nettracer3d 0.8.1__tar.gz → 0.8.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nettracer3d might be problematic. Click here for more details.

Files changed (30) hide show
  1. {nettracer3d-0.8.1/src/nettracer3d.egg-info → nettracer3d-0.8.3}/PKG-INFO +44 -12
  2. nettracer3d-0.8.3/README.md +67 -0
  3. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/pyproject.toml +12 -11
  4. nettracer3d-0.8.3/src/nettracer3d/cellpose_manager.py +161 -0
  5. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/community_extractor.py +169 -23
  6. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/neighborhoods.py +222 -23
  7. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/nettracer.py +166 -68
  8. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/nettracer_gui.py +584 -266
  9. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/network_analysis.py +222 -230
  10. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/proximity.py +191 -30
  11. {nettracer3d-0.8.1 → nettracer3d-0.8.3/src/nettracer3d.egg-info}/PKG-INFO +44 -12
  12. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d.egg-info/SOURCES.txt +1 -0
  13. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d.egg-info/requires.txt +10 -1
  14. nettracer3d-0.8.1/README.md +0 -41
  15. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/LICENSE +0 -0
  16. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/setup.cfg +0 -0
  17. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/__init__.py +0 -0
  18. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/excelotron.py +0 -0
  19. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/modularity.py +0 -0
  20. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/morphology.py +0 -0
  21. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/network_draw.py +0 -0
  22. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/node_draw.py +0 -0
  23. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/run.py +0 -0
  24. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/segmenter.py +0 -0
  25. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/segmenter_GPU.py +0 -0
  26. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/simple_network.py +0 -0
  27. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d/smart_dilate.py +0 -0
  28. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d.egg-info/dependency_links.txt +0 -0
  29. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d.egg-info/entry_points.txt +0 -0
  30. {nettracer3d-0.8.1 → nettracer3d-0.8.3}/src/nettracer3d.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nettracer3d
3
- Version: 0.8.1
3
+ Version: 0.8.3
4
4
  Summary: Scripts for intializing and analyzing networks from segmentations of three dimensional images.
5
5
  Author-email: Liam McLaughlin <liamm@wustl.edu>
6
6
  Project-URL: Documentation, https://nettracer3d.readthedocs.io/en/latest/
@@ -21,7 +21,6 @@ Requires-Dist: networkx
21
21
  Requires-Dist: opencv-python-headless
22
22
  Requires-Dist: openpyxl
23
23
  Requires-Dist: pandas
24
- Requires-Dist: napari
25
24
  Requires-Dist: tifffile
26
25
  Requires-Dist: qtrangeslider
27
26
  Requires-Dist: PyQt6
@@ -35,6 +34,13 @@ Provides-Extra: cuda12
35
34
  Requires-Dist: cupy-cuda12x; extra == "cuda12"
36
35
  Provides-Extra: cupy
37
36
  Requires-Dist: cupy; extra == "cupy"
37
+ Provides-Extra: cellpose
38
+ Requires-Dist: cellpose[GUI]; extra == "cellpose"
39
+ Provides-Extra: viz
40
+ Requires-Dist: napari; extra == "viz"
41
+ Provides-Extra: all
42
+ Requires-Dist: cellpose[GUI]; extra == "all"
43
+ Requires-Dist: napari; extra == "all"
38
44
  Dynamic: license-file
39
45
 
40
46
  NetTracer3D is a python package developed for both 2D and 3D analysis of microscopic images in the .tif file format. It supports generation of 3D networks showing the relationships between objects (or nodes) in three dimensional space, either based on their own proximity or connectivity via connecting objects such as nerves or blood vessels. In addition to these functionalities are several advanced 3D data processing algorithms, such as labeling of branched structures or abstraction of branched structures into networks. Note that nettracer3d uses segmented data, which can be segmented from other softwares such as ImageJ and imported into NetTracer3D, although it does offer its own segmentation via intensity and volumetric thresholding, or random forest machine learning segmentation. NetTracer3D currently has a fully functional GUI. To use the GUI, after installing the nettracer3d package via pip, enter the command 'nettracer3d' in your command prompt:
@@ -54,14 +60,42 @@ I recommend installing the program as an Anaconda package to ensure its modules
54
60
 
