napari-tmidas 0.1.7__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/PKG-INFO +14 -10
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/README.md +13 -9
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_version.py +2 -2
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/PKG-INFO +14 -10
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.github/dependabot.yml +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.github/workflows/test_and_deploy.yml +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.gitignore +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.napari-hub/DESCRIPTION.md +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.napari-hub/config.yml +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/.pre-commit-config.yaml +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/LICENSE +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/MANIFEST.in +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/pyproject.toml +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/setup.cfg +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/__init__.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_crop_anything.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_file_conversion.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_file_selector.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_label_inspection.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_reader.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_registry.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_roi_colocalization.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_sample_data.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/__init__.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_reader.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_widget.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_tests/test_writer.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_widget.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/_writer.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/napari.yaml +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/__init__.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/basic.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/colocalization.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/skimage_filters.py +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/SOURCES.txt +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/requires.txt +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas.egg-info/top_level.txt +0 -0
- {napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/tox.ini +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-tmidas
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: Tissue Microscopy Image Data Analysis Suite
|
|
5
5
|
Author: Marco Meer
|
|
6
6
|
Author-email: marco.meer@pm.me
|
|
@@ -79,20 +79,19 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
|
|
|
79
79
|
|
|
80
80
|
## Feature Overview
|
|
81
81
|
|
|
82
|
-
|
|
83
|
-
1. **Batch Image Processing**
|
|
82
|
+
1. **Image Processing**
|
|
84
83
|
- Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
|
|
85
84
|
|
|
86
|
-
2. **
|
|
85
|
+
2. **Label Inspection**
|
|
87
86
|
- Review and edit label images with auto-save
|
|
88
87
|
|
|
89
|
-
3. **
|
|
88
|
+
3. **Microscopy Image Conversion**
|
|
90
89
|
- Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
|
|
91
90
|
|
|
92
|
-
4. **
|
|
91
|
+
4. **Crop Anything**
|
|
93
92
|
- Interactive ROI selection via click interface
|
|
94
93
|
|
|
95
|
-
5.
|
|
94
|
+
5. **ROI Colocalization**
|
|
96
95
|
- Count colocalized labels across multiple channels
|
|
97
96
|
|
|
98
97
|
|
|
@@ -138,13 +137,13 @@ You can find the installed plugin here:
|
|
|
138
137
|

|
|
139
138
|
|
|
140
139
|
|
|
141
|
-
###
|
|
140
|
+
### Microscopy Image Conversion
|
|
142
141
|
|
|
143
142
|
You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
|
|
144
143
|
|
|
145
144
|

|
|
146
145
|
|
|
147
|
-
###
|
|
146
|
+
### Image Processing
|
|
148
147
|
|
|
149
148
|
1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
150
149
|
|
|
@@ -169,11 +168,16 @@ If you have already segmented a folder full of images and now you want to maybe
|
|
|
169
168
|
|
|
170
169
|

|
|
171
170
|
|
|
172
|
-
###
|
|
171
|
+
### Crop Anything
|
|
173
172
|
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
|
|
174
173
|
|
|
175
174
|

|
|
176
175
|
|
|
176
|
+
### ROI Colocalization
|
|
177
|
+
This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
|
|
178
|
+
|
|
179
|
+

|
|
180
|
+
|
|
177
181
|
|
|
178
182
|
## Contributing
|
|
179
183
|
|
|
@@ -10,20 +10,19 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
|
|
|
10
10
|
|
|
11
11
|
## Feature Overview
|
|
12
12
|
|
|
13
|
-
|
|
14
|
-
1. **Batch Image Processing**
|
|
13
|
+
1. **Image Processing**
|
|
15
14
|
- Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
|
|
16
15
|
|
|
17
|
-
2. **
|
|
16
|
+
2. **Label Inspection**
|
|
18
17
|
- Review and edit label images with auto-save
|
|
19
18
|
|
|
20
|
-
3. **
|
|
19
|
+
3. **Microscopy Image Conversion**
|
|
21
20
|
- Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
|
|
22
21
|
|
|
23
|
-
4. **
|
|
22
|
+
4. **Crop Anything**
|
|
24
23
|
- Interactive ROI selection via click interface
|
|
25
24
|
|
|
26
|
-
5.
|
|
25
|
+
5. **ROI Colocalization**
|
|
27
26
|
- Count colocalized labels across multiple channels
|
|
28
27
|
|
|
29
28
|
|
|
@@ -69,13 +68,13 @@ You can find the installed plugin here:
|
|
|
69
68
|

