napari-tmidas 0.1.8__tar.gz → 0.1.8.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/PKG-INFO +33 -9
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/README.md +23 -7
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/pyproject.toml +9 -1
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_crop_anything.py +137 -5
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_file_conversion.py +40 -18
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_file_selector.py +120 -13
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_version.py +2 -2
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/processing_functions/basic.py +104 -0
- napari_tmidas-0.1.8.5/src/napari_tmidas/processing_functions/cellpose_env_manager.py +172 -0
- napari_tmidas-0.1.8.5/src/napari_tmidas/processing_functions/cellpose_segmentation.py +511 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/processing_functions/colocalization.py +17 -19
- napari_tmidas-0.1.8.5/src/napari_tmidas/processing_functions/file_compression.py +205 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/processing_functions/skimage_filters.py +25 -6
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas.egg-info/PKG-INFO +33 -9
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas.egg-info/SOURCES.txt +3 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas.egg-info/requires.txt +8 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/.github/dependabot.yml +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/.github/workflows/test_and_deploy.yml +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/.gitignore +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/.napari-hub/DESCRIPTION.md +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/.napari-hub/config.yml +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/.pre-commit-config.yaml +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/LICENSE +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/MANIFEST.in +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/setup.cfg +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/__init__.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_label_inspection.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_reader.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_registry.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_roi_colocalization.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_sample_data.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_tests/__init__.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_tests/test_reader.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_tests/test_widget.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_tests/test_writer.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_widget.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/_writer.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/napari.yaml +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/processing_functions/__init__.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/src/napari_tmidas.egg-info/top_level.txt +0 -0
- {napari_tmidas-0.1.8 → napari_tmidas-0.1.8.5}/tox.ini +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-tmidas
|
|
3
|
-
Version: 0.1.8
|
|
4
|
-
Summary:
|
|
3
|
+
Version: 0.1.8.5
|
|
4
|
+
Summary: A plugin for batch processing of confocal microscopy images
|
|
5
5
|
Author: Marco Meer
|
|
6
6
|
Author-email: marco.meer@pm.me
|
|
7
7
|
License:
|
|
@@ -58,6 +58,14 @@ Requires-Dist: magicgui
|
|
|
58
58
|
Requires-Dist: qtpy
|
|
59
59
|
Requires-Dist: scikit-image
|
|
60
60
|
Requires-Dist: pyqt5
|
|
61
|
+
Requires-Dist: tqdm
|
|
62
|
+
Requires-Dist: scikit-image
|
|
63
|
+
Requires-Dist: ome-zarr
|
|
64
|
+
Requires-Dist: napari-ome-zarr
|
|
65
|
+
Requires-Dist: torch
|
|
66
|
+
Requires-Dist: torchvision
|
|
67
|
+
Requires-Dist: timm
|
|
68
|
+
Requires-Dist: opencv-python
|
|
61
69
|
Provides-Extra: testing
|
|
62
70
|
Requires-Dist: tox; extra == "testing"
|
|
63
71
|
Requires-Dist: pytest; extra == "testing"
|
|
@@ -80,7 +88,15 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
|
|
|
80
88
|
## Feature Overview
|
|
81
89
|
|
|
82
90
|
1. **Image Processing**
|
|
83
|
-
- Process image folders with:
|
|
91
|
+
- Process image folders with:
|
|
92
|
+
- Gamma correction & histogram equalization
|
|
93
|
+
- Z-projection and channel splitting
|
|
94
|
+
- Gaussian & median filters
|
|
95
|
+
- Thresholding (Otsu/manual)
|
|
96
|
+
- Label cleaning & binary conversion
|
|
97
|
+
- RGB to labels conversion
|
|
98
|
+
- Cellpose 3.0 automated segmentation
|
|
99
|
+
- File compression (Zstandard)
|
|
84
100
|
|
|
85
101
|
2. **Label Inspection**
|
|
86
102
|
- Review and edit label images with auto-save
|
|
@@ -112,19 +128,27 @@ Now you can install `napari-tmidas` via [pip]:
|
|
|
112
128
|
|
|
113
129
|
pip install napari-tmidas
|
|
114
130
|
|
|
115
|
-
|
|
131
|
+
It is recommended to install the latest development version:
|
|
116
132
|
|
|
117
133
|
pip install git+https://github.com/macromeer/napari-tmidas.git
|
|
118
134
|
|
|
119
135
|
### Dependencies
|
|
120
|
-
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats and to write ome-zarr:
|
|
121
136
|
|
|
122
|
-
|
|
137
|
+
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats:
|
|
138
|
+
|
|
139
|
+
pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari
|
|
123
140
|
|
|
124
141
|
For the Batch Crop Anything pipeline, we need to install MobileSAM and its dependencies:
|
|
125
142
|
|
|
126
143
|
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
|
|
127
|
-
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
If you want to batch compress images using [Zstandard](https://github.com/facebook/zstd), use the package manager of your operating system to install it:
|
|
147
|
+
|
|
148
|
+
sudo apt-get install zstd # for Linux
|
|
149
|
+
brew install zstd # for macOS
|
|
150
|
+
choco install zstandard # for Windows
|
|
151
|
+
|
|
128
152
|
|
|
129
153
|
## Usage
|
|
130
154
|
|
|
@@ -169,9 +193,9 @@ If you have already segmented a folder full of images and now you want to maybe
|
|
|
169
193
|

|
|
170
194
|
|
|
171
195
|
### Crop Anything
|
|
172
|
-
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything
|
|
196
|
+
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Click the image below to see a video demo.
