neologdn 0.5.2__tar.gz → 0.5.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of neologdn might be problematic. Click here for more details.
- {neologdn-0.5.2 → neologdn-0.5.3}/CHANGES.rst +5 -0
- {neologdn-0.5.2/neologdn.egg-info → neologdn-0.5.3}/PKG-INFO +45 -8
- neologdn-0.5.3/README.rst +140 -0
- neologdn-0.5.3/neologdn.c +8421 -0
- {neologdn-0.5.2 → neologdn-0.5.3}/neologdn.cpp +1619 -914
- {neologdn-0.5.2 → neologdn-0.5.3/neologdn.egg-info}/PKG-INFO +45 -8
- {neologdn-0.5.2 → neologdn-0.5.3}/neologdn.egg-info/SOURCES.txt +1 -0
- {neologdn-0.5.2 → neologdn-0.5.3}/setup.py +1 -1
- neologdn-0.5.2/README.rst +0 -108
- {neologdn-0.5.2 → neologdn-0.5.3}/LICENSE +0 -0
- {neologdn-0.5.2 → neologdn-0.5.3}/MANIFEST.in +0 -0
- {neologdn-0.5.2 → neologdn-0.5.3}/neologdn.egg-info/dependency_links.txt +0 -0
- {neologdn-0.5.2 → neologdn-0.5.3}/neologdn.egg-info/top_level.txt +0 -0
- {neologdn-0.5.2 → neologdn-0.5.3}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: neologdn
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.3
|
|
4
4
|
Summary: Japanese text normalizer for mecab-neologd
|
|
5
5
|
Home-page: http://github.com/ikegami-yukino/neologdn
|
|
6
6
|
Author: Yukino Ikegami
|
|
@@ -14,18 +14,18 @@ Classifier: License :: OSI Approved :: Apache Software License
|
|
|
14
14
|
Classifier: Programming Language :: Cython
|
|
15
15
|
Classifier: Programming Language :: Python
|
|
16
16
|
Classifier: Programming Language :: Python :: 3
|
|
17
|
-
Classifier: Programming Language :: Python :: 3.6
|
|
18
17
|
Classifier: Programming Language :: Python :: 3.7
|
|
19
18
|
Classifier: Programming Language :: Python :: 3.8
|
|
20
19
|
Classifier: Programming Language :: Python :: 3.9
|
|
21
20
|
Classifier: Programming Language :: Python :: 3.10
|
|
22
21
|
Classifier: Programming Language :: Python :: 3.11
|
|
22
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
23
23
|
Classifier: Topic :: Text Processing :: Linguistic
|
|
24
24
|
Description-Content-Type: text/x-rst
|
|
25
25
|
License-File: LICENSE
|
|
26
26
|
|
|
27
27
|
neologdn
|
|
28
|
-
|
|
28
|
+
#########
|
|
29
29
|
|
|
30
30
|
|downloads| |pyversion| |version| |license|
|
|
31
31
|
|
|
@@ -40,14 +40,14 @@ Contributions are welcome!
|
|
|
40
40
|
NOTE: Installing this module requires C++11 compiler.
|
|
41
41
|
|
|
42
42
|
Installation
|
|
43
|
-
|
|
43
|
+
*************
|
|
44
44
|
|
|
45
45
|
::
|
|
46
46
|
|
|
47
47
|
$ pip install neologdn
|
|
48
48
|
|
|
49
49
|
Usage
|
|
50
|
-
|
|
50
|
+
******
|
|
51
51
|
|
|
52
52
|
.. code:: python
|
|
53
53
|
|
|
@@ -85,7 +85,7 @@ Usage
|
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
Benchmark
|
|
88
|
-
|
|
88
|
+
**********
|
|
89
89
|
|
|
90
90
|
.. code:: python
|
|
91
91
|
|
|
@@ -109,16 +109,48 @@ https://github.com/ikegami-yukino/neologdn/blob/master/benchmark/benchmark.ipynb
|
|
|
109
109
|
|
|
110
110
|
|
|
111
111
|
License
|
|
112
|
-
|
|
112
|
+
*********
|
|
113
113
|
|
|
114
114
|
Apache Software License.
