napari-tmidas 0.1.5__tar.gz → 0.1.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/PKG-INFO +44 -14
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/README.md +43 -13
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/__init__.py +3 -0
- napari_tmidas-0.1.7/src/napari_tmidas/_crop_anything.py +1113 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_file_conversion.py +488 -256
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_file_selector.py +267 -101
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_label_inspection.py +10 -0
- napari_tmidas-0.1.7/src/napari_tmidas/_roi_colocalization.py +1175 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_version.py +2 -2
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/napari.yaml +10 -0
- napari_tmidas-0.1.7/src/napari_tmidas/processing_functions/basic.py +125 -0
- napari_tmidas-0.1.7/src/napari_tmidas/processing_functions/colocalization.py +242 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/processing_functions/skimage_filters.py +17 -32
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas.egg-info/PKG-INFO +44 -14
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas.egg-info/SOURCES.txt +3 -0
- napari_tmidas-0.1.5/src/napari_tmidas/processing_functions/basic.py +0 -42
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/.github/dependabot.yml +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/.github/workflows/test_and_deploy.yml +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/.gitignore +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/.napari-hub/DESCRIPTION.md +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/.napari-hub/config.yml +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/.pre-commit-config.yaml +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/LICENSE +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/MANIFEST.in +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/pyproject.toml +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/setup.cfg +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_reader.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_registry.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_sample_data.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_tests/__init__.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_tests/test_reader.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_tests/test_widget.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_tests/test_writer.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_widget.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/_writer.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/processing_functions/__init__.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas.egg-info/requires.txt +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/src/napari_tmidas.egg-info/top_level.txt +0 -0
- {napari_tmidas-0.1.5 → napari_tmidas-0.1.7}/tox.ini +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-tmidas
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.7
|
|
4
4
|
Summary: Tissue Microscopy Image Data Analysis Suite
|
|
5
5
|
Author: Marco Meer
|
|
6
6
|
Author-email: marco.meer@pm.me
|
|
@@ -75,11 +75,31 @@ Dynamic: license-file
|
|
|
75
75
|
[](https://github.com/macromeer/napari-tmidas/actions)
|
|
76
76
|
[](https://napari-hub.org/plugins/napari-tmidas)
|
|
77
77
|
<!-- [](https://codecov.io/gh/macromeer/napari-tmidas) -->
|
|
78
|
-
|
|
78
|
+
The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of microscopy images. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
|
|
79
79
|
|
|
80
|
-
|
|
80
|
+
## Feature Overview
|
|
81
|
+
|
|
82
|
+
### Current Pipelines
|
|
83
|
+
1. **Batch Image Processing**
|
|
84
|
+
- Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
|
|
85
|
+
|
|
86
|
+
2. **Batch Label Inspection**
|
|
87
|
+
- Review and edit label images with auto-save
|
|
88
|
+
|
|
89
|
+
3. **Batch Microscopy Image Conversion**
|
|
90
|
+
- Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
|
|
91
|
+
|
|
92
|
+
4. **Batch Crop Anything**
|
|
93
|
+
- Interactive ROI selection via click interface
|
|
94
|
+
|
|
95
|
+
5. Batch ROI Colocalization
|
|
96
|
+
- Count colocalized labels across multiple channels
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
### Coming Soon
|
|
101
|
+
New features arriving April 2025
|
|
81
102
|
|
|
82
|
-
`napari-tmidas` is a work in progress (WIP) and an evolutionary step away from the [terminal / command-line version of T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
|
|
83
103
|
|
|
84
104
|
## Installation
|
|
85
105
|
|
|
@@ -98,29 +118,35 @@ To install the latest development version:
|
|
|
98
118
|
pip install git+https://github.com/macromeer/napari-tmidas.git
|
|
99
119
|
|
|
100
120
|
### Dependencies
|
|
101
|
-
|
|
121
|
+
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats and to write ome-zarr:
|
|
122
|
+
|
|
123
|
+
pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari ome-zarr napari-ome-zarr
|
|
102
124
|
|
|
103
|
-
|
|
125
|
+
For the Batch Crop Anything pipeline, we need to install MobileSAM and its dependencies:
|
|
104
126
|
|
|
127
|
+
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
|
|
128
|
+
pip install torch torchvision timm opencv-python
|
|
105
129
|
|
|
106
130
|
## Usage
|
|
107
131
|
|
|
132
|
+
To use the plugin, start napari in the activated virtual environment with this terminal command:
|
|
133
|
+
|
|
134
|
+
mamba run -n napari-tmidas napari
|
|
135
|
+
|
|
108
136
|
You can find the installed plugin here:
|
|
109
137
|
|
|
110
138
|

|
|
111
139
|
|
|
112
140
|
|
|
113
|
-
###
|
|
141
|
+
### Batch Microscopy Image Conversion
|
|
114
142
|
|
|
115
|
-
You
|
|
143
|
+
You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
|
|
116
144
|
|
|
117
145
|

|
|
118
146
|
|
|
147
|
+
### Batch File Processing
|
|
119
148
|
|
|
120
|
-
|
|
121
|
-
### File inspector
|
|
122
|
-
|
|
123
|
-
1. After opening `Plugins > T-MIDAS > File selector`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
149
|
+
1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
124
150
|
|
|
125
151
|

|
|
126
152
|
|
|
@@ -138,11 +164,15 @@ You might first want to batch convert microscopy image data. Currently, this plu
|
|
|
138
164
|
|
|
139
165
|
Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
|
|
140
166
|
|
|
141
|
-
### Label
|
|
142
|
-
If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Label
|
|
167
|
+
### Batch Label Inspection
|
|
168
|
+
If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Batch Label Inspection`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
|
|
143
169
|
|
|
144
170
|