|
|
173
197
|
|
|
174
|
-

|
|
198
|
+
[](https://youtu.be/xPh0dRD_FbE)
|
|
175
199
|
|
|
176
200
|
### ROI Colocalization
|
|
177
201
|
This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
|
|
@@ -11,7 +11,15 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
|
|
|
11
11
|
## Feature Overview
|
|
12
12
|
|
|
13
13
|
1. **Image Processing**
|
|
14
|
-
- Process image folders with:
|
|
14
|
+
- Process image folders with:
|
|
15
|
+
- Gamma correction & histogram equalization
|
|
16
|
+
- Z-projection and channel splitting
|
|
17
|
+
- Gaussian & median filters
|
|
18
|
+
- Thresholding (Otsu/manual)
|
|
19
|
+
- Label cleaning & binary conversion
|
|
20
|
+
- RGB to labels conversion
|
|
21
|
+
- Cellpose 3.0 automated segmentation
|
|
22
|
+
- File compression (Zstandard)
|
|
15
23
|
|
|
16
24
|
2. **Label Inspection**
|
|
17
25
|
- Review and edit label images with auto-save
|
|
@@ -43,19 +51,27 @@ Now you can install `napari-tmidas` via [pip]:
|
|
|
43
51
|
|
|
44
52
|
pip install napari-tmidas
|
|
45
53
|
|
|
46
|
-
|
|
54
|
+
It is recommended to install the latest development version:
|
|
47
55
|
|
|
48
56
|
pip install git+https://github.com/macromeer/napari-tmidas.git
|
|
49
57
|
|
|
50
58
|
### Dependencies
|
|
51
|
-
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats and to write ome-zarr:
|
|
52
59
|
|
|
53
|
-
|
|
60
|
+
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats:
|
|
61
|
+
|
|
62
|
+
pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari
|
|
54
63
|
|
|
55
64
|
For the Batch Crop Anything pipeline, we need to install MobileSAM and its dependencies:
|
|
56
65
|
|
|
57
66
|
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
|
|
58
|
-
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
If you want to batch compress images using [Zstandard](https://github.com/facebook/zstd), use the package manager of your operating system to install it:
|
|
70
|
+
|
|
71
|
+
sudo apt-get install zstd # for Linux
|
|
72
|
+
brew install zstd # for macOS
|
|
73
|
+
choco install zstandard # for Windows
|
|
74
|
+
|
|
59
75
|
|
|
60
76
|
## Usage
|
|
61
77
|
|
|
@@ -100,9 +116,9 @@ If you have already segmented a folder full of images and now you want to maybe
|
|
|
100
116
|

|
|
101
117
|
|
|
102
118
|
### Crop Anything
|
|
103
|
-
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything
|
|
119
|
+
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Click the image below to see a video demo.
