napari-tmidas 0.2.6__tar.gz → 0.3.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/.github/workflows/test_and_deploy.yml +2 -2
- napari_tmidas-0.3.1/PKG-INFO +246 -0
- napari_tmidas-0.3.1/README.md +153 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/advanced_processing.md +6 -14
- napari_tmidas-0.3.1/docs/careamics_denoising.md +384 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/cellpose_segmentation.md +5 -6
- napari_tmidas-0.3.1/docs/crop_anything.md +305 -0
- napari_tmidas-0.3.1/docs/file_conversion.md +386 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/intensity_label_filter.md +1 -9
- napari_tmidas-0.3.1/docs/spotiflow_detection.md +452 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/trackastra_tracking.md +3 -8
- napari_tmidas-0.3.1/docs/viscy_virtual_staining.md +277 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/pyproject.toml +2 -1
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_intensity_label_filter.py +9 -11
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_registry.py +6 -0
- napari_tmidas-0.3.1/src/napari_tmidas/_tests/test_viscy_virtual_staining.py +138 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_version.py +3 -3
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/__init__.py +24 -5
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/cellpose_env_manager.py +22 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/intensity_label_filter.py +15 -4
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/skimage_filters.py +71 -8
- napari_tmidas-0.3.1/src/napari_tmidas/processing_functions/viscy_env_manager.py +381 -0
- napari_tmidas-0.3.1/src/napari_tmidas/processing_functions/viscy_virtual_staining.py +393 -0
- napari_tmidas-0.3.1/src/napari_tmidas.egg-info/PKG-INFO +246 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas.egg-info/SOURCES.txt +9 -1
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas.egg-info/requires.txt +2 -1
- napari_tmidas-0.2.6/PKG-INFO +0 -278
- napari_tmidas-0.2.6/README.md +0 -186
- napari_tmidas-0.2.6/src/napari_tmidas.egg-info/PKG-INFO +0 -278
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/.github/dependabot.yml +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/.gitignore +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/.napari-hub/DESCRIPTION.md +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/.napari-hub/config.yml +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/.pre-commit-config.yaml +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/LICENSE +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/MANIFEST.in +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/basic_processing.md +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/grid_view_overlay.md +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/regionprops_analysis.md +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/docs/regionprops_summary.md +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/examples/grid_overlay_example.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/examples/intensity_filter_example.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/examples/regionprops_example.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/setup.cfg +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/__init__.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_crop_anything.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_env_manager.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_file_conversion.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_file_selector.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_label_inspection.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_processing_worker.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_reader.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_registry.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_roi_colocalization.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_sample_data.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_crop_anything.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_env_manager.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_file_selector.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_grid_view_overlay.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_init.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_label_inspection.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_processing_basic.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_processing_worker.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_reader.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_regionprops_analysis.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_scipy_filters.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_skimage_filters.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_split_channels.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_spotiflow.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_tyx_display_fix.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_ui_utils.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_widget.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_windows_basic.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_tests/test_writer.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_ui_utils.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_widget.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/_writer.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/napari.yaml +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/basic.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/careamics_denoising.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/careamics_env_manager.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/cellpose_segmentation.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/colocalization.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/file_compression.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/grid_view_overlay.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/regionprops_analysis.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/sam2_env_manager.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/sam2_mp4.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/spotiflow_detection.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/spotiflow_env_manager.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/timepoint_merger.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas/processing_functions/trackastra_tracking.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/src/napari_tmidas.egg-info/top_level.txt +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/test_grid_overlay.py +0 -0
- {napari_tmidas-0.2.6 → napari_tmidas-0.3.1}/tox.ini +0 -0
|
@@ -44,8 +44,8 @@ jobs:
|
|
|
44
44
|
- name: Install dependencies
|
|
45
45
|
run: |
|
|
46
46
|
python -m pip install --upgrade pip
|
|
47
|
-
python -m pip install setuptools tox tox-gh-actions
|
|
48
|
-
|
|
47
|
+
python -m pip install setuptools tox tox-gh-actions scikit-learn-extra
|
|
48
|
+
|
|
49
49
|
- name: Pip cache
|
|
50
50
|
uses: actions/cache@v4
|
|
51
51
|
with:
|
|
@@ -0,0 +1,246 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: napari-tmidas
|
|
3
|
+
Version: 0.3.1
|
|
4
|
+
Summary: A plugin for batch processing of confocal and whole-slide microscopy images of biological tissues
|
|
5
|
+
Author: Marco Meer
|
|
6
|
+
Author-email: marco.meer@pm.me
|
|
7
|
+
License:
|
|
8
|
+
Copyright (c) 2025, Marco Meer
|
|
9
|
+
All rights reserved.