|
|
145
171
|
|
|
172
|
+
### Batch Crop Anything
|
|
173
|
+
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
|
|
174
|
+
|
|
175
|
+

|
|
146
176
|
|
|
147
177
|
|
|
148
178
|
## Contributing
|
|
@@ -6,11 +6,31 @@
|
|
|
6
6
|
[](https://github.com/macromeer/napari-tmidas/actions)
|
|
7
7
|
[](https://napari-hub.org/plugins/napari-tmidas)
|
|
8
8
|
<!-- [](https://codecov.io/gh/macromeer/napari-tmidas) -->
|
|
9
|
-
|
|
9
|
+
The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of microscopy images. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
|
|
10
10
|
|
|
11
|
-
|
|
11
|
+
## Feature Overview
|
|
12
|
+
|
|
13
|
+
### Current Pipelines
|
|
14
|
+
1. **Batch Image Processing**
|
|
15
|
+
- Process image folders with: Gamma correction, Z-projection, channel splitting, Gaussian/median filters, thresholding (Otsu/manual), and label cleaning
|
|
16
|
+
|
|
17
|
+
2. **Batch Label Inspection**
|
|
18
|
+
- Review and edit label images with auto-save
|
|
19
|
+
|
|
20
|
+
3. **Batch Microscopy Image Conversion**
|
|
21
|
+
- Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
|
|
22
|
+
|
|
23
|
+
4. **Batch Crop Anything**
|
|
24
|
+
- Interactive ROI selection via click interface
|
|
25
|
+
|
|
26
|
+
5. Batch ROI Colocalization
|
|
27
|
+
- Count colocalized labels across multiple channels
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
### Coming Soon
|
|
32
|
+
New features arriving April 2025
|
|
12
33
|
|
|
13
|
-
`napari-tmidas` is a work in progress (WIP) and an evolutionary step away from the [terminal / command-line version of T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
|
|
14
34
|
|
|
15
35
|
## Installation
|
|
16
36
|
|
|
@@ -29,29 +49,35 @@ To install the latest development version:
|
|
|
29
49
|
pip install git+https://github.com/macromeer/napari-tmidas.git
|
|
30
50
|
|
|
31
51
|
### Dependencies
|
|
32
|
-
|
|
52
|
+
To use the Batch Microscopy Image Conversion pipeline, we need some libraries to read microscopy formats and to write ome-zarr:
|
|
53
|
+
|
|
54
|
+
pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari ome-zarr napari-ome-zarr
|
|
33
55
|
|
|
34
|
-
|
|
56
|
+
For the Batch Crop Anything pipeline, we need to install MobileSAM and its dependencies:
|
|
35
57
|
|
|
58
|
+
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
|
|
59
|
+
pip install torch torchvision timm opencv-python
|
|
36
60
|
|
|
37
61
|
## Usage
|
|
38
62
|
|
|
63
|
+
To use the plugin, start napari in the activated virtual environment with this terminal command:
|
|
64
|
+
|
|
65
|
+
mamba run -n napari-tmidas napari
|
|
66
|
+
|
|
39
67
|
You can find the installed plugin here:
|
|
40
68
|
|
|
41
69
|

|
|
42
70
|
|
|
43
71
|
|
|
44
|
-
###
|
|
72
|
+
### Batch Microscopy Image Conversion
|
|
45
73
|
|
|
46
|
-
You
|
|
74
|
+
You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
|
|
47
75
|
|
|
48
76
|

|
|
49
77
|
|
|
78
|
+
### Batch File Processing
|
|
50
79
|
|
|
51
|
-
|
|
52
|
-
### File inspector
|
|
53
|
-
|
|
54
|
-
1. After opening `Plugins > T-MIDAS > File selector`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
80
|
+
1. After opening `Plugins > T-MIDAS > Batch Image Processing`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
|
|
55
81
|
|
|
56
82
|

|
|
57
83
|
|
|
@@ -69,11 +95,15 @@ You might first want to batch convert microscopy image data. Currently, this plu
|
|
|
69
95
|
|
|
70
96
|
Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
|
|
71
97
|
|
|
72
|
-
### Label
|
|
73
|
-
If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Label
|
|
98
|
+
### Batch Label Inspection
|
|
99
|
+
If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Batch Label Inspection`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
|
|
74
100
|
|
|
75
101
|

|
|
76
102
|
|
|
103
|
+
### Batch Crop Anything
|
|
104
|
+
This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`
|
|
105
|
+
|
|
106
|
+

|
|
77
107
|
|
|
78
108
|
|
|
79
109
|
## Contributing
|
|
@@ -6,6 +6,7 @@ except ImportError:
|
|
|
6
6
|
|
|
7
7
|
from ._label_inspection import label_inspector_widget
|
|
8
8
|
from ._reader import napari_get_reader
|
|
9
|
+
from ._roi_colocalization import roi_colocalization_analyzer
|
|
9
10
|
from ._sample_data import make_sample_data
|
|
10
11
|
from ._writer import write_multiple, write_single_image
|
|
11
12
|
|
|
@@ -16,4 +17,6 @@ __all__ = (
|
|
|
16
17
|
"make_sample_data",
|
|
17
18
|
"file_selector",
|
|
18
19
|
"label_inspector_widget",
|
|
20
|
+
"batch_crop_anything_widget",
|
|
21
|
+
"roi_colocalization_analyzer",
|
|
19
22
|
)
|