|
|
104
120
|
|
|
105
|
-

|
|
121
|
+
[](https://youtu.be/xPh0dRD_FbE)
|
|
106
122
|
|
|
107
123
|
### ROI Colocalization
|
|
108
124
|
This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "napari-tmidas"
|
|
3
3
|
dynamic = ["version"]
|
|
4
|
-
description = "
|
|
4
|
+
description = "A plugin for batch processing of confocal microscopy images"
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
license = {file = "LICENSE"}
|
|
7
7
|
authors = [
|
|
@@ -30,6 +30,14 @@ dependencies = [
|
|
|
30
30
|
"qtpy",
|
|
31
31
|
"scikit-image",
|
|
32
32
|
"pyqt5",
|
|
33
|
+
"tqdm",
|
|
34
|
+
"scikit-image",
|
|
35
|
+
"ome-zarr",
|
|
36
|
+
"napari-ome-zarr",
|
|
37
|
+
"torch",
|
|
38
|
+
"torchvision",
|
|
39
|
+
"timm",
|
|
40
|
+
"opencv-python",
|
|
33
41
|
]
|
|
34
42
|
|
|
35
43
|
[project.optional-dependencies]
|
|
@@ -29,6 +29,7 @@ from qtpy.QtWidgets import (
|
|
|
29
29
|
QWidget,
|
|
30
30
|
)
|
|
31
31
|
from skimage.io import imread
|
|
32
|
+
from skimage.transform import resize # Added import for resize function
|
|
32
33
|
from tifffile import imwrite
|
|
33
34
|
|
|
34
35
|
|
|
@@ -48,6 +49,7 @@ class BatchCropAnything:
|
|
|
48
49
|
self.original_image = None
|
|
49
50
|
self.segmentation_result = None
|
|
50
51
|
self.current_image_for_segmentation = None
|
|
52
|
+
self.current_scale_factor = 1.0 # Added scale factor tracking
|
|
51
53
|
|
|
52
54
|
# UI references
|
|
53
55
|
self.image_layer = None
|
|
@@ -356,10 +358,41 @@ class BatchCropAnything:
|
|
|
356
358
|
# Convert back to uint8
|
|
357
359
|
image_gamma = (image_gamma * 255).astype(np.uint8)
|
|
358
360
|
|
|
361
|
+
# Check if the image is very large and needs downscaling
|
|
362
|
+
orig_shape = image_gamma.shape[:2] # (height, width)
|
|
363
|
+
|
|
364
|
+
# Calculate image size in megapixels
|
|
365
|
+
image_mp = (orig_shape[0] * orig_shape[1]) / 1e6
|
|
366
|
+
|
|
367
|
+
# If image is larger than 2 megapixels, downscale it
|
|
368
|
+
max_mp = 2.0 # Maximum image size in megapixels
|
|
369
|
+
scale_factor = 1.0
|
|
370
|
+
|
|
371
|
+
if image_mp > max_mp:
|
|
372
|
+
scale_factor = np.sqrt(max_mp / image_mp)
|
|
373
|
+
new_height = int(orig_shape[0] * scale_factor)
|
|
374
|
+
new_width = int(orig_shape[1] * scale_factor)
|
|
375
|
+
|
|
376
|
+
self.viewer.status = f"Downscaling image from {orig_shape} to {(new_height, new_width)} for processing (scale: {scale_factor:.2f})"
|
|
377
|
+
|
|
378
|
+
# Resize the image for processing
|
|
379
|
+
image_gamma_resized = resize(
|
|
380
|
+
image_gamma,
|
|
381
|
+
(new_height, new_width),
|
|
382
|
+
anti_aliasing=True,
|
|
383
|
+
preserve_range=True,
|
|
384
|
+
).astype(np.uint8)
|
|
385
|
+
|
|
386
|
+
# Store scale factor for later use
|
|
387
|
+
self.current_scale_factor = scale_factor
|
|
388
|
+
else:
|
|
389
|
+
image_gamma_resized = image_gamma
|
|
390
|
+
self.current_scale_factor = 1.0
|
|
391
|
+
|
|
359
392
|
self.viewer.status = f"Generating segmentation with sensitivity {self.sensitivity} (gamma={gamma:.2f})..."
|
|
360
393
|
|
|
361
|
-
# Generate masks with gamma-corrected image
|
|
362
|
-
masks = self.mask_generator.generate(
|
|
394
|
+
# Generate masks with gamma-corrected and potentially resized image
|
|
395
|
+
masks = self.mask_generator.generate(image_gamma_resized)
|
|
363
396
|
self.viewer.status = f"Generated {len(masks)} masks"
|
|
364
397
|
|
|
365
398
|
if not masks:
|
|
@@ -390,9 +423,16 @@ class BatchCropAnything:
|
|
|
390
423
|
return
|
|
391
424
|
|
|
392
425
|
# Process segmentation masks
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
426
|
+
# If image was downscaled, we need to ensure masks are upscaled correctly
|
|
427
|
+
if self.current_scale_factor < 1.0:
|
|
428
|
+
# Upscale the segmentation masks to match the original image dimensions
|
|
429
|
+
self._process_segmentation_masks_with_scaling(
|
|
430
|
+
masks, self.current_image_for_segmentation.shape[:2]
|
|
431
|
+
)
|
|
432
|
+
else:
|
|
433
|
+
self._process_segmentation_masks(
|
|
434
|
+
masks, self.current_image_for_segmentation.shape[:2]
|
|
435
|
+
)
|
|
396
436
|
|
|
397
437
|
# Clear selected labels since segmentation has changed
|
|
398
438
|
self.selected_labels = set()
|
|
@@ -475,6 +515,98 @@ class BatchCropAnything:
|
|
|
475
515
|
# image_name = os.path.basename(self.images[self.current_index])
|
|
476
516
|
self.viewer.status = f"Loaded image {self.current_index + 1}/{len(self.images)} - Found {len(masks)} segments"
|
|
477
517
|
|
|
518
|
+
# New method for handling scaled segmentation masks
|
|
519
|
+
def _process_segmentation_masks_with_scaling(self, masks, original_shape):
|
|
520
|
+
"""Process segmentation masks with scaling to match the original image size."""