|
|
115
115
|
|
|
116
116
|
|
|
117
117
|
Contribution
|
|
118
|
-
|
|
118
|
+
*************
|
|
119
119
|
|
|
120
120
|
Contributions are welcome! See: https://github.com/ikegami-yukino/neologdn/blob/master/.github/CONTRIBUTING.md
|
|
121
121
|
|
|
122
|
+
Cited by
|
|
123
|
+
**********
|
|
124
|
+
Book
|
|
125
|
+
========
|
|
126
|
+
山本 和英. テキスト処理の要素技術. 近代科学者. P.41. 2021.
|
|
127
|
+
|
|
128
|
+
Blog
|
|
129
|
+
========
|
|
130
|
+
- 【ライブラリ紹介】テキスト正規化ライブラリ neologdn: https://diatonic.codes/blog/neologdn/
|
|
131
|
+
- 日本語テキストの前処理:neologdn、大文字小文字、Unicode正規化 - tuttieee’s blog: https://tuttieee.hatenablog.com/entry/ja-nlp-preprocess
|
|
132
|
+
- ▲本日の関数==neologdn.normalize()== - TPTブログ: https://ds-blog.tbtech.co.jp/entry/2020/05/11/%E2%96%B2%E6%9C%AC%E6%97%A5%E3%81%AE%E9%96%A2%E6%95%B0%3D%3Dneologdn_normalize%28%29%3D%3D
|
|
133
|
+
- NLPについて学ぶ: https://zenn.dev/panyoriokome/scraps/d67f68ab50c0c1
|
|
134
|
+
- テキスト正規化用PythonライブラリをMATLABからコール #Python - Qiita: https://qiita.com/aoimidori/items/ab5a4383b5a7bb307bad
|
|
135
|
+
- 自然言語処理の前処理手順をPythonコード付きでご紹介 | AI活用・AI導入事例の紹介 | AI活用・AI導入事例の紹介: https://www.matrixflow.net/case-study/75/
|
|
136
|
+
- pythonによる日本語前処理備忘録 | DATUM STUDIO株式会社: https://datumstudio.jp/blog/python%E3%81%AB%E3%82%88%E3%82%8B%E6%97%A5%E6%9C%AC%E8%AA%9E%E5%89%8D%E5%87%A6%E7%90%86%E5%82%99%E5%BF%98%E9%8C%B2/
|
|
137
|
+
- 前処理、前処理、そして、前処理 (自然言語処理:日本語編)|narudesu: https://note.com/narudesu/n/na35de30a583a
|
|
138
|
+
- ショートカットキーでneologd.normalize: https://scrapbox.io/nishio/%E3%82%B7%E3%83%A7%E3%83%BC%E3%83%88%E3%82%AB%E3%83%83%E3%83%88%E3%82%AD%E3%83%BC%E3%81%A7neologd.normalize
|
|
139
|
+
- Pythonで自然言語処理を行うための環境構築 #Python - Qiita: https://qiita.com/lawyer_alpaca/items/86b0deda984170203467
|
|
140
|
+
- Python normalize Examples: https://python.hotexamples.com/examples/neologdn/-/normalize/python-normalize-function-examples.html
|
|
141
|
+
- 株式会社ししまろ (ch-4) 潜在的ディリクレ配分(LDA)によるchABSAデータセットの分析: https://shishimaro.co.jp/blog/ai/538
|
|
142
|
+
- 形態素解析前の日本語文書の前処理 (Python) - け日記: https://ohke.hateblo.jp/entry/2019/02/09/141500
|
|
143
|
+
- 人工知能に言語を理解させる!?自然言語処理に重要なデータの前処理をPythonで徹底解説 | AI研究所: https://ai-kenkyujo.com/programming/make-ai-understand-the-language/
|
|
144
|
+
- 最新wikipediaを反映したMeCabユーザー辞書を作る - NEologd拡張 | ぷらこめ: https://purakome.net/mecab/addwiki/
|
|
145
|
+
- 【自然言語処理入門】文に対してストップワードと正規化から処理を施す | マイナビエンジニアブログ: https://engineerblog.mynavi.jp/technology/nlp_stopword/
|
|
146
|
+
- 表記統一 [自然言語処理の餅屋]: https://www.jnlp.org/nlp/%E6%A0%A1%E6%AD%A3/%E8%A1%A8%E8%A8%98%E7%B5%B1%E4%B8%80
|
|
147
|
+
- Pytorchを使ってテキスト生成モデルのT5を構築 〜Transformersでの転移学習による手軽な実践〜 - 見習いデータサイエンティストの隠れ家: https://www.dskomei.com/entry/2021/09/28/110016
|
|
148
|
+