|
|
10
|
+
|
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
|
12
|
+
modification, are permitted provided that the following conditions are met:
|
|
13
|
+
|
|
14
|
+
* Redistributions of source code must retain the above copyright notice, this
|
|
15
|
+
list of conditions and the following disclaimer.
|
|
16
|
+
|
|
17
|
+
* Redistributions in binary form must reproduce the above copyright notice,
|
|
18
|
+
this list of conditions and the following disclaimer in the documentation
|
|
19
|
+
and/or other materials provided with the distribution.
|
|
20
|
+
|
|
21
|
+
* Neither the name of copyright holder nor the names of its
|
|
22
|
+
contributors may be used to endorse or promote products derived from
|
|
23
|
+
this software without specific prior written permission.
|
|
24
|
+
|
|
25
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
26
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
27
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
28
|
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
29
|
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
30
|
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
31
|
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
32
|
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
33
|
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
34
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
35
|
+
|
|
36
|
+
Project-URL: Bug Tracker, https://github.com/macromeer/napari-tmidas/issues
|
|
37
|
+
Project-URL: Documentation, https://github.com/macromeer/napari-tmidas#README.md
|
|
38
|
+
Project-URL: Source Code, https://github.com/macromeer/napari-tmidas
|
|
39
|
+
Project-URL: User Support, https://github.com/macromeer/napari-tmidas/issues
|
|
40
|
+
Classifier: Development Status :: 2 - Pre-Alpha
|
|
41
|
+
Classifier: Framework :: napari
|
|
42
|
+
Classifier: Intended Audience :: Developers
|
|
43
|
+
Classifier: License :: OSI Approved :: BSD License
|
|
44
|
+
Classifier: Operating System :: MacOS
|
|
45
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
46
|
+
Classifier: Programming Language :: Python
|
|
47
|
+
Classifier: Programming Language :: Python :: 3
|
|
48
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
49
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
50
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
51
|
+
Classifier: Topic :: Scientific/Engineering :: Image Processing
|
|
52
|
+
Requires-Python: >=3.10
|
|
53
|
+
Description-Content-Type: text/markdown
|
|
54
|
+
License-File: LICENSE
|
|
55
|
+
Requires-Dist: numpy<3.0,>=1.23.0
|
|
56
|
+
Requires-Dist: magicgui
|
|
57
|
+
Requires-Dist: tqdm
|
|
58
|
+
Requires-Dist: qtpy
|
|
59
|
+
Requires-Dist: scikit-image>=0.19.0
|
|
60
|
+
Requires-Dist: scikit-learn-extra>=0.3.0
|
|
61
|
+
Requires-Dist: pyqt5
|
|
62
|
+
Requires-Dist: zarr
|
|
63
|
+
Requires-Dist: ome-zarr
|
|
64
|
+
Requires-Dist: napari-ome-zarr
|
|
65
|
+
Requires-Dist: nd2
|
|
66
|
+
Requires-Dist: pylibCZIrw
|
|
67
|
+
Requires-Dist: readlif
|
|
68
|
+
Requires-Dist: tiffslide
|
|
69
|
+
Requires-Dist: acquifer-napari
|
|
70
|
+
Provides-Extra: testing
|
|
71
|
+
Requires-Dist: tox; extra == "testing"
|
|
72
|
+
Requires-Dist: pytest>=7.0.0; extra == "testing"