55
61
  https://www.anaconda.com/download?utm_source=anacondadocs&utm_medium=documentation&utm_campaign=download&utm_content=installwindows
56
62
 
57
- nettracer3d mostly utilizes the CPU for processing and visualization, although it does have a few GPU-aided options. If you would like to use the GPU for these, you will need an NVIDIA GPU and a corresponding CUDA toolkit which can be installed here:
58
- https://developer.nvidia.com/cuda-toolkit
63
+ Optional Packages
64
+ ~~~~~~~~~~~~~~~~~~
65
+ I recommend including Napari (Chi-Li Chiu, Nathan Clack, the napari community, napari: a Python Multi-Dimensional Image Viewer Platform for the Research Community, Microscopy and Microanalysis, Volume 28, Issue S1, 1 August 2022, Pages 1576–1577, https://doi.org/10.1017/S1431927622006328) in the download as well, which allows NetTracer3D to use 3D displays. The standard package only comes with its native 2D slice display window.
66
+ If Napari is present, all 3D images and overlays from NetTracer3D can be easily displayed in 3D with a click of a button. To package with Napari, use this install command instead:
59
67
 
60
- To install nettracer3d with associated GPU-supporting packages, please use:
68
+ pip install nettracer3d[viz]
61
69
 
62
- If your CUDA toolkit is version 11: pip install nettracer3d[CUDA11]
63
- If your CUDA toolkit is version 12: pip install nettracer3d[CUDA12]
64
- If you just want the entire cupy library: pip install nettracer3d[cupy]
70
+ Additionally, for easy access to high-quality cell segmentation, as of version 0.8.2, NetTracer3D can be optionally packaged with Cellpose3. (Stringer, C., Pachitariu, M. Cellpose3: one-click image restoration for improved cellular segmentation. Nat Methods 22, 592–599 (2025). https://doi.org/10.1038/s41592-025-02595-5)
71
+ Cellpose3 is not involved with the rest of the program in any way, although its GUI can be opened from NetTracer3D's GUI, provided both are installed in the same environment. It is a top-tier cell segmenter which can assist in the production of cell networks.
72
+ To include Cellpose3 in the install, use this command:
73
+
74
+
75
+ pip install nettracer3d[cellpose]
76
+
77
+ Alternatively, both Napari and Cellpose can be included in the package with this command: (Or they can be independently installed with pip from the base package env)
78
+
79
+
80
+ pip install nettracer3d[all]
81
+
82
+ GPU
83
+ ~~~~~~~~~~~~~~~~~~
84
+ NetTracer3D is mostly CPU-bound, but a few functions can optionally use the GPU. To install optional GPU functionalities, first set up a CUDA toolkit that runs with the GPU on your machine. This requires an NVIDIA GPU. Then, find your GPUs compatible CUDA toolkit and install it with the auto-installer from the NVIDIA website: https://developer.nvidia.com/cuda-toolkit
85
+
86
+ With a CUDA toolkit installed, use:
87
+
88
+ pip install nettracer3d[CUDA11] #If your CUDA toolkit is version 11
89
+ pip install nettracer3d[CUDA12] #If your CUDA toolkit is version 12
90
+ pip install nettracer3d[cupy] #For the generic cupy library (The above two are usually the ones you want)
91
+
92
+ Or if you've already installed the NetTracer3D base package and want to get just the GPU associated packages:
93
+
94
+ pip install cupy-cuda11x #If your CUDA toolkit is version 11
95
+ pip install cupy-cuda12x #If your CUDA toolkit is version 12
96
+ pip install cupy #For the generic cupy library (The above two are usually the ones you want)
97
+
98
+ While not related to NetTracer3D, if you want to use Cellpose3 (for which GPU-usage is somewhat obligatory) to help segment cells for any networks, you will also want to install pytorch here: https://pytorch.org/. Use the pytorch build menu on this webpage to find a pip install command that is compatible with Python and your CUDA version.
65
99
 
