nbastatpy 0.1.6__tar.gz → 0.1.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nbastatpy might be problematic. Click here for more details.

@@ -1,27 +1,20 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nbastatpy
3
- Version: 0.1.6
3
+ Version: 0.1.8
4
4
  Summary: An easy-to-use wrapper for nba_api to easily find data for a player, game, team, or season
5
- Home-page: https://github.com/aberghammer-analytics/NBAStatPy
6
5
  Keywords: basketball,data,nba,sports,stats
7
- Maintainer: Anthony Berghammer
8
- Maintainer-email: aberghammer.analytics@gmail.com
9
- Requires-Python: >=3.10,<4.0
10
6
  Classifier: Intended Audience :: Science/Research
11
7
  Classifier: License :: OSI Approved :: MIT License
12
- Classifier: Programming Language :: Python :: 3
13
- Classifier: Programming Language :: Python :: 3.10
14
- Classifier: Programming Language :: Python :: 3.11
15
- Requires-Dist: bs4 (>=0.0.2,<0.0.3)
16
- Requires-Dist: loguru (>=0.7.2,<0.8.0)
17
- Requires-Dist: nba_api (>=1.4.1,<2.0.0)
18
- Requires-Dist: pandas (>=2.2.2,<3.0.0)
19
- Requires-Dist: pillow (>=10.3.0,<11.0.0)
20
- Requires-Dist: requests (>=2.31.0,<3.0.0)
21
- Requires-Dist: rich (>=13.7.1,<14.0.0)
22
- Project-URL: Documentation, https://github.com/aberghammer-analytics/NBAStatPy/blob/main/README.md
23
- Project-URL: Repository, https://github.com/aberghammer-analytics/NBAStatPy
8
+ Requires-Python: >=3.10
24
9
  Description-Content-Type: text/markdown
10
+ License-File: LICENSE
11
+ Requires-Dist: bs4>=0.0.2
12
+ Requires-Dist: loguru>=0.7.3
13
+ Requires-Dist: nba-api>=1.6.1
14
+ Requires-Dist: pandas>=2.2.3
15
+ Requires-Dist: pillow>=11.0.0
16
+ Requires-Dist: requests>=2.32.3
17
+ Requires-Dist: rich>=13.9.4
25
18
 
26
19
  # NBAStatPy
27
20
 
@@ -64,4 +57,3 @@ player.get_awards()
64
57
  This returns a pandas dataframe with the awards won by the player each year.
65
58
 