|
|
73
|
+
Requires-Dist: pytest-cov; extra == "testing"
|
|
74
|
+
Requires-Dist: pytest-qt; extra == "testing"
|
|
75
|
+
Requires-Dist: pytest-timeout; extra == "testing"
|
|
76
|
+
Requires-Dist: napari; extra == "testing"
|
|
77
|
+
Requires-Dist: pyqt5; extra == "testing"
|
|
78
|
+
Requires-Dist: psygnal>=0.8.0; extra == "testing"
|
|
79
|
+
Requires-Dist: scikit-learn-extra>=0.3.0; extra == "testing"
|
|
80
|
+
Provides-Extra: clustering
|
|
81
|
+
Requires-Dist: scikit-learn-extra>=0.3.0; extra == "clustering"
|
|
82
|
+
Provides-Extra: deep-learning
|
|
83
|
+
Requires-Dist: torch>=1.12.0; extra == "deep-learning"
|
|
84
|
+
Requires-Dist: torchvision>=0.13.0; extra == "deep-learning"
|
|
85
|
+
Requires-Dist: timm; extra == "deep-learning"
|
|
86
|
+
Requires-Dist: opencv-python; extra == "deep-learning"
|
|
87
|
+
Requires-Dist: cmake; extra == "deep-learning"
|
|
88
|
+
Requires-Dist: hydra-core; extra == "deep-learning"
|
|
89
|
+
Requires-Dist: eva-decord; extra == "deep-learning"
|
|
90
|
+
Provides-Extra: all
|
|
91
|
+
Requires-Dist: napari-tmidas[clustering,deep-learning,testing]; extra == "all"
|
|
92
|
+
Dynamic: license-file
|
|
93
|
+
|
|
94
|
+
# napari-tmidas
|
|
95
|
+
|
|
96
|
+
[](https://github.com/macromeer/napari-tmidas/raw/main/LICENSE)
|
|
97
|
+
[](https://pypi.org/project/napari-tmidas)
|
|
98
|
+
[](https://python.org)
|
|
99
|
+
[](https://pepy.tech/project/napari-tmidas)
|
|
100
|
+
[](https://doi.org/10.5281/zenodo.17988815)
|
|
101
|
+
[](https://github.com/macromeer/napari-tmidas/actions)
|
|
102
|
+
|
|
103
|
+
**AI-powered batch processing for microscopy images**
|
|
104
|
+
|
|
105
|
+
Transform, analyze, and quantify microscopy data at scale with deep learning - from file conversion to segmentation, tracking, and analysis.
|
|
106
|
+
|
|
107
|
+
## ✨ Key Features
|
|
108
|
+
|
|
109
|
+
🤖 **5 AI Methods Built-In**
|
|
110
|
+
- Virtual staining (VisCy) • Denoising (CAREamics) • Spot detection (Spotiflow) • Segmentation (Cellpose) • Tracking (Trackastra)
|
|
111
|
+
- Auto-install in isolated environments • No dependency conflicts • GPU acceleration
|
|
112
|
+
|
|
113
|
+
🔄 **Universal File Conversion**
|
|
114
|
+
- Convert LIF, ND2, CZI, NDPI, Acquifer → TIFF or OME-Zarr
|
|
115
|
+
- Preserve spatial metadata automatically
|
|
116
|
+
|
|
117
|
+
⚡ **Batch Processing**
|
|
118
|
+
- Process entire folders with one click • 40+ processing functions • Progress tracking & quality control
|
|
119
|
+
|
|
120
|
+
📊 **Complete Analysis Pipeline**
|
|
121
|
+
- Segmentation → Tracking → Quantification → Colocalization
|
|
122
|
+
|
|
123
|
+
## 🚀 Quick Start
|
|
124
|
+
|
|
125
|
+
```bash
|
|
126
|
+
# Install napari and the plugin
|
|
127
|
+
mamba create -y -n napari-tmidas -c conda-forge python=3.11
|
|
128
|
+
mamba activate napari-tmidas
|
|
129
|
+
pip install "napari[all]"
|
|
130
|
+
pip install napari-tmidas
|
|
131
|
+
|
|
132
|
+
# Launch napari
|
|
133
|
+
napari
|
|
134
|
+
```
|
|
135
|
+
|
|
136
|
+
Then find napari-tmidas in the **Plugins** menu. [Watch video tutorials →](https://www.youtube.com/@macromeer/videos)
|
|
137
|
+
|
|
138
|
+
> **💡 Tip**: AI methods auto-install their dependencies on first use - no manual setup required!