66
100
 
67
101
  This gui is built from the PyQt6 package and therefore may not function on dockers or virtual envs that are unable to support PyQt6 displays.
@@ -73,8 +107,6 @@ NetTracer3D is free to use/fork for academic/nonprofit use so long as citation i
73
107
 
74
108
  NetTracer3D was developed by Liam McLaughlin while working under Dr. Sanjay Jain at Washington University School of Medicine.
75
109
 
76
- -- Version 0.8.1 Updates --
110
+ -- Version 0.8.3 Updates --
77
111
 
78
- * Added nearest neighbor evaluation function (Analysis -> Stats -> Avg Nearest Neighbor)
79
- * Added heatmap outputs for node degrees (Analysis -> Data/Overlays -> Get Degree Information).
80
- * Bug fixes and misc improvements.
112
+ * Added better color legend display
@@ -0,0 +1,67 @@
1
+ NetTracer3D is a python package developed for both 2D and 3D analysis of microscopic images in the .tif file format. It supports generation of 3D networks showing the relationships between objects (or nodes) in three dimensional space, either based on their own proximity or connectivity via connecting objects such as nerves or blood vessels. In addition to these functionalities are several advanced 3D data processing algorithms, such as labeling of branched structures or abstraction of branched structures into networks. Note that nettracer3d uses segmented data, which can be segmented from other softwares such as ImageJ and imported into NetTracer3D, although it does offer its own segmentation via intensity and volumetric thresholding, or random forest machine learning segmentation. NetTracer3D currently has a fully functional GUI. To use the GUI, after installing the nettracer3d package via pip, enter the command 'nettracer3d' in your command prompt:
2
+
3
+ --- Documentation ---
4
+
5
+ Please see: https://nettracer3d.readthedocs.io/en/latest/
6
+
7
+ --- Installation ---
8
+
9
+ To install nettracer3d, simply install Python and use this command in your command terminal:
10
+
11
+ pip install nettracer3d
12
+
13
+ I recommend installing the program as an Anaconda package to ensure its modules are work together on your specific system:
14
+ (Install anaconda at the link below, set up a new python env for nettracer3d, then use the same pip command).
15
+
16
+ https://www.anaconda.com/download?utm_source=anacondadocs&utm_medium=documentation&utm_campaign=download&utm_content=installwindows
17
+
18
+ Optional Packages
19
+ ~~~~~~~~~~~~~~~~~~
20
+ I recommend including Napari (Chi-Li Chiu, Nathan Clack, the napari community, napari: a Python Multi-Dimensional Image Viewer Platform for the Research Community, Microscopy and Microanalysis, Volume 28, Issue S1, 1 August 2022, Pages 1576–1577, https://doi.org/10.1017/S1431927622006328) in the download as well, which allows NetTracer3D to use 3D displays. The standard package only comes with its native 2D slice display window.
21
+ If Napari is present, all 3D images and overlays from NetTracer3D can be easily displayed in 3D with a click of a button. To package with Napari, use this install command instead:
22
+
23
+ pip install nettracer3d[viz]
24
+
25
+ Additionally, for easy access to high-quality cell segmentation, as of version 0.8.2, NetTracer3D can be optionally packaged with Cellpose3. (Stringer, C., Pachitariu, M. Cellpose3: one-click image restoration for improved cellular segmentation. Nat Methods 22, 592–599 (2025). https://doi.org/10.1038/s41592-025-02595-5)