- 象と散歩: Goolge Colabでお手軽テキストマイニング(日本語前処理): https://walking-elephant.blogspot.com/2023/07/text-mining-normalized.html
|
|
149
|
+
- 【Pythonで自然言語処理(NLP)を実装してみよう!】学ぶべき知識についても徹底解説! - ベトナムオフショア開発の最前線 by Mattock inc.: https://mattock.jp/blog/artificial-intelligence/nlp/lets-implement-nlp-in-python/
|
|
150
|
+
- tools [Digital Humanities Japan: Resource Wiki]: https://dhjapan.org/wiki/doku.php?id=tools
|
|
151
|
+
- Pythonで現代の季語を調べてみた | Aidemy | 10秒で始めるAIプログラミング学習サービスAidemy[アイデミー]: https://aidemy.net/magazine/703/
|
|
152
|
+
|
|
153
|
+
|
|
122
154
|
.. |downloads| image:: https://static.pepy.tech/personalized-badge/neologdn?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads
|
|
123
155
|
:target: https://pepy.tech/project/neologdn
|
|
124
156
|
|
|
@@ -137,6 +169,11 @@ Contributions are welcome! See: https://github.com/ikegami-yukino/neologdn/blob/
|
|
|
137
169
|
CHANGES
|
|
138
170
|
========
|
|
139
171
|
|
|
172
|
+
0.5.3 (2024-05-03)
|
|
173
|
+
----------------------------
|
|
174
|
+
|
|
175
|
+
- Support Python 3.12
|
|
176
|
+
|
|
140
177
|
0.5.2 (2023-08-03)
|
|
141
178
|
----------------------------
|
|
142
179
|
|
|
@@ -0,0 +1,140 @@
|
|
|
1
|
+
neologdn
|
|
2
|
+
#########
|
|
3
|
+
|
|
4
|
+
|downloads| |pyversion| |version| |license|
|
|
5
|
+
|
|
6
|
+
neologdn is a Japanese text normalizer for `mecab-neologd <https://github.com/neologd/mecab-ipadic-neologd>`_.
|
|
7
|
+
|
|
8
|
+
The normalization is based on the neologd's rules:
|
|
9
|
+
https://github.com/neologd/mecab-ipadic-neologd/wiki/Regexp.ja
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
Contributions are welcome!
|
|
13
|
+
|
|
14
|
+
NOTE: Installing this module requires C++11 compiler.
|
|
15
|
+
|
|
16
|
+
Installation
|
|
17
|
+
*************
|
|
18
|
+
|
|
19
|
+
::
|
|
20
|
+
|
|
21
|
+
$ pip install neologdn
|
|
22
|
+
|
|
23
|
+
Usage
|
|
24
|
+
******
|
|
25
|
+
|
|
26
|
+
.. code:: python
|
|
27
|
+
|
|
28
|
+
import neologdn
|
|
29
|
+
neologdn.normalize("ハンカクカナ")
|
|
30
|
+
# => 'ハンカクカナ'
|
|
31
|
+
neologdn.normalize("全角記号!?@#")
|
|
32
|
+
# => '全角記号!?@#'
|
|
33
|
+
neologdn.normalize("全角記号例外「・」")
|
|
34
|
+
# => '全角記号例外「・」'
|
|
35
|
+
neologdn.normalize("長音短縮ウェーーーーイ")
|
|
36
|
+
# => '長音短縮ウェーイ'
|
|
37
|
+
neologdn.normalize("チルダ削除ウェ~∼∾〜〰~イ")
|
|
38
|
+
# => 'チルダ削除ウェイ'
|
|
39
|
+
neologdn.normalize("いろんなハイフン˗֊‐‑‒–⁃⁻₋−")
|
|
40
|
+
# => 'いろんなハイフン-'
|
|
41
|
+
neologdn.normalize(" PRML 副 読 本 ")
|
|
42
|
+
# => 'PRML副読本'
|
|
43
|
+
neologdn.normalize(" Natural Language Processing ")
|
|
44
|
+
# => 'Natural Language Processing'
|
|
45
|
+
neologdn.normalize("かわいいいいいいいいい", repeat=6)
|
|
46
|
+
# => 'かわいいいいいい'
|
|
47
|
+
neologdn.normalize("無駄無駄無駄無駄ァ", repeat=1)
|
|