|
|
139
|
+
|
|
140
|
+
## 📖 Documentation
|
|
141
|
+
|
|
142
|
+
### AI-Powered Methods
|
|
143
|
+
|
|
144
|
+
| Method | Description | Documentation |
|
|
145
|
+
|--------|-------------|---------------|
|
|
146
|
+
| 🎨 **VisCy** | Virtual staining from phase/DIC | [Guide](docs/viscy_virtual_staining.md) |
|
|
147
|
+
| 🔧 **CAREamics** | Noise2Void/CARE denoising | [Guide](docs/careamics_denoising.md) |
|
|
148
|
+
| 🎯 **Spotiflow** | Spot/puncta detection | [Guide](docs/spotiflow_detection.md) |
|
|
149
|
+
| 🔬 **Cellpose** | Cell/nucleus segmentation | [Guide](docs/cellpose_segmentation.md) |
|
|
150
|
+
| 📈 **Trackastra** | Cell tracking over time | [Guide](docs/trackastra_tracking.md) |
|
|
151
|
+
|
|
152
|
+
### Core Workflows
|
|
153
|
+
|
|
154
|
+
- **[File Conversion](docs/file_conversion.md)** - Multi-format microscopy file conversion (LIF, ND2, CZI, NDPI, Acquifer)
|
|
155
|
+
- **[Batch Processing](docs/basic_processing.md)** - Label operations, filters, channel splitting
|
|
156
|
+
- **[Quality Control](docs/grid_view_overlay.md)** - Visual QC with grid overlay
|
|
157
|
+
- **[Quantification](docs/regionprops_analysis.md)** - Extract measurements from labels
|
|
158
|
+
- **[Colocalization](docs/advanced_processing.md#colocalization-analysis)** - Multi-channel ROI analysis
|
|
159
|
+
|
|
160
|
+
### Advanced Features
|
|
161
|
+
|
|
162
|
+
- [SAM2 Crop Anything](docs/advanced_processing.md#sam2) - Interactive object cropping
|
|
163
|
+
- [Advanced Filters](docs/advanced_processing.md) - SciPy/scikit-image filters
|
|
164
|
+
- [Batch Label Inspection](docs/basic_processing.md#label-inspection) - Manual correction workflow
|
|
165
|
+
|
|
166
|
+
## 💻 Installation
|
|
167
|
+
|
|
168
|
+
### Step 1: Install napari
|
|
169
|
+
|
|
170
|
+
```bash
|
|
171
|
+
mamba create -y -n napari-tmidas -c conda-forge python=3.11
|
|
172
|
+
mamba activate napari-tmidas
|
|
173
|
+
python -m pip install "napari[all]"
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
### Step 2: Install napari-tmidas
|
|
177
|
+
|
|
178
|
+
| Your Needs | Command |
|
|
179
|
+
|----------|---------|
|
|
180
|
+
| **Just process & convert images** | `pip install napari-tmidas` |
|
|
181
|
+
| **Need AI features** (SAM2, Cellpose, Spotiflow, etc.) | `pip install 'napari-tmidas[deep-learning]'` |
|
|
182
|
+
| **Want the latest dev features** | `pip install git+https://github.com/MercaderLabAnatomy/napari-tmidas.git` |
|
|
183
|
+
|
|
184
|
+
**Recommended for most users:** `pip install 'napari-tmidas[deep-learning]'`
|
|
185
|
+
|
|
186
|
+
## 🖼️ Screenshots
|
|
187
|
+
|
|
188
|
+
<details>
|
|
189
|
+
<summary><b>File Conversion Widget</b></summary>
|
|
190
|
+
|
|
191
|
+
<img src="https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b" alt="File Conversion" width="600">
|
|
192
|
+
|
|
193
|
+
Convert proprietary formats to open standards with metadata preservation.
|
|
194
|
+
</details>
|
|
195
|
+
|
|
196
|
+
<details>
|
|
197
|
+
<summary><b>Batch Processing Interface</b></summary>
|
|
198
|
+
|
|
199
|
+
<img src="https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce" alt="Batch Processing" width="600">
|
|
200
|
+
|
|
201
|
+
Select files → Choose processing function → Run on entire dataset.
|
|
202
|
+
</details>
|
|
203
|
+
|
|
204
|
+
<details>
|
|
205
|
+
<summary><b>Label Inspection</b></summary>
|
|
206
|
+
|
|
207
|
+
<img src="https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e" alt="Label Inspection" width="600">
|
|
208
|
+
|
|
209
|
+
Inspect and manually correct segmentation results.
|
|
210
|
+
</details>
|
|
211
|
+
|
|
212
|
+
<details>
|
|
213
|
+
<summary><b>SAM2 Crop Anything</b></summary>
|
|
214
|
+
|
|
215
|
+
<img src="https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443" alt="Crop Anything" width="600">
|
|
216
|
+
|
|
217
|
+
Interactive object selection and cropping with SAM2.