26
+ Cellpose3 is not involved with the rest of the program in any way, although its GUI can be opened from NetTracer3D's GUI, provided both are installed in the same environment. It is a top-tier cell segmenter which can assist in the production of cell networks.
27
+ To include Cellpose3 in the install, use this command:
28
+
29
+
30
+ pip install nettracer3d[cellpose]
31
+
32
+ Alternatively, both Napari and Cellpose can be included in the package with this command: (Or they can be independently installed with pip from the base package env)
33
+
34
+
35
+ pip install nettracer3d[all]
36
+
37
+ GPU
38
+ ~~~~~~~~~~~~~~~~~~
39
+ NetTracer3D is mostly CPU-bound, but a few functions can optionally use the GPU. To install optional GPU functionalities, first set up a CUDA toolkit that runs with the GPU on your machine. This requires an NVIDIA GPU. Then, find your GPUs compatible CUDA toolkit and install it with the auto-installer from the NVIDIA website: https://developer.nvidia.com/cuda-toolkit
40
+
41
+ With a CUDA toolkit installed, use:
42
+
43
+ pip install nettracer3d[CUDA11] #If your CUDA toolkit is version 11
44
+ pip install nettracer3d[CUDA12] #If your CUDA toolkit is version 12
45
+ pip install nettracer3d[cupy] #For the generic cupy library (The above two are usually the ones you want)
46
+
47
+ Or if you've already installed the NetTracer3D base package and want to get just the GPU associated packages:
48
+
49
+ pip install cupy-cuda11x #If your CUDA toolkit is version 11
50
+ pip install cupy-cuda12x #If your CUDA toolkit is version 12
51
+ pip install cupy #For the generic cupy library (The above two are usually the ones you want)
52
+
53
+ While not related to NetTracer3D, if you want to use Cellpose3 (for which GPU-usage is somewhat obligatory) to help segment cells for any networks, you will also want to install pytorch here: https://pytorch.org/. Use the pytorch build menu on this webpage to find a pip install command that is compatible with Python and your CUDA version.
54
+
55
+
56
+ This gui is built from the PyQt6 package and therefore may not function on dockers or virtual envs that are unable to support PyQt6 displays.
57
+
58
+
59
+ For a (slightly outdated) video tutorial on using the GUI: https://www.youtube.com/watch?v=cRatn5VTWDY
60
+
61
+ NetTracer3D is free to use/fork for academic/nonprofit use so long as citation is provided, and is available for commercial use at a fee (see license file for information).
62
+
63
+ NetTracer3D was developed by Liam McLaughlin while working under Dr. Sanjay Jain at Washington University School of Medicine.
64
+
65
+ -- Version 0.8.3 Updates --
66
+
67
+ * Added better color legend display
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "nettracer3d"
3
- version = "0.8.1"
3
+ version = "0.8.3"
4
4
  authors = [
5
5
  { name="Liam McLaughlin", email="liamm@wustl.edu" },
6
6
  ]
@@ -16,7 +16,6 @@ dependencies = [
16
16
  "opencv-python-headless",
17
17
  "openpyxl",
18
18
  "pandas",
19
- "napari",
20
19
  "tifffile",
21
20
  "qtrangeslider",
22
21
  "PyQt6",
@@ -35,15 +34,17 @@ classifiers = [
35
34
  ]
36
35
 
