
+
umap_dict = df_to_dict(self.backup_df)
|
|
10156
|
+
my_network.identity_umap(umap_dict)
|
|
10157
|
+
except:
|
|
10158
|
+
pass
|
|
10159
|
+
|
|
10160
|
+
|
|
10161
|
+
|
|
10162
|
+
|
|
9895
10163
|
class DegreeDialog(QDialog):
|
|
9896
10164
|
|
|
9897
10165
|
|
|
@@ -12931,16 +13199,58 @@ class GrayWaterDialog(QDialog):
|
|
|
12931
13199
|
run_button.clicked.connect(self.run_watershed)
|
|
12932
13200
|
layout.addRow(run_button)
|
|
12933
13201
|
|
|
13202
|
+
def wait_for_threshold_processing(self):
|
|
13203
|
+
"""
|
|
13204
|
+
Opens ThresholdWindow and waits for user to process the image.
|
|
13205
|
+
Returns True if completed, False if cancelled.
|
|
13206
|
+
The thresholded image will be available in the main window after completion.
|
|
13207
|
+
"""
|
|
13208
|
+
# Create event loop to wait for user
|
|
13209
|
+
loop = QEventLoop()
|
|
13210
|
+
result = {'completed': False}
|
|
13211
|
+
|
|
13212
|
+
# Create the threshold window
|
|
13213
|
+
thresh_window = ThresholdWindow(self.parent(), 0)
|
|
13214
|
+
|
|
13215
|
+
|
|
13216
|
+
# Connect signals
|
|
13217
|
+
def on_processing_complete():
|
|
13218
|
+
result['completed'] = True
|
|
13219
|
+
loop.quit()
|
|
13220
|
+
|
|
13221
|
+
def on_processing_cancelled():
|
|
13222
|
+
result['completed'] = False
|
|
13223
|
+
loop.quit()
|
|
13224
|
+
|
|
13225
|
+
thresh_window.processing_complete.connect(on_processing_complete)
|
|
13226
|
+
thresh_window.processing_cancelled.connect(on_processing_cancelled)
|
|
13227
|
+
|
|
13228
|
+
# Show window and wait
|
|
13229
|
+
thresh_window.show()
|
|
13230
|
+
thresh_window.raise_()
|
|
13231
|
+
thresh_window.activateWindow()
|
|
13232
|
+
|
|
13233
|
+
# Block until user clicks "Apply Threshold & Continue" or "Cancel"
|
|
13234
|
+
loop.exec()
|
|
13235
|
+
|
|
13236
|
+
# Clean up
|
|
13237
|
+
thresh_window.deleteLater()
|
|
13238
|
+
|
|
13239
|
+
return result['completed']
|
|
13240
|
+
|
|
12934
13241
|
def run_watershed(self):
|
|
12935
13242
|
|
|
12936
13243
|
try:
|
|
12937
13244
|
|
|
13245
|
+
self.accept()
|
|
13246
|
+
print("Please threshold foreground, or press cancel/skip if not desired:")
|
|
13247
|
+
self.wait_for_threshold_processing()
|
|
13248
|
+
data = self.parent().channel_data[self.parent().active_channel]
|
|
13249
|
+
|
|
12938
13250
|
min_intensity = float(self.min_intensity.text()) if self.min_intensity.text().strip() else None
|
|
12939
13251
|
|
|
12940
13252
|
min_peak_distance = int(self.min_peak_distance.text()) if self.min_peak_distance.text().strip() else 1
|
|
12941
13253
|
|
|
12942
|
-
data = self.parent().channel_data[self.parent().active_channel]
|
|
12943
|
-
|
|
12944
13254
|
data = n3d.gray_watershed(data, min_peak_distance, min_intensity)
|
|
12945
13255
|
|
|
12946
13256
|
self.parent().load_channel(self.parent().active_channel, data, data = True, preserve_zoom = (self.parent().ax.get_xlim(), self.parent().ax.get_ylim()))
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nettracer3d
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.2
|
|
4
4
|
Summary: Scripts for intializing and analyzing networks from segmentations of three dimensional images.
|
|
5
5
|
Author-email: Liam McLaughlin <liamm@wustl.edu>
|
|
6
6
|
Project-URL: Documentation, https://nettracer3d.readthedocs.io/en/latest/
|
|
@@ -110,6 +110,7 @@ McLaughlin, L., Zhang, B., Sharma, S. et al. Three dimensional multiscalar neuro
|
|
|
110
110
|
|
|
111
111
|
NetTracer3D was developed by Liam McLaughlin while working under Dr. Sanjay Jain at Washington University School of Medicine.
|
|
112
112
|
|
|
113
|
-
-- Version 1.0.
|
|
113
|
+
-- Version 1.0.2 Updates --
|
|
114
114
|
|
|
115
|
-
*
|
|
115
|
+
* Minor fixes
|
|
116
|
+
* Added ability to generate violin plots using the table generated from merging node identities, showing the relative expression of markers for multiple channels for the nodes belonging to some channel or community/neighborhood
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|