|
|
218
|
+
</details>
|
|
219
|
+
|
|
220
|
+
## 🤝 Contributing
|
|
221
|
+
|
|
222
|
+
Contributions are welcome! Please ensure tests pass before submitting PRs:
|
|
223
|
+
|
|
224
|
+
```bash
|
|
225
|
+
pip install tox
|
|
226
|
+
tox
|
|
227
|
+
```
|
|
228
|
+
|
|
229
|
+
## 📄 License
|
|
230
|
+
|
|
231
|
+
BSD-3 License - see [LICENSE](LICENSE) for details.
|
|
232
|
+
|
|
233
|
+
## 🐛 Issues
|
|
234
|
+
|
|
235
|
+
Found a bug or have a feature request? [Open an issue](https://github.com/MercaderLabAnatomy/napari-tmidas/issues)
|
|
236
|
+
|
|
237
|
+
## 🙏 Acknowledgments
|
|
238
|
+
|
|
239
|
+
Built with [napari](https://github.com/napari/napari) and powered by:
|
|
240
|
+
- [Cellpose](https://github.com/MouseLand/cellpose) • [VisCy](https://github.com/mehta-lab/VisCy) • [CAREamics](https://github.com/CAREamics/careamics) • [Spotiflow](https://github.com/weigertlab/spotiflow) • [Trackastra](https://github.com/weigertlab/trackastra) • [SAM2](https://github.com/facebookresearch/segment-anything-2)
|
|
241
|
+
|
|
242
|
+
---
|
|
243
|
+
|
|
244
|
+
[PyPI]: https://pypi.org/project/napari-tmidas
|
|
245
|
+
[pip]: https://pypi.org/project/pip/
|
|
246
|
+
[tox]: https://tox.readthedocs.io/en/latest/
|
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
# napari-tmidas
|
|
2
|
+
|
|
3
|
+
[](https://github.com/macromeer/napari-tmidas/raw/main/LICENSE)
|
|
4
|
+
[](https://pypi.org/project/napari-tmidas)
|
|
5
|
+
[](https://python.org)
|
|
6
|
+
[](https://pepy.tech/project/napari-tmidas)
|
|
7
|
+
[](https://doi.org/10.5281/zenodo.17988815)
|
|
8
|
+
[](https://github.com/macromeer/napari-tmidas/actions)
|
|
9
|
+
|
|
10
|
+
**AI-powered batch processing for microscopy images**
|
|
11
|
+
|
|
12
|
+
Transform, analyze, and quantify microscopy data at scale with deep learning - from file conversion to segmentation, tracking, and analysis.
|
|
13
|
+
|
|
14
|
+
## ✨ Key Features
|
|
15
|
+
|
|
16
|
+
🤖 **5 AI Methods Built-In**
|
|
17
|
+
- Virtual staining (VisCy) • Denoising (CAREamics) • Spot detection (Spotiflow) • Segmentation (Cellpose) • Tracking (Trackastra)
|
|
18
|
+
- Auto-install in isolated environments • No dependency conflicts • GPU acceleration
|
|
19
|
+
|
|
20
|
+
🔄 **Universal File Conversion**
|
|
21
|
+
- Convert LIF, ND2, CZI, NDPI, Acquifer → TIFF or OME-Zarr
|
|
22
|
+
- Preserve spatial metadata automatically
|
|
23
|
+
|
|
24
|
+
⚡ **Batch Processing**
|
|
25
|
+
- Process entire folders with one click • 40+ processing functions • Progress tracking & quality control
|
|
26
|
+
|
|
27
|
+
📊 **Complete Analysis Pipeline**
|
|
28
|
+
- Segmentation → Tracking → Quantification → Colocalization
|
|
29
|
+
|
|
30
|
+
## 🚀 Quick Start
|
|
31
|
+
|
|
32
|
+
```bash
|
|
33
|
+
# Install napari and the plugin
|
|
34
|
+
mamba create -y -n napari-tmidas -c conda-forge python=3.11
|
|
35
|
+
mamba activate napari-tmidas
|
|
36
|
+
pip install "napari[all]"
|
|
37
|
+
pip install napari-tmidas
|
|
38
|
+
|
|
39
|
+
# Launch napari
|
|
40
|
+
napari
|
|
41
|
+
```
|
|
42
|
+
|
|
43
|
+
Then find napari-tmidas in the **Plugins** menu. [Watch video tutorials →](https://www.youtube.com/@macromeer/videos)
|
|
44
|
+
|
|
45
|
+
> **💡 Tip**: AI methods auto-install their dependencies on first use - no manual setup required!