|
|
70
69
|
|
|
71
70
|
|
|
72
|
-
###
|
|
71
|
+
### Microscopy Image Conversion
|
|
73
72
|
|
|
74
73
|
You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
|
|
75
74
|
|
|
76
75
|

|
|
77
76
|
|
|
78
|
-
###
|
|
77
|
+
### Image Processing
|
|
79
78
|
|
|
80
79
|
1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
81
80
|
|
|
@@ -100,11 +99,16 @@ If you have already segmented a folder full of images and now you want to maybe
|
|
|
100
99
|
|
|
101
100
|

|
|
102
101
|
|
|
103
|
-
###
|
|
102
|
+
### Crop Anything
|
|
104
103
|
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
|
|
105
104
|
|
|
106
105
|

|
|
107
106
|
|
|
107
|
+
### ROI Colocalization
|
|
108
|
+
This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
|
|
109
|
+
|
|
110
|
+

|
|
111
|
+
|
|
108
112
|
|
|
109
113
|
## Contributing
|
|
110
114
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-tmidas
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.8
|
|
4
4
|
Summary: Tissue Microscopy Image Data Analysis Suite
|
|
5
5
|
Author: Marco Meer
|
|
6
6
|
Author-email: marco.meer@pm.me
|
|
@@ -79,20 +79,19 @@ The `napari-tmidas` plugin consists of a growing collection of pipelines for fas
|
|
|
79
79
|
|
|
80
80
|
## Feature Overview
|
|
81
81
|
|
|
82
|
-
|
|
83
|
-
1. **Batch Image Processing**
|
|
82
|
+
1. **Image Processing**
|
|
84
83
|
- Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
|
|
85
84
|
|
|
86
|
-
2. **
|
|
85
|
+
2. **Label Inspection**
|
|
87
86
|
- Review and edit label images with auto-save
|
|
88
87
|
|
|
89
|
-
3. **
|
|
88
|
+
3. **Microscopy Image Conversion**
|
|
90
89
|
- Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
|
|
91
90
|
|
|
92
|
-
4. **
|
|
91
|
+
4. **Crop Anything**
|
|
93
92
|
- Interactive ROI selection via click interface
|
|
94
93
|
|
|
95
|
-
5.
|
|
94
|
+
5. **ROI Colocalization**
|
|
96
95
|
- Count colocalized labels across multiple channels
|
|
97
96
|
|
|
98
97
|
|
|
@@ -138,13 +137,13 @@ You can find the installed plugin here:
|
|
|
138
137
|

|
|
139
138
|
|
|
140
139
|
|
|
141
|
-
###
|
|
140
|
+
### Microscopy Image Conversion
|
|
142
141
|
|
|
143
142
|
You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
|
|
144
143
|
|
|
145
144
|

|
|
146
145
|
|
|
147
|
-
###
|
|
146
|
+
### Image Processing
|
|
148
147
|
|
|
149
148
|
1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
150
149
|
|
|
@@ -169,11 +168,16 @@ If you have already segmented a folder full of images and now you want to maybe
|
|
|
169
168
|
|
|
170
169
|

|
|
171
170
|
|
|
172
|
-
###
|
|
171
|
+
### Crop Anything
|
|
173
172
|
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
|
|
174
173
|
|
|
175
174
|

|
|
176
175
|
|
|
176
|
+
### ROI Colocalization
|
|
177
|
+
This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
|
|
178
|
+
|
|
179
|
+

|
|
180
|
+
|
|
177
181
|
|
|
178
182
|
## Contributing
|
|
179
183
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/__init__.py
RENAMED
|
File without changes
|
|
File without changes
|
{napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/colocalization.py
RENAMED
|
File without changes
|
{napari_tmidas-0.1.7 → napari_tmidas-0.1.8}/src/napari_tmidas/processing_functions/scipy_filters.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|