37
36
  [project.optional-dependencies]
38
- CUDA11 = [
39
- "cupy-cuda11x"
40
- ]
41
- CUDA12 = [
42
- "cupy-cuda12x"
43
- ]
44
- cupy = [
45
- "cupy"
46
- ]
37
+ # GPU options (choose one)
38
+ CUDA11 = ["cupy-cuda11x"]
39
+ CUDA12 = ["cupy-cuda12x"]
40
+ cupy = ["cupy"]
41
+
42
+ # Features
43
+ cellpose = ["cellpose[GUI]"]
44
+ viz = ["napari"]
45
+
46
+ # All non-GPU features
47
+ all = ["cellpose[GUI]", "napari"]
47
48
 
48
49
  [project.scripts]
49
50
  nettracer3d = "nettracer3d.run:main"
@@ -0,0 +1,161 @@
1
+ import subprocess
2
+ import sys
3
+ import threading
4
+ from pathlib import Path
5
+ from PyQt6.QtWidgets import QMessageBox, QWidget
6
+
7
+ class CellposeGUILauncher:
8
+ """Simple launcher for cellpose GUI in PyQt6 applications."""
9
+
10
+ def __init__(self, parent_widget=None):
11
+ """
12
+ Initialize the launcher.
13
+
14
+ Args:
15
+ parent_widget: PyQt6 widget for showing message boxes (optional)
16
+ """
17
+ self.parent_widget = parent_widget
18
+ self.cellpose_process = None
19
+
20
+ def launch_cellpose_gui(self, image_path=None, working_directory=None):
21
+ """
22
+ Launch cellpose GUI in a separate thread.
23
+
24
+ Args:
25
+ image_path (str, optional): Path to image file to load automatically
26
+ working_directory (str, optional): Directory to start cellpose in
27
+
28
+ Returns:
29
+ bool: True if launch was initiated successfully
30
+ """
31
+ def run_cellpose():
32
+ """Function to run in separate thread."""
33
+ try:
34
+ # Build command
35
+ cmd = [sys.executable, "-m", "cellpose"]
36
+
37
+ # Add image path if provided
38
+ if image_path and Path(image_path).exists():
39
+ cmd.extend(["--image_path", str(image_path)])
40
+
41
+ # Set working directory
42
+ cwd = working_directory if working_directory else None
43
+
44
+ # Launch cellpose GUI
45
+ self.cellpose_process = subprocess.Popen(
46
+ cmd,
47
+ cwd=cwd,
48
+ stdout=subprocess.PIPE,
49
+ stderr=subprocess.PIPE
50
+ )
51
+
52
+ # Optional: wait for process to complete
53
+ # self.cellpose_process.wait()
54
+
55
+ except Exception as e:
56
+ if self.parent_widget:
57
+ # Show error in main thread
58
+ self.show_error(f"Failed to launch cellpose GUI: {str(e)}")
59
+ else:
60
+ print(f"Failed to launch cellpose GUI: {str(e)}")
61
+
62
+ try:
63
+ # Start cellpose in separate thread
64
+ thread = threading.Thread(target=run_cellpose, daemon=True)
65
+ thread.start()
66
+
67
+ if self.parent_widget:
68
+ self.show_info("Cellpose GUI launched!")
69
+ else:
70
+ print("Cellpose GUI launched!")
71
+
72
+ return True
73
+
74
+ except Exception as e:
75
+ if self.parent_widget:
76
+ self.show_error(f"Failed to start cellpose thread: {str(e)}")
77
+ else:
78
+ print(f"Failed to start cellpose thread: {str(e)}")
79
+ return False
80
+
