napari-tmidas 0.1.7__tar.gz → 0.1.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/PKG-INFO +14 -10
  2. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/README.md +13 -9
  3. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_version.py +2 -2
  4. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/PKG-INFO +14 -10
  5. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.github/dependabot.yml +0 -0
  6. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.github/workflows/test_and_deploy.yml +0 -0
  7. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.gitignore +0 -0
  8. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.napari-hub/DESCRIPTION.md +0 -0
  9. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.napari-hub/config.yml +0 -0
  10. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.pre-commit-config.yaml +0 -0
  11. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/LICENSE +0 -0
  12. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/MANIFEST.in +0 -0
  13. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/pyproject.toml +0 -0
  14. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/setup.cfg +0 -0
  15. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/__init__.py +0 -0
  16. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_crop_anything.py +0 -0
  17. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_file_conversion.py +0 -0
  18. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_file_selector.py +0 -0
  19. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_label_inspection.py +0 -0
  20. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_reader.py +0 -0
  21. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_registry.py +0 -0
  22. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_roi_colocalization.py +0 -0
  23. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_sample_data.py +0 -0
  24. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/__init__.py +0 -0
  25. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_reader.py +0 -0
  26. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
  27. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_widget.py +0 -0
  28. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_writer.py +0 -0
  29. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_widget.py +0 -0
  30. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_writer.py +0 -0
  31. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/napari.yaml +0 -0
  32. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/__init__.py +0 -0
  33. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/basic.py +0 -0
  34. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/colocalization.py +0 -0
  35. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
  36. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/skimage_filters.py +0 -0
  37. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/SOURCES.txt +0 -0
  38. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
  39. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
  40. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/requires.txt +0 -0
  41. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/top_level.txt +0 -0
  42. {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/tox.ini +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: napari-tmidas
3
- Version: 0.1.7
3
+ Version: 0.1.8
4
4
  Summary: Tissue Microscopy Image Data Analysis Suite
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
@@ -79,20 +79,19 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
79
79
 
80
80
  ## Feature Overview
81
81
 
82
- ### Current Pipelines
83
- 1. **Batch Image Processing**
82
+ 1. **Image Processing**
84
83
  - Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
85
84
 
86
- 2. **Batch Label Inspection**
85
+ 2. **Label Inspection**
87
86
  - Review and edit label images with auto-save
88
87
 
89
- 3. **Batch Microscopy Image Conversion**
88
+ 3. **Microscopy Image Conversion**
90
89
  - Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
91
90
 
92
- 4. **Batch Crop Anything**
91
+ 4. **Crop Anything**
93
92
  - Interactive ROI selection via click interface
94
93
 
95
- 5. Batch ROI Colocalization
94
+ 5. **ROI Colocalization**
96
95
  - Count colocalized labels across multiple channels
97
96
 
98
97
 
@@ -138,13 +137,13 @@ You can find the installed plugin here:
138
137
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
139
138
 
140
139
 
141
- ### Batch Microscopy Image Conversion
140
+ ### Microscopy Image Conversion
142
141
 
143
142
  You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
144
143
 
145
144
  ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
146
145
 
147
- ### Batch File Processing
146
+ ### Image Processing
148
147
 
149
148
  1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
150
149
 
@@ -169,11 +168,16 @@ If you have already segmented a folder full of images and now you want to maybe
169
168
 
170
169
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
171
170
 
172
- ### Batch Crop Anything
171
+ ### Crop Anything
173
172
  This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
174
173
 
175
174
  ![image](https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443)
176
175
 
176
+ ### ROI Colocalization
177
+ This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
178
+
179
+ ![napari-tmidas_coloc_pipeline](https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7)
180
+
177
181
 
178
182
  ## Contributing
179
183
 
@@ -10,20 +10,19 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
10
10
 
11
11
  ## Feature Overview
12
12
 
13
- ### Current Pipelines
14
- 1. **Batch Image Processing**
13
+ 1. **Image Processing**
15
14
  - Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
16
15
 