|
|
521
|
+
# Create label image from masks
|
|
522
|
+
# First determine the size of the mask predictions (which are at the downscaled resolution)
|
|
523
|
+
if not masks:
|
|
524
|
+
return
|
|
525
|
+
|
|
526
|
+
mask_shape = masks[0]["segmentation"].shape
|
|
527
|
+
|
|
528
|
+
# Create an empty label image at the downscaled resolution
|
|
529
|
+
downscaled_labels = np.zeros(mask_shape, dtype=np.uint32)
|
|
530
|
+
self.label_info = {} # Reset label info
|
|
531
|
+
|
|
532
|
+
# Fill in the downscaled labels
|
|
533
|
+
for i, mask_data in enumerate(masks):
|
|
534
|
+
mask = mask_data["segmentation"]
|
|
535
|
+
label_id = i + 1 # Start label IDs from 1
|
|
536
|
+
downscaled_labels[mask] = label_id
|
|
537
|
+
|
|
538
|
+
# Store basic label info
|
|
539
|
+
area = np.sum(mask)
|
|
540
|
+
y_indices, x_indices = np.where(mask)
|
|
541
|
+
center_y = np.mean(y_indices) if len(y_indices) > 0 else 0
|
|
542
|
+
center_x = np.mean(x_indices) if len(x_indices) > 0 else 0
|
|
543
|
+
|
|
544
|
+
# Scale centers to original image coordinates
|
|
545
|
+
center_y_orig = center_y / self.current_scale_factor
|
|
546
|
+
center_x_orig = center_x / self.current_scale_factor
|
|
547
|
+
|
|
548
|
+
# Store label info at original scale
|
|
549
|
+
self.label_info[label_id] = {
|
|
550
|
+
"area": area
|
|
551
|
+
/ (
|
|
552
|
+
self.current_scale_factor**2
|
|
553
|
+
), # Approximate area in original scale
|
|
554
|
+
"center_y": center_y_orig,
|
|
555
|
+
"center_x": center_x_orig,
|
|
556
|
+
"score": mask_data.get("stability_score", 0),
|
|
557
|
+
}
|
|
558
|
+
|
|
559
|
+
# Upscale the labels to the original image size
|
|
560
|
+
upscaled_labels = resize(
|
|
561
|
+
downscaled_labels,
|
|
562
|
+
original_shape,
|
|
563
|
+
order=0, # Nearest neighbor interpolation
|
|
564
|
+
preserve_range=True,
|
|
565
|
+
anti_aliasing=False,
|
|
566
|
+
).astype(np.uint32)
|
|
567
|
+
|
|
568
|
+
# Sort labels by area (largest first)
|
|
569
|
+
self.label_info = dict(
|
|
570
|
+
sorted(
|
|
571
|
+
self.label_info.items(),
|
|
572
|
+
key=lambda item: item[1]["area"],
|
|
573
|
+
reverse=True,
|
|
574
|
+
)
|
|
575
|
+
)
|
|
576
|
+
|
|
577
|
+
# Save segmentation result
|
|
578
|
+
self.segmentation_result = upscaled_labels
|
|
579
|
+
|
|
580
|
+
# Remove existing label layer if exists
|
|
581
|
+
for layer in list(self.viewer.layers):
|
|
582
|
+
if isinstance(layer, Labels) and "Segmentation" in layer.name:
|
|
583
|
+
self.viewer.layers.remove(layer)
|
|
584
|
+
|
|
585
|
+
# Add label layer to viewer
|
|
586
|
+
self.label_layer = self.viewer.add_labels(
|
|
587
|
+
upscaled_labels,
|
|
588
|
+
name=f"Segmentation ({os.path.basename(self.images[self.current_index])})",
|
|
589
|
+
opacity=0.7,
|
|
590
|
+
)
|
|
591
|
+
|
|
592
|
+
# Make the label layer active by default
|
|
593
|
+
self.viewer.layers.selection.active = self.label_layer
|
|
594
|
+
|
|
595
|
+
# Disconnect existing callbacks if any
|
|
596
|
+
if (
|
|
597
|
+
hasattr(self, "label_layer")
|
|
598
|
+
and self.label_layer is not None
|
|
599
|
+
and hasattr(self.label_layer, "mouse_drag_callbacks")
|
|
600
|
+
):
|
|
601
|
+
# Remove old callbacks
|
|
602
|
+