48
|
+
# => '無駄ァ'
|
|
49
|
+
neologdn.normalize("1995〜2001年", tilde="normalize")
|
|
50
|
+
# => '1995~2001年'
|
|
51
|
+
neologdn.normalize("1995~2001年", tilde="normalize_zenkaku")
|
|
52
|
+
# => '1995〜2001年'
|
|
53
|
+
neologdn.normalize("1995〜2001年", tilde="ignore") # Don't convert tilde
|
|
54
|
+
# => '1995〜2001年'
|
|
55
|
+
neologdn.normalize("1995〜2001年", tilde="remove")
|
|
56
|
+
# => '19952001年'
|
|
57
|
+
neologdn.normalize("1995〜2001年") # Default parameter
|
|
58
|
+
# => '19952001年'
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
Benchmark
|
|
62
|
+
**********
|
|
63
|
+
|
|
64
|
+
.. code:: python
|
|
65
|
+
|
|
66
|
+
# Sample code from
|
|
67
|
+
# https://github.com/neologd/mecab-ipadic-neologd/wiki/Regexp.ja#python-written-by-hideaki-t--overlast
|
|
68
|
+
import normalize_neologd
|
|
69
|
+
|
|
70
|
+
%timeit normalize(normalize_neologd.normalize_neologd)
|
|
71
|
+
# => 9.55 s ± 29.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
import neologdn
|
|
75
|
+
%timeit normalize(neologdn.normalize)
|
|
76
|
+
# => 6.66 s ± 35.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
neologdn is about x1.43 faster than sample code.
|
|
80
|
+
|
|
81
|
+
details are described as the below notebook:
|
|
82
|
+
https://github.com/ikegami-yukino/neologdn/blob/master/benchmark/benchmark.ipynb
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
License
|
|
86
|
+
*********
|
|
87
|
+
|
|
88
|
+
Apache Software License.
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
Contribution
|
|
92
|
+
*************
|
|
93
|
+
|
|
94
|
+
Contributions are welcome! See: https://github.com/ikegami-yukino/neologdn/blob/master/.github/CONTRIBUTING.md
|
|
95
|
+
|
|
96
|
+
Cited by
|
|
97
|
+
**********
|
|
98
|
+
Book
|
|
99
|
+
========
|
|
100
|
+
山本 和英. テキスト処理の要素技術. 近代科学者. P.41. 2021.
|
|
101
|
+
|
|
102
|
+
Blog
|
|
103
|
+
========
|
|
104
|
+
- 【ライブラリ紹介】テキスト正規化ライブラリ neologdn: https://diatonic.codes/blog/neologdn/
|
|
105
|
+
- 日本語テキストの前処理:neologdn、大文字小文字、Unicode正規化 - tuttieee’s blog: https://tuttieee.hatenablog.com/entry/ja-nlp-preprocess
|
|
106
|
+
- ▲本日の関数==neologdn.normalize()== - TPTブログ: https://ds-blog.tbtech.co.jp/entry/2020/05/11/%E2%96%B2%E6%9C%AC%E6%97%A5%E3%81%AE%E9%96%A2%E6%95%B0%3D%3Dneologdn_normalize%28%29%3D%3D
|
|
107
|
+
- NLPについて学ぶ: https://zenn.dev/panyoriokome/scraps/d67f68ab50c0c1
|
|
108
|
+
- テキスト正規化用PythonライブラリをMATLABからコール #Python - Qiita: https://qiita.com/aoimidori/items/ab5a4383b5a7bb307bad
|
|
109
|
+
- 自然言語処理の前処理手順をPythonコード付きでご紹介 | AI活用・AI導入事例の紹介 | AI活用・AI導入事例の紹介: https://www.matrixflow.net/case-study/75/
|
|
110
|
+
- pythonによる日本語前処理備忘録 | DATUM STUDIO株式会社: https://datumstudio.jp/blog/python%E3%81%AB%E3%82%88%E3%82%8B%E6%97%A5%E6%9C%AC%E8%AA%9E%E5%89%8D%E5%87%A6%E7%90%86%E5%82%99%E5%BF%98%E9%8C%B2/