17
- 2. **Batch Label Inspection**
16
+ 2. **Label Inspection**
18
17
  - Review and edit label images with auto-save
19
18
 
20
- 3. **Batch Microscopy Image Conversion**
19
+ 3. **Microscopy Image Conversion**
21
20
  - Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
22
21
 
23
- 4. **Batch Crop Anything**
22
+ 4. **Crop Anything**
24
23
  - Interactive ROI selection via click interface
25
24
 
26
- 5. Batch ROI Colocalization
25
+ 5. **ROI Colocalization**
27
26
  - Count colocalized labels across multiple channels
28
27
 
29
28
 
@@ -69,13 +68,13 @@ You can find the installed plugin here:
69
68
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
70
69
 
71
70
 
72
- ### Batch Microscopy Image Conversion
71
+ ### Microscopy Image Conversion
73
72
 
74
73
  You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
75
74
 
76
75
  ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
77
76
 
78
- ### Batch File Processing
77
+ ### Image Processing
79
78
 
80
79
  1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
81
80
 
@@ -100,11 +99,16 @@ If you have already segmented a folder full of images and now you want to maybe
100
99
 
101
100
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
102
101
 
103
- ### Batch Crop Anything
102
+ ### Crop Anything
104
103
  This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
105
104
 
106
105
  ![image](https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443)
107
106
 
107
+ ### ROI Colocalization
108
+ This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
109
+
110
+ ![napari-tmidas_coloc_pipeline](https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7)
111
+
108
112
 
109
113
  ## Contributing
110
114
 
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.7'
21
- __version_tuple__ = version_tuple = (0, 1, 7)
20
+ __version__ = version = '0.1.8'
21
+ __version_tuple__ = version_tuple = (0, 1, 8)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: napari-tmidas
3
- Version: 0.1.7
3
+ Version: 0.1.8
4
4
  Summary: Tissue Microscopy Image Data Analysis Suite
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
@@ -79,20 +79,19 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
79
79
 
80
80
  ## Feature Overview
81
81
 
82
- ### Current Pipelines
83
- 1. **Batch Image Processing**
82
+ 1. **Image Processing**
84
83
  - Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
85
84
 
86
- 2. **Batch Label Inspection**
85
+ 2. **Label Inspection**
87
86
  - Review and edit label images with auto-save
88
87
 
89
- 3. **Batch Microscopy Image Conversion**
88
+ 3. **Microscopy Image Conversion**
90
89
  - Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
91
90
 
92
- 4. **Batch Crop Anything**
91
+ 4. **Crop Anything**
93
92
  - Interactive ROI selection via click interface
94
93
 
95
- 5. Batch ROI Colocalization
94
+ 5. **ROI Colocalization**
96
95
  - Count colocalized labels across multiple channels
97
96
 
98
97
 
@@ -138,13 +137,13 @@ You can find the installed plugin here:
138
137
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
139
138
 
140
139
 
141
- ### Batch Microscopy Image Conversion
140
+ ### Microscopy Image Conversion
142
141
 
143
142
  You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
144
143
 
145
144
  ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
146
145
 
147
- ### Batch File Processing
146
+ ### Image Processing
148
147
 
149
148
  1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
150
149
 
@@ -169,11 +168,16 @@ If you have already segmented a folder full of images and now you want to maybe
169
168
 
170
169
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
171
170
 
172
- ### Batch Crop Anything
171
+ ### Crop Anything
173
172
  This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
174
173
 
175
174
  ![image](https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443)
176
175
 
176
+ ### ROI Colocalization
177
+ This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
178
+
179
+ ![napari-tmidas_coloc_pipeline](https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7)
180
+
177
181
 
178
182
  ## Contributing
179
183
 
File without changes
File without changes
File without changes
File without changes
File without changes