for callback in list(self.label_layer.mouse_drag_callbacks):
|
|
603
|
+
self.label_layer.mouse_drag_callbacks.remove(callback)
|
|
604
|
+
|
|
605
|
+
# Connect mouse click event to label selection
|
|
606
|
+
self.label_layer.mouse_drag_callbacks.append(self._on_label_clicked)
|
|
607
|
+
|
|
608
|
+
self.viewer.status = f"Loaded image {self.current_index + 1}/{len(self.images)} - Found {len(masks)} segments"
|
|
609
|
+
|
|
478
610
|
# --------------------------------------------------
|
|
479
611
|
# Label Selection and UI Elements
|
|
480
612
|
# --------------------------------------------------
|
|
@@ -1105,19 +1105,21 @@ class ConversionWorker(QThread):
|
|
|
1105
1105
|
)
|
|
1106
1106
|
file_size_GB = estimated_size_bytes / (1024**3)
|
|
1107
1107
|
|
|
1108
|
-
#
|
|
1108
|
+
# Determine format
|
|
1109
1109
|
use_zarr = self.use_zarr
|
|
1110
|
-
|
|
1111
|
-
|
|
1112
|
-
|
|
1113
|
-
|
|
1114
|
-
|
|
1115
|
-
)
|
|
1116
|
-
|
|
1117
|
-
|
|
1118
|
-
|
|
1119
|
-
|
|
1120
|
-
)
|
|
1110
|
+
# If file is very large (>4GB) and user didn't explicitly choose TIF,
|
|
1111
|
+
# auto-switch to ZARR format
|
|
1112
|
+
if file_size_GB > 4 and not self.use_zarr:
|
|
1113
|
+
# Recommend ZARR format but respect user's choice by still allowing TIF
|
|
1114
|
+
print(
|
|
1115
|
+
f"File size ({file_size_GB:.2f}GB) exceeds 4GB, ZARR format is recommended but using TIF with BigTIFF format"
|
|
1116
|
+
)
|
|
1117
|
+
self.file_done.emit(
|
|
1118
|
+
filepath,
|
|
1119
|
+
True,
|
|
1120
|
+
f"File size ({file_size_GB:.2f}GB) exceeds 4GB, using TIF with BigTIFF format",
|
|
1121
|
+
)
|
|
1122
|
+
|
|
1121
1123
|
# Set up the output path
|
|
1122
1124
|
if use_zarr:
|
|
1123
1125
|
output_path = os.path.join(
|
|
@@ -1171,12 +1173,22 @@ class ConversionWorker(QThread):
|
|
|
1171
1173
|
def _save_tif(
|
|
1172
1174
|
self, image_data: np.ndarray, output_path: str, metadata: dict = None
|
|
1173
1175
|
):
|
|
1174
|
-
"""Enhanced TIF saving with proper dimension handling"""
|
|
1176
|
+
"""Enhanced TIF saving with proper dimension handling and BigTIFF support"""
|
|
1175
1177
|
import tifffile
|
|
1176
1178
|
|
|
1177
1179
|
print(f"Saving TIF file: {output_path}")
|
|
1178
1180
|
print(f"Image data shape: {image_data.shape}")
|
|
1179
1181
|
|
|
1182
|
+
# Check if this is a large file that needs BigTIFF
|
|
1183
|
+
estimated_size_bytes = np.prod(image_data.shape) * image_data.itemsize
|
|
1184
|
+
file_size_GB = estimated_size_bytes / (1024**3)
|
|
1185
|
+
use_bigtiff = file_size_GB > 4
|
|
1186
|
+
|
|
1187
|
+
if use_bigtiff:
|
|
1188
|
+
print(
|
|
1189
|
+
f"File size ({file_size_GB:.2f}GB) exceeds 4GB, using BigTIFF format"
|
|
1190
|
+
)
|
|
1191
|
+
|
|
1180
1192
|
if metadata:
|
|
1181
1193
|
print(f"Metadata keys: {list(metadata.keys())}")
|
|
1182
1194
|
if "axes" in metadata:
|
|
@@ -1198,7 +1210,12 @@ class ConversionWorker(QThread):
|
|
|
1198
1210
|
# Basic save if no metadata
|
|
1199
1211
|
if metadata is None:
|
|
1200
1212
|
print("No metadata provided, using basic save")
|
|
1201
|
-
tifffile.imwrite(
|
|
1213
|
+
tifffile.imwrite(
|
|
1214
|
+
output_path,
|
|
1215
|
+
image_data,
|
|
1216
|
+
compression="zlib",
|
|
1217
|
+
bigtiff=use_bigtiff,
|
|