|
|
46
|
+
|
|
47
|
+
## 📖 Documentation
|
|
48
|
+
|
|
49
|
+
### AI-Powered Methods
|
|
50
|
+
|
|
51
|
+
| Method | Description | Documentation |
|
|
52
|
+
|--------|-------------|---------------|
|
|
53
|
+
| 🎨 **VisCy** | Virtual staining from phase/DIC | [Guide](docs/viscy_virtual_staining.md) |
|
|
54
|
+
| 🔧 **CAREamics** | Noise2Void/CARE denoising | [Guide](docs/careamics_denoising.md) |
|
|
55
|
+
| 🎯 **Spotiflow** | Spot/puncta detection | [Guide](docs/spotiflow_detection.md) |
|
|
56
|
+
| 🔬 **Cellpose** | Cell/nucleus segmentation | [Guide](docs/cellpose_segmentation.md) |
|
|
57
|
+
| 📈 **Trackastra** | Cell tracking over time | [Guide](docs/trackastra_tracking.md) |
|
|
58
|
+
|
|
59
|
+
### Core Workflows
|
|
60
|
+
|
|
61
|
+
- **[File Conversion](docs/file_conversion.md)** - Multi-format microscopy file conversion (LIF, ND2, CZI, NDPI, Acquifer)
|
|
62
|
+
- **[Batch Processing](docs/basic_processing.md)** - Label operations, filters, channel splitting
|
|
63
|
+
- **[Quality Control](docs/grid_view_overlay.md)** - Visual QC with grid overlay
|
|
64
|
+
- **[Quantification](docs/regionprops_analysis.md)** - Extract measurements from labels
|
|
65
|
+
- **[Colocalization](docs/advanced_processing.md#colocalization-analysis)** - Multi-channel ROI analysis
|
|
66
|
+
|
|
67
|
+
### Advanced Features
|
|
68
|
+
|
|
69
|
+
- [SAM2 Crop Anything](docs/advanced_processing.md#sam2) - Interactive object cropping
|
|
70
|
+
- [Advanced Filters](docs/advanced_processing.md) - SciPy/scikit-image filters
|
|
71
|
+
- [Batch Label Inspection](docs/basic_processing.md#label-inspection) - Manual correction workflow
|
|
72
|
+
|
|
73
|
+
## 💻 Installation
|
|
74
|
+
|
|
75
|
+
### Step 1: Install napari
|
|
76
|
+
|
|
77
|
+
```bash
|
|
78
|
+
mamba create -y -n napari-tmidas -c conda-forge python=3.11
|
|
79
|
+
mamba activate napari-tmidas
|
|
80
|
+
python -m pip install "napari[all]"
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
### Step 2: Install napari-tmidas
|
|
84
|
+
|
|
85
|
+
| Your Needs | Command |
|
|
86
|
+
|----------|---------|
|
|
87
|
+
| **Just process & convert images** | `pip install napari-tmidas` |
|
|
88
|
+
| **Need AI features** (SAM2, Cellpose, Spotiflow, etc.) | `pip install 'napari-tmidas[deep-learning]'` |
|
|
89
|
+
| **Want the latest dev features** | `pip install git+https://github.com/MercaderLabAnatomy/napari-tmidas.git` |
|
|
90
|
+
|
|
91
|
+
**Recommended for most users:** `pip install 'napari-tmidas[deep-learning]'`
|
|
92
|
+
|
|
93
|
+
## 🖼️ Screenshots
|
|
94
|
+
|
|
95
|
+
<details>
|
|
96
|
+
<summary><b>File Conversion Widget</b></summary>
|
|
97
|
+
|
|
98
|
+
<img src="https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b" alt="File Conversion" width="600">
|
|
99
|
+
|
|
100
|
+
Convert proprietary formats to open standards with metadata preservation.
|
|
101
|
+
</details>
|
|
102
|
+
|
|
103
|
+
<details>
|
|
104
|
+
<summary><b>Batch Processing Interface</b></summary>
|
|
105
|
+
|
|
106
|
+
<img src="https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce" alt="Batch Processing" width="600">
|
|
107
|
+
|
|
108
|
+
Select files → Choose processing function → Run on entire dataset.