66
59
  There are a lot of endpoints and various arguments for more complex queries like tracking and synergy datasets.
67
-
@@ -0,0 +1,33 @@
1
+ [project]
2
+ name = "nbastatpy"
3
+ version = "0.1.8"
4
+ description = "An easy-to-use wrapper for nba_api to easily find data for a player, game, team, or season"
5
+ readme = "README.md"
6
+ requires-python = ">=3.10"
7
+ dependencies = [
8
+ "bs4>=0.0.2",
9
+ "loguru>=0.7.3",
10
+ "nba-api>=1.6.1",
11
+ "pandas>=2.2.3",
12
+ "pillow>=11.0.0",
13
+ "requests>=2.32.3",
14
+ "rich>=13.9.4",
15
+ ]
16
+ keywords = ["basketball", "data", "nba", "sports", "stats"]
17
+ classifiers = [
18
+ "Intended Audience :: Science/Research",
19
+ "License :: OSI Approved :: MIT License",
20
+ ]
21
+
22
+
23
+ [tool.uv]
24
+ dev-dependencies = [
25
+ "black>=24.10.0",
26
+ "ipykernel>=6.29.5",
27
+ "ruff>=0.8.2",
28
+ "pytest>=8.3.4",
29
+ ]
30
+
31
+ [tool.pytest.ini_options]
32
+ pythonpath = ["src"]
33
+
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,59 @@
1
+ Metadata-Version: 2.1
2
+ Name: nbastatpy
3
+ Version: 0.1.8
4
+ Summary: An easy-to-use wrapper for nba_api to easily find data for a player, game, team, or season
5
+ Keywords: basketball,data,nba,sports,stats
6
+ Classifier: Intended Audience :: Science/Research
7
+ Classifier: License :: OSI Approved :: MIT License
8
+ Requires-Python: >=3.10
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE
11
+ Requires-Dist: bs4>=0.0.2
12
+ Requires-Dist: loguru>=0.7.3
13
+ Requires-Dist: nba-api>=1.6.1
14
+ Requires-Dist: pandas>=2.2.3
15
+ Requires-Dist: pillow>=11.0.0
16
+ Requires-Dist: requests>=2.32.3
17
+ Requires-Dist: rich>=13.9.4
18
+
19
+ # NBAStatPy
20
+
21
+ ## Overview
22
+
23
+ This is an easy-to-use wrapper for the `nba_api` package. The goal is to be able to easily access and find data for a player, game, team, or season.
24
+
25
+ The data is accessed through a class based on how you're searching for it. A quickstart example is shown below. Currently there are 4 classes:
26
+
27
+ - `Game`
28
+ - `Player`
29
+ - `Season`
30
+ - `Team`
31
+
32
+ ## Quickstart
33
+
34
+ To get started you can import the class that represents the data you're searching for.
35
+
36
+ ```{python}
37
+ from nbastatpy.player import Player
38
+ ```
39
+
40
+ Then you build a player using either an ID from stats.nba.com or the player's name. When you're building the player object you can add additional search data like season, data format, or playoffs vs. regular season.
41
+
42
+ ```{python}
43
+ player = Player(
44
+ "Giannis",
45
+ season="2020",
46
+ playoffs=True,
47
+ permode="PerGame"
48
+ )
49
+ ```
50
+
51
+ Once you have the player object, you can get different datasets based on the criteria. For instance, you can get the awards the player has won by doing the following:
52
+
53
+ ```{python}
54
+ player.get_awards()
55
+ ```
56
+
57
+ This returns a pandas dataframe with the awards won by the player each year.
58
+
59
+ There are a lot of endpoints and various arguments for more complex queries like tracking and synergy datasets.
@@ -0,0 +1,18 @@
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ src/nbastatpy/__init__.py
5
+ src/nbastatpy/game.py
6
+ src/nbastatpy/player.py
7
+ src/nbastatpy/season.py
8
+ src/nbastatpy/team.py
9
+ src/nbastatpy/utils.py
10
+ src/nbastatpy.egg-info/PKG-INFO
11
+ src/nbastatpy.egg-info/SOURCES.txt
12
+ src/nbastatpy.egg-info/dependency_links.txt
13
+ src/nbastatpy.egg-info/requires.txt
14
+ src/nbastatpy.egg-info/top_level.txt
15
+ tests/test_game.py
16
+ tests/test_player.py
17
+ tests/test_season.py
18
+ tests/test_team.py
@@ -0,0 +1,7 @@
1
+ bs4>=0.0.2
2
+ loguru>=0.7.3
3
+ nba-api>=1.6.1
4
+ pandas>=2.2.3
5
+ pillow>=11.0.0
6
+ requests>=2.32.3
7
+ rich>=13.9.4
@@ -0,0 +1 @@
1
+ nbastatpy
@@ -0,0 +1,8 @@
1
+ from nbastatpy.game import Game
2
+
3
+ GAME_ID = "0021800836"
4
+
5
+
6
+ def test_game_creation():
7
+ game = Game(GAME_ID)
8
+ assert game.game_id == GAME_ID
@@ -0,0 +1,8 @@
1
+ from nbastatpy.player import Player
2
+
3
+ PLAYER_NAME = "LeBron James"
4
+
5
+
6
+ def test_player_creation():
7
+ player = Player(PLAYER_NAME)
8
+ assert player.name == PLAYER_NAME
@@ -0,0 +1,8 @@
1
+ from nbastatpy.season import Season
2
+
3
+ SEASON_YEAR = "2020"
4
+
5
+
6
+ def test_season_creation():
7
+ season = Season(SEASON_YEAR)
8
+ assert season.season_year == SEASON_YEAR
@@ -0,0 +1,8 @@
1
+ from nbastatpy.team import Team
2
+
3
+ TEAM_NAME = "MIL"
4
+
5
+
6
+ def test_team_creation():
7
+ team = Team(TEAM_NAME)
8
+ assert team.info.get("abbreviation") == TEAM_NAME
@@ -1,36 +0,0 @@
1
- [tool.poetry]
2
- name = "nbastatpy"
3
- version = "0.1.6"
4
- description = "An easy-to-use wrapper for nba_api to easily find data for a player, game, team, or season"
5
- authors = []
6
- maintainers = ["Anthony Berghammer <aberghammer.analytics@gmail.com>"]
7
- readme = "README.md"
8
- repository = "https://github.com/aberghammer-analytics/NBAStatPy"
9
- documentation = "https://github.com/aberghammer-analytics/NBAStatPy/blob/main/README.md"
10
- keywords = ["basketball", "data", "nba", "sports", "stats"]
11
- classifiers = [
12
- "Intended Audience :: Science/Research",
13
- "License :: OSI Approved :: MIT License",
14
- ]
15
- exclude = [
16
- ".scratch/",
17
- ".venv/",
18
- ".vscode",
19
- ]
20
-
21
- [tool.poetry.dependencies]
22
- python = "^3.10"
23
- pandas = "^2.2.2"
24
- nba_api = "^1.4.1"
25
- pillow = "^10.3.0"
26
- requests = "^2.31.0"
27
- loguru = "^0.7.2"
28
- rich = "^13.7.1"
29
- bs4 = "^0.0.2"
30
-
31
- [tool.poetry.group.dev.dependencies]
32
- black = "^24.4.2"
33
-
34
- [build-system]
35
- requires = ["poetry-core"]
36
- build-backend = "poetry.core.masonry.api"
File without changes
File without changes