1218
|
+
)
|
|
1202
1219
|
return
|
|
1203
1220
|
|
|
1204
1221
|
# Get image dimensions and axis order
|
|
@@ -1261,7 +1278,10 @@ class ConversionWorker(QThread):
|
|
|
1261
1278
|
print(f"Error reordering dimensions: {e}")
|
|
1262
1279
|
# Fall back to simple save without reordering
|
|
1263
1280
|
tifffile.imwrite(
|
|
1264
|
-
output_path,
|
|
1281
|
+
output_path,
|
|
1282
|
+
image_data,
|
|
1283
|
+
compression="zlib",
|
|
1284
|
+
bigtiff=use_bigtiff,
|
|
1265
1285
|
)
|
|
1266
1286
|
return
|
|
1267
1287
|
|
|
@@ -1287,7 +1307,8 @@ class ConversionWorker(QThread):
|
|
|
1287
1307
|
output_path,
|
|
1288
1308
|
image_data,
|
|
1289
1309
|
resolution=resolution,
|
|
1290
|
-
compression="
|
|
1310
|
+
compression="zlib",
|
|
1311
|
+
bigtiff=use_bigtiff,
|
|
1291
1312
|
)
|
|
1292
1313
|
else:
|
|
1293
1314
|
# Hyperstack case
|
|
@@ -1306,14 +1327,15 @@ class ConversionWorker(QThread):
|
|
|
1306
1327
|
imagej=True,
|
|
1307
1328
|
resolution=resolution,
|
|
1308
1329
|
metadata=imagej_metadata,
|
|
1309
|
-
compression="
|
|
1330
|
+
compression="zlib",
|
|
1331
|
+
bigtiff=use_bigtiff,
|
|
1310
1332
|
)
|
|
1311
1333
|
|
|
1312
1334
|
print(f"Successfully saved TIF file: {output_path}")
|
|
1313
1335
|
except (ValueError, FileNotFoundError) as e:
|
|
1314
1336
|
print(f"Error saving TIF file: {e}")
|
|
1315
1337
|
# Try simple save as fallback
|
|
1316
|
-
tifffile.imwrite(output_path, image_data)
|
|
1338
|
+
tifffile.imwrite(output_path, image_data, bigtiff=use_bigtiff)
|
|
1317
1339
|
|
|
1318
1340
|
def _save_zarr(
|
|
1319
1341
|
self, image_data: np.ndarray, output_path: str, metadata: dict = None
|
|
@@ -603,15 +603,29 @@ class ProcessingWorker(QThread):
|
|
|
603
603
|
self.processing_finished.emit()
|
|
604
604
|
|
|
605
605
|
def process_file(self, filepath):
|
|
606
|
-
"""Process a single file"""
|
|
606
|
+
"""Process a single file with support for large TIFF files and removal of all singleton dimensions"""
|
|
607
607
|
try:
|
|
608
608
|
# Load the image
|
|
609
609
|
image = imread(filepath)
|
|
610
610
|
image_dtype = image.dtype
|
|
611
611
|
|
|
612
|
+
print(f"Original image shape: {image.shape}, dtype: {image_dtype}")
|
|
613
|
+
|
|
612
614
|
# Apply processing with parameters
|
|
613
615
|
processed_image = self.processing_func(image, **self.param_values)
|
|
614
616
|
|
|
617
|
+
print(
|
|
618
|
+
f"Processed image shape before removing singletons: {processed_image.shape}, dtype: {processed_image.dtype}"
|
|
619
|
+
)
|
|
620
|
+
|
|
621
|
+
# Remove ALL singleton dimensions from the processed image
|
|
622
|
+
# This will keep only dimensions with size > 1
|
|
623
|
+
processed_image = np.squeeze(processed_image)
|
|
624
|
+
|
|
625
|
+
print(
|
|
626
|
+
f"Processed image shape after removing singletons: {processed_image.shape}"
|
|
627
|
+
)
|
|
628
|
+
|
|
615
629
|
# Generate new filename base
|
|
616
630
|
filename = os.path.basename(filepath)
|
|
617
631
|
name, ext = os.path.splitext(filename)
|
|
@@ -619,33 +633,91 @@ class ProcessingWorker(QThread):
|
|
|
619
633
|
name.replace(self.input_suffix, "") + self.output_suffix
|
|
620
634
|
)
|
|
621
635
|
|
|
622
|
-
# Check if the
|
|
623
|
-
|
|
636
|
+