|
|
111
|
+
- 前処理、前処理、そして、前処理 (自然言語処理:日本語編)|narudesu: https://note.com/narudesu/n/na35de30a583a
|
|
112
|
+
- ショートカットキーでneologd.normalize: https://scrapbox.io/nishio/%E3%82%B7%E3%83%A7%E3%83%BC%E3%83%88%E3%82%AB%E3%83%83%E3%83%88%E3%82%AD%E3%83%BC%E3%81%A7neologd.normalize
|
|
113
|
+
- Pythonで自然言語処理を行うための環境構築 #Python - Qiita: https://qiita.com/lawyer_alpaca/items/86b0deda984170203467
|
|
114
|
+
- Python normalize Examples: https://python.hotexamples.com/examples/neologdn/-/normalize/python-normalize-function-examples.html
|
|
115
|
+
- 株式会社ししまろ (ch-4) 潜在的ディリクレ配分(LDA)によるchABSAデータセットの分析: https://shishimaro.co.jp/blog/ai/538
|
|
116
|
+
- 形態素解析前の日本語文書の前処理 (Python) - け日記: https://ohke.hateblo.jp/entry/2019/02/09/141500
|
|
117
|
+
- 人工知能に言語を理解させる!?自然言語処理に重要なデータの前処理をPythonで徹底解説 | AI研究所: https://ai-kenkyujo.com/programming/make-ai-understand-the-language/
|
|
118
|
+
- 最新wikipediaを反映したMeCabユーザー辞書を作る - NEologd拡張 | ぷらこめ: https://purakome.net/mecab/addwiki/
|
|
119
|
+
- 【自然言語処理入門】文に対してストップワードと正規化から処理を施す | マイナビエンジニアブログ: https://engineerblog.mynavi.jp/technology/nlp_stopword/
|
|
120
|
+
- 表記統一 [自然言語処理の餅屋]: https://www.jnlp.org/nlp/%E6%A0%A1%E6%AD%A3/%E8%A1%A8%E8%A8%98%E7%B5%B1%E4%B8%80
|
|
121
|
+
- Pytorchを使ってテキスト生成モデルのT5を構築 〜Transformersでの転移学習による手軽な実践〜 - 見習いデータサイエンティストの隠れ家: https://www.dskomei.com/entry/2021/09/28/110016
|
|
122
|
+
- 象と散歩: Goolge Colabでお手軽テキストマイニング(日本語前処理): https://walking-elephant.blogspot.com/2023/07/text-mining-normalized.html
|
|
123
|
+
- 【Pythonで自然言語処理(NLP)を実装してみよう!】学ぶべき知識についても徹底解説! - ベトナムオフショア開発の最前線 by Mattock inc.: https://mattock.jp/blog/artificial-intelligence/nlp/lets-implement-nlp-in-python/
|
|
124
|
+
- tools [Digital Humanities Japan: Resource Wiki]: https://dhjapan.org/wiki/doku.php?id=tools
|
|
125
|
+
- Pythonで現代の季語を調べてみた | Aidemy | 10秒で始めるAIプログラミング学習サービスAidemy[アイデミー]: https://aidemy.net/magazine/703/
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
.. |downloads| image:: https://static.pepy.tech/personalized-badge/neologdn?period=total&units=international_system&left_color=black&right_color=orange&left_text=Downloads
|
|
129
|
+
:target: https://pepy.tech/project/neologdn
|
|
130
|
+
|
|
131
|
+
.. |version| image:: https://img.shields.io/pypi/v/neologdn.svg
|
|
132
|
+
:target: http://pypi.python.org/pypi/neologdn/
|
|
133
|
+
:alt: latest version
|
|
134
|
+
|
|
135
|
+
.. |pyversion| image:: https://img.shields.io/pypi/pyversions/neologdn.svg
|
|
136
|
+
|
|
137
|
+
.. |license| image:: https://img.shields.io/pypi/l/neologdn.svg
|
|
138
|
+
:target: http://pypi.python.org/pypi/neologdn/
|
|
139
|
+
:alt: license
|
|
140
|
+
|