81
+ def launch_with_directory(self, directory_path):
82
+ """
83
+ Launch cellpose GUI with a specific directory.
84
+
85
+ Args:
86
+ directory_path (str): Directory containing images
87
+ """
88
+ cmd_args = ["--dir", str(directory_path)]
89
+ return self.launch_cellpose_gui_with_args(cmd_args, working_directory=directory_path)
90
+
91
+ def launch_cellpose_gui_with_args(self, additional_args=None, working_directory=None):
92
+ """
93
+ Launch cellpose GUI with custom arguments.
94
+
95
+ Args:
96
+ additional_args (list): List of additional command line arguments
97
+ working_directory (str): Working directory for cellpose
98
+ """
99
+ def run_cellpose_custom():
100
+ try:
101
+ cmd = [sys.executable, "-m", "cellpose"]
102
+
103
+ if additional_args:
104
+ cmd.extend(additional_args)
105
+
106
+ cwd = working_directory if working_directory else None
107
+
108
+ self.cellpose_process = subprocess.Popen(
109
+ cmd,
110
+ cwd=cwd,
111
+ stdout=subprocess.PIPE,
112
+ stderr=subprocess.PIPE
113
+ )
114
+
115
+ except Exception as e:
116
+ if self.parent_widget:
117
+ self.show_error(f"Failed to launch cellpose GUI: {str(e)}")
118
+ else:
119
+ print(f"Failed to launch cellpose GUI: {str(e)}")
120
+
121
+ try:
122
+ thread = threading.Thread(target=run_cellpose_custom, daemon=True)
123
+ thread.start()
124
+ return True
125
+ except Exception as e:
126
+ if self.parent_widget:
127
+ self.show_error(f"Failed to start cellpose: {str(e)}")
128
+ return False
129
+
130
+ def is_cellpose_running(self):
131
+ """
132
+ Check if cellpose process is still running.
133
+
134
+ Returns:
135
+ bool: True if cellpose is still running
136
+ """
137
+ if self.cellpose_process is None:
138
+ return False
139
+
140
+ return self.cellpose_process.poll() is None
141
+
142
+ def close_cellpose(self):
143
+ """Terminate the cellpose process if running."""
144
+ if self.cellpose_process and self.is_cellpose_running():
145
+ try:
146
+ self.cellpose_process.terminate()
147
+ self.cellpose_process.wait(timeout=5) # Wait up to 5 seconds
148
+ except subprocess.TimeoutExpired:
149
+ self.cellpose_process.kill() # Force kill if it doesn't terminate
150
+ except Exception as e:
151
+ print(f"Error closing cellpose: {e}")
152
+
153
+ def show_info(self, message):
154
+ """Show info message if parent widget available."""
155
+ if self.parent_widget:
156
+ QMessageBox.information(self.parent_widget, "Cellpose Launcher", message)
157
+
158
+ def show_error(self, message):
159
+ """Show error message if parent widget available."""
160
+ if self.parent_widget:
161
+ QMessageBox.critical(self.parent_widget, "Cellpose Error", message)
@@ -393,28 +393,105 @@ def find_hub_nodes(G: nx.Graph, proportion: float = 0.1) -> List:
393
393
  return output
394
394
 