# Check if the first dimension should be treated as channels
|
|
637
|
+
# If processed_image has more dimensions than the original image,
|
|
638
|
+
# assume the first dimension represents channels
|
|
639
|
+
is_multi_channel = (processed_image.ndim > image.ndim - 1) or (
|
|
640
|
+
processed_image.ndim == image.ndim
|
|
641
|
+
and processed_image.shape[0] <= 10
|
|
642
|
+
)
|
|
643
|
+
|
|
644
|
+
if (
|
|
645
|
+
is_multi_channel and processed_image.shape[0] <= 10
|
|
646
|
+
): # Reasonable number of channels
|
|
624
647
|
# Save each channel as a separate image
|
|
625
648
|
processed_files = []
|
|
626
|
-
|
|
649
|
+
|
|
650
|
+
num_channels = processed_image.shape[0]
|
|
651
|
+
print(
|
|
652
|
+
f"Treating first dimension as channels. Saving {num_channels} separate channel files"
|
|
653
|
+
)
|
|
654
|
+
|
|
655
|
+
for i in range(num_channels):
|
|
627
656
|
channel_filename = f"{new_filename_base}_channel_{i}{ext}"
|
|
628
657
|
channel_filepath = os.path.join(
|
|
629
658
|
self.output_folder, channel_filename
|
|
630
659
|
)
|
|
631
660
|
|
|
661
|
+
# Extract channel data and remove any remaining singleton dimensions
|
|
662
|
+
channel_image = np.squeeze(processed_image[i])
|
|
663
|
+
|
|
664
|
+
print(f"Channel {i} shape: {channel_image.shape}")
|
|
665
|
+
|
|
666
|
+
# Calculate approx file size in GB
|
|
667
|
+
size_gb = (
|
|
668
|
+
channel_image.size * channel_image.itemsize / (1024**3)
|
|
669
|
+
)
|
|
670
|
+
print(f"Estimated file size: {size_gb:.2f} GB")
|
|
671
|
+
|
|
672
|
+
# Check data range
|
|
673
|
+
data_min = (
|
|
674
|
+
np.min(channel_image) if channel_image.size > 0 else 0
|
|
675
|
+
)
|
|
676
|
+
data_max = (
|
|
677
|
+
np.max(channel_image) if channel_image.size > 0 else 0
|
|
678
|
+
)
|
|
679
|
+
print(f"Channel {i} data range: {data_min} to {data_max}")
|
|
680
|
+
|
|
681
|
+
# For very large files, we need to use BigTIFF format
|
|
682
|
+
use_bigtiff = (
|
|
683
|
+
size_gb > 2.0
|
|
684
|
+
) # Use BigTIFF for files over 2GB
|
|
685
|
+
|
|
632
686
|
if (
|
|
633
687
|
"labels" in channel_filename
|
|
634
688
|
or "semantic" in channel_filename
|
|
635
689
|
):
|
|
690
|
+
# Choose appropriate integer type based on data range
|
|
691
|
+
if data_max <= 255:
|
|
692
|
+
save_dtype = np.uint8
|
|
693
|
+
elif data_max <= 65535:
|
|
694
|
+
save_dtype = np.uint16
|
|
695
|
+
else:
|
|
696
|
+
save_dtype = np.uint32
|
|
697
|
+
|
|
698
|
+
print(
|
|
699
|
+
f"Label image detected, saving as {save_dtype.__name__} with bigtiff={use_bigtiff}"
|
|
700
|
+
)
|
|
636
701
|
tifffile.imwrite(
|
|
637
702
|
channel_filepath,
|
|
638
|
-
|
|
703
|
+
channel_image.astype(save_dtype),
|
|
639
704
|
compression="zlib",
|
|
705
|
+
bigtiff=use_bigtiff,
|
|
640
706
|
)
|
|
641
707
|
else:
|
|
642
|
-
#
|
|
643
|
-
|
|
708
|
+
# Handle large images with bigtiff format
|
|
709
|
+
print(
|
|
710
|
+
f"Regular image channel, saving with dtype {image_dtype} and bigtiff={use_bigtiff}"
|
|
711
|
+
)
|
|
712
|
+
|
|
713
|
+
# Save with original dtype and bigtiff format if needed
|
|
644
714
|
tifffile.imwrite(
|
|
645
715
|
channel_filepath,
|
|
646
716
|
channel_image.astype(image_dtype),
|
|
647
717
|
compression="zlib",