|
|
109
|
+
</details>
|
|
110
|
+
|
|
111
|
+
<details>
|
|
112
|
+
<summary><b>Label Inspection</b></summary>
|
|
113
|
+
|
|
114
|
+
<img src="https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e" alt="Label Inspection" width="600">
|
|
115
|
+
|
|
116
|
+
Inspect and manually correct segmentation results.
|
|
117
|
+
</details>
|
|
118
|
+
|
|
119
|
+
<details>
|
|
120
|
+
<summary><b>SAM2 Crop Anything</b></summary>
|
|
121
|
+
|
|
122
|
+
<img src="https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443" alt="Crop Anything" width="600">
|
|
123
|
+
|
|
124
|
+
Interactive object selection and cropping with SAM2.
|
|
125
|
+
</details>
|
|
126
|
+
|
|
127
|
+
## 🤝 Contributing
|
|
128
|
+
|
|
129
|
+
Contributions are welcome! Please ensure tests pass before submitting PRs:
|
|
130
|
+
|
|
131
|
+
```bash
|
|
132
|
+
pip install tox
|
|
133
|
+
tox
|
|
134
|
+
```
|
|
135
|
+
|
|
136
|
+
## 📄 License
|
|
137
|
+
|
|
138
|
+
BSD-3 License - see [LICENSE](LICENSE) for details.
|
|
139
|
+
|
|
140
|
+
## 🐛 Issues
|
|
141
|
+
|
|
142
|
+
Found a bug or have a feature request? [Open an issue](https://github.com/MercaderLabAnatomy/napari-tmidas/issues)
|
|
143
|
+
|
|
144
|
+
## 🙏 Acknowledgments
|
|
145
|
+
|
|
146
|
+
Built with [napari](https://github.com/napari/napari) and powered by:
|
|
147
|
+
- [Cellpose](https://github.com/MouseLand/cellpose) • [VisCy](https://github.com/mehta-lab/VisCy) • [CAREamics](https://github.com/CAREamics/careamics) • [Spotiflow](https://github.com/weigertlab/spotiflow) • [Trackastra](https://github.com/weigertlab/trackastra) • [SAM2](https://github.com/facebookresearch/segment-anything-2)
|
|
148
|
+
|
|
149
|
+
---
|
|
150
|
+
|
|
151
|
+
[PyPI]: https://pypi.org/project/napari-tmidas
|
|
152
|
+
[pip]: https://pypi.org/project/pip/
|
|
153
|
+
[tox]: https://tox.readthedocs.io/en/latest/
|
|
@@ -14,18 +14,13 @@ Image denoising using **CAREamics** (Content-Aware Image Restoration). This proc
|
|
|
14
14
|
|
|
15
15
|
## Installation
|
|
16
16
|
|
|
17
|
-
CAREamics
|
|
18
|
-
|
|
19
|
-
### Manual Installation (Recommended)
|
|
17
|
+
CAREamics is automatically available when you install napari-tmidas with deep learning support:
|
|
20
18
|
|
|
21
19
|
```bash
|
|
22
|
-
|
|
23
|
-
pip install careamics
|
|
20
|
+
pip install 'napari-tmidas[deep-learning]'
|
|
24
21
|
```
|
|
25
22
|
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
If not detected, the plugin creates a dedicated `careamics-env` conda environment automatically.
|
|
23
|
+
If you installed the basic version without deep learning, the plugin will automatically create a dedicated `careamics-env` environment when first used.
|
|
29
24
|
|
|
30
25
|
## Parameters
|
|
31
26
|
|
|
@@ -116,16 +111,13 @@ Accurate spot detection for fluorescence microscopy using **Spotiflow**, a deep
|
|
|
116
111
|
|
|
117
112
|
## Installation
|
|
118
113
|
|
|
119
|
-
|
|
114
|
+
Spotiflow is automatically available when you install napari-tmidas with deep learning support:
|
|
120
115
|
|
|
121
116
|
```bash
|
|
122
|
-
|
|
123
|
-
pip install spotiflow
|
|
117
|
+
pip install 'napari-tmidas[deep-learning]'
|
|
124
118
|
```
|
|
125
119
|
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
The plugin automatically creates a `spotiflow-env` conda environment if needed.
|
|
120
|
+
If you installed the basic version without deep learning, the plugin will automatically create a `spotiflow-env` environment when first used.
|
|
129
121
|
|
|
130
122
|
## Pre-trained Models
|
|
131
123
|
|