395
395
  def get_color_name_mapping():
396
- """Return a dictionary of common colors and their RGB values."""
396
+ """Return a dictionary of descriptive color names and their RGB values."""
397
397
  return {
398
- 'red': (255, 0, 0),
399
- 'green': (0, 255, 0),
400
- 'blue': (0, 0, 255),
401
- 'yellow': (255, 255, 0),
402
- 'cyan': (0, 255, 255),
398
+ # Reds
399
+ 'crimson_red': (220, 20, 60),
400
+ 'bright_red': (255, 0, 0),
401
+ 'dark_red': (139, 0, 0),
402
+ 'coral_red': (255, 127, 80),
403
+ 'rose_red': (255, 102, 102),
404
+ 'burgundy': (128, 0, 32),
405
+ 'cherry_red': (222, 49, 99),
406
+
407
+ # Greens
408
+ 'forest_green': (34, 139, 34),
409
+ 'lime_green': (50, 205, 50),
410
+ 'bright_green': (0, 255, 0),
411
+ 'dark_green': (0, 100, 0),
412
+ 'mint_green': (152, 255, 152),
413
+ 'sage_green': (159, 183, 121),
414
+ 'emerald_green': (80, 200, 120),
415
+ 'olive_green': (128, 128, 0),
416
+
417
+ # Blues
418
+ 'royal_blue': (65, 105, 225),
419
+ 'bright_blue': (0, 0, 255),
420
+ 'navy_blue': (0, 0, 128),
421
+ 'sky_blue': (135, 206, 235),
422
+ 'steel_blue': (70, 130, 180),
423
+ 'powder_blue': (176, 224, 230),
424
+ 'midnight_blue': (25, 25, 112),
425
+ 'cobalt_blue': (0, 71, 171),
426
+
427
+ # Purples
428
+ 'deep_purple': (75, 0, 130),
429
+ 'royal_purple': (120, 81, 169),
430
+ 'lavender': (230, 230, 250),
431
+ 'plum_purple': (221, 160, 221),
432
+ 'violet_purple': (238, 130, 238),
403
433
  'magenta': (255, 0, 255),
404
- 'purple': (128, 0, 128),
405
- 'orange': (255, 165, 0),
406
- 'brown': (165, 42, 42),
407
- 'pink': (255, 192, 203),
408
- 'navy': (0, 0, 128),
409
- 'teal': (0, 128, 128),
410
- 'olive': (128, 128, 0),
411
- 'maroon': (128, 0, 0),
412
- 'lime': (50, 205, 50),
413
- 'indigo': (75, 0, 130),
414
- 'violet': (238, 130, 238),
415
- 'coral': (255, 127, 80),
434
+ 'orchid': (218, 112, 214),
435
+
436
+ # Yellows & Golds
437
+ 'bright_yellow': (255, 255, 0),
438
+ 'golden_yellow': (255, 215, 0),
439
+ 'lemon_yellow': (255, 247, 0),
440
+ 'amber': (255, 191, 0),
441
+ 'mustard_yellow': (255, 219, 88),
442
+ 'cream': (255, 253, 208),
443
+ 'wheat': (245, 222, 179),
444
+
445
+ # Oranges
446
+ 'bright_orange': (255, 165, 0),
447
+ 'burnt_orange': (204, 85, 0),
448
+ 'peach': (255, 218, 185),
449
+ 'tangerine': (255, 163, 67),
450
+ 'pumpkin_orange': (255, 117, 24),
451
+ 'apricot': (251, 206, 177),
452
+
453
+ # Pinks
454
+ 'hot_pink': (255, 105, 180),
455
+ 'light_pink': (255, 192, 203),
456
+ 'deep_pink': (255, 20, 147),
457
+ 'salmon_pink': (250, 128, 114),
458
+ 'blush_pink': (255, 182, 193),
459
+ 'fuchsia': (255, 0, 255),
460
+
461
+ # Cyans & Teals
462
+ 'bright_cyan': (0, 255, 255),
463
+ 'dark_teal': (0, 128, 128),
416
464
  'turquoise': (64, 224, 208),
417
- 'gold': (255, 215, 0)
465
+ 'aqua': (0, 255, 255),
466
+ 'seafoam': (159, 226, 191),
467
+ 'teal_blue': (54, 117, 136),
468
+
469
+ # Browns & Earth Tones
470
+ 'chocolate_brown': (210, 105, 30),
471
+ 'saddle_brown': (139, 69, 19),
472
+ 'light_brown': (205, 133, 63),
473
+ 'tan': (210, 180, 140),
474
+ 'beige': (245, 245, 220),
475
+ 'coffee_brown': (111, 78, 55),
476
+ 'rust_brown': (183, 65, 14),
477
+
478
+ # Grays & Neutrals
479
+ 'charcoal_gray': (54, 69, 79),
480
+ 'light_gray': (211, 211, 211),
481
+ 'silver': (192, 192, 192),
482
+ 'slate_gray': (112, 128, 144),
483
+ 'ash_gray': (178, 190, 181),
484
+ 'smoke_gray': (152, 152, 152),
485
+
486
+ # Additional Distinctive Colors
487
+ 'lime_yellow': (191, 255, 0),
488
+ 'electric_blue': (125, 249, 255),
489
+ 'neon_green': (57, 255, 20),
490
+ 'wine_red': (114, 47, 55),
491
+ 'copper': (184, 115, 51),
492
+ 'ivory': (255, 255, 240),
493
+ 'periwinkle': (204, 204, 255),
494
+ 'mint': (189, 252, 201)
418
495
  }
419
496
 