|
|
718
|
+
bigtiff=use_bigtiff,
|
|
648
719
|
)
|
|
720
|
+
|
|
649
721
|
processed_files.append(channel_filepath)
|
|
650
722
|
|
|
651
723
|
# Return processing info
|
|
@@ -654,25 +726,61 @@ class ProcessingWorker(QThread):
|
|
|
654
726
|
"processed_files": processed_files,
|
|
655
727
|
}
|
|
656
728
|
else:
|
|
657
|
-
# Save as a single image
|
|
729
|
+
# Save as a single image
|
|
658
730
|
new_filepath = os.path.join(
|
|
659
731
|
self.output_folder, new_filename_base + ext
|
|
660
732
|
)
|
|
661
733
|
|
|
734
|
+
print(f"Single output image shape: {processed_image.shape}")
|
|
735
|
+
|
|
736
|
+
# Calculate approx file size in GB
|
|
737
|
+
size_gb = (
|
|
738
|
+
processed_image.size * processed_image.itemsize / (1024**3)
|
|
739
|
+
)
|
|
740
|
+
print(f"Estimated file size: {size_gb:.2f} GB")
|
|
741
|
+
|
|
742
|
+
# For very large files, we need to use BigTIFF format
|
|
743
|
+
use_bigtiff = size_gb > 2.0 # Use BigTIFF for files over 2GB
|
|
744
|
+
|
|
745
|
+
# Check data range
|
|
746
|
+
data_min = (
|
|
747
|
+
np.min(processed_image) if processed_image.size > 0 else 0
|
|
748
|
+
)
|
|
749
|
+
data_max = (
|
|
750
|
+
np.max(processed_image) if processed_image.size > 0 else 0
|
|
751
|
+
)
|
|
752
|
+
print(f"Data range: {data_min} to {data_max}")
|
|
753
|
+
|
|
662
754
|
if (
|
|
663
755
|
"labels" in new_filename_base
|
|
664
756
|
or "semantic" in new_filename_base
|
|
665
757
|
):
|
|
758
|
+
# Choose appropriate integer type based on data range
|
|
759
|
+
if data_max <= 255:
|
|
760
|
+
save_dtype = np.uint8
|
|
761
|
+
elif data_max <= 65535:
|
|
762
|
+
save_dtype = np.uint16
|
|
763
|
+
else:
|
|
764
|
+
save_dtype = np.uint32
|
|
765
|
+
|
|
766
|
+
print(
|
|
767
|
+
f"Saving label image as {save_dtype.__name__} with bigtiff={use_bigtiff}"
|
|
768
|
+
)
|
|
666
769
|
tifffile.imwrite(
|
|
667
770
|
new_filepath,
|
|
668
|
-
processed_image.astype(
|
|
771
|
+
processed_image.astype(save_dtype),
|
|
669
772
|
compression="zlib",
|
|
773
|
+
bigtiff=use_bigtiff,
|
|
670
774
|
)
|
|
671
775
|
else:
|
|
776
|
+
print(
|
|
777
|
+
f"Saving image with dtype {image_dtype} and bigtiff={use_bigtiff}"
|
|
778
|
+
)
|
|
672
779
|
tifffile.imwrite(
|
|
673
780
|
new_filepath,
|
|
674
781
|
processed_image.astype(image_dtype),
|
|
675
782
|
compression="zlib",
|
|
783
|
+
bigtiff=use_bigtiff,
|
|
676
784
|
)
|
|
677
785
|
|
|
678
786
|
# Return processing info
|
|
@@ -684,6 +792,9 @@ class ProcessingWorker(QThread):
|
|
|
684
792
|
except Exception as e:
|
|
685
793
|
# Log the error and re-raise to be caught by the executor
|
|
686
794
|
print(f"Error processing {filepath}: {e}")
|
|
795
|
+
import traceback
|
|
796
|
+
|
|
797
|
+
traceback.print_exc()
|
|
687
798
|
raise
|
|
688
799
|
finally:
|
|
689
800
|
# Explicit cleanup to help with memory management
|
|
@@ -692,10 +803,6 @@ class ProcessingWorker(QThread):
|
|
|
692
803
|
if "processed_image" in locals():
|
|
693
804
|
del processed_image
|
|
694
805
|
|
|
695
|
-
def stop(self):
|
|
696
|
-
"""Request worker to stop processing"""
|
|
697
|
-
self.stop_requested = True
|
|
698
|
-
|
|
699
806
|
|
|
700
807
|
class FileResultsWidget(QWidget):
|
|
701
808
|
"""
|