420
497
  def rgb_to_color_name(rgb: Tuple[int, int, int]) -> str:
@@ -440,21 +517,90 @@ def rgb_to_color_name(rgb: Tuple[int, int, int]) -> str:
440
517
  distance = np.sqrt(np.sum((rgb_array - np.array(color_rgb)) ** 2))
441
518
  if distance < min_distance:
442
519
  min_distance = distance
520
+ #closest_color = color_name + f" {str(rgb_array)}" # <- if we want RGB names
443
521
  closest_color = color_name
444
-
522
+
445
523
  return closest_color
446
524
 
447
- def convert_node_colors_to_names(node_to_color: Dict[int, Tuple[int, int, int]]) -> Dict[int, str]:
525
+ def convert_node_colors_to_names(node_to_color: Dict[int, Tuple[int, int, int]],
526
+ show_legend: bool = True,
527
+ figsize: Tuple[int, int] = (10, 8),
528
+ save_path: str = None) -> Dict[int, str]:
448
529
  """
449
530
  Convert a dictionary of node-to-RGB mappings to node-to-color-name mappings.
531
+ Optionally displays a matplotlib legend showing the mappings.
450
532
 
451
533
  Args:
452
534
  node_to_color: Dictionary mapping node IDs to RGB tuples
535
+ show_legend: Whether to display the color legend plot
536
+ figsize: Figure size as (width, height) for the legend
537
+ save_path: Optional path to save the legend figure
453
538
 
454
539
  Returns:
455
540
  Dictionary mapping node IDs to color names
456
541
  """
457
- return {node: rgb_to_color_name(color) for node, color in node_to_color.items()}
542
+ # Convert colors to names
543
+ node_to_names = {node: rgb_to_color_name(color) for node, color in node_to_color.items()}
544
+
545
+ # Create legend if requested
546
+ if show_legend:
547
+ import matplotlib.pyplot as plt
548
+ from matplotlib.patches import Rectangle
549
+
550
+ num_entries = len(node_to_color)
551
+
552
+ # Calculate dynamic spacing based on number of entries
553
+ entry_height = 0.8
554
+ total_height = num_entries * entry_height + 1.5 # Extra space for title and margins
555
+
556
+ # Create figure and axis with proper scaling
557
+ fig, ax = plt.subplots(figsize=figsize)
558
+ ax.set_xlim(0, 10)
559
+ ax.set_ylim(0, total_height)
560
+ ax.axis('off')
561
+
562
+ # Title
563
+ ax.text(5, total_height - 0.5, 'Color Legend',
564
+ fontsize=16, fontweight='bold', ha='center')
565
+
566
+ # Sort nodes for consistent display
567
+ sorted_nodes = sorted(node_to_color.keys())
568
+
569
+ # Create legend entries
570
+ for i, node in enumerate(sorted_nodes):
571
+ y_pos = total_height - (i + 1) * entry_height - 0.8
572
+ rgb = node_to_color[node]
573
+ color_name = node_to_names[node]
574
+
575
+ # Normalize RGB values for matplotlib (0-1 range)
576
+ norm_rgb = tuple(c/255.0 for c in rgb)
577
+
578
+ # Draw color swatch (using actual RGB values)
579
+ swatch = Rectangle((1.0, y_pos - 0.15), 0.8, 0.3,
580
+ facecolor=norm_rgb, edgecolor='black', linewidth=1)
581
+ ax.add_patch(swatch)
582
+
583
+ # Node ID (exactly as it appears in dict keys)
584
+ ax.text(0.2, y_pos, str(node), fontsize=12, fontweight='bold',
585
+ va='center', ha='left')
586
+
587
+ # Color name (mapped name, nicely formatted)
588
+ ax.text(2.2, y_pos, color_name.replace('_', ' ').title(),
589
+ fontsize=11, va='center', ha='left')
590
+
591
+ # Add border around the legend
592
+ border = Rectangle((0.1, 0.1), 9.8, total_height - 0.2,
593
+ fill=False, edgecolor='gray', linewidth=2)
594
+ ax.add_patch(border)
595
+
596
+ plt.tight_layout()
597
+
598
+ if save_path:
599
+ plt.savefig(save_path, dpi=300, bbox_inches='tight')
600
+
601
+ plt.show()
602
+
603
+ return node_to_names
458
604
 
459
605
  def generate_distinct_colors(n_colors: int) -> List[Tuple[int, int, int]]:
460
606
  """
@@ -519,7 +665,7 @@ def assign_node_colors(node_list: List[int], labeled_array: np.ndarray) -> Tuple
519
665
 
520
666
  # Convert colors for naming
521
667
  node_to_color_rgb = {k: tuple(v[:3]) for k, v in node_to_color.items()}
522
- node_to_color_names = convert_node_colors_to_names(node_to_color_rgb)
668
+ node_to_color_names = convert_node_colors_to_names(node_to_color_rgb, show_legend = False)
523
669
 
524
670
  return rgba_array, node_to_color_names
525
671