napari-tmidas 0.1.3__tar.gz → 0.1.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/PKG-INFO +35 -12
  2. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/README.md +32 -10
  3. napari_tmidas-0.1.5/src/napari_tmidas/_file_conversion.py +1706 -0
  4. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_file_selector.py +357 -60
  5. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_label_inspection.py +87 -26
  6. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_version.py +2 -2
  7. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/napari.yaml +9 -4
  8. napari_tmidas-0.1.5/src/napari_tmidas/processing_functions/basic.py +42 -0
  9. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/processing_functions/skimage_filters.py +60 -43
  10. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas.egg-info/PKG-INFO +35 -12
  11. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas.egg-info/SOURCES.txt +1 -0
  12. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/tox.ini +8 -1
  13. napari_tmidas-0.1.3/src/napari_tmidas/processing_functions/basic.py +0 -60
  14. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/.github/dependabot.yml +0 -0
  15. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/.github/workflows/test_and_deploy.yml +0 -0
  16. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/.gitignore +0 -0
  17. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/.napari-hub/DESCRIPTION.md +0 -0
  18. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/.napari-hub/config.yml +0 -0
  19. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/.pre-commit-config.yaml +0 -0
  20. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/LICENSE +0 -0
  21. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/MANIFEST.in +0 -0
  22. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/pyproject.toml +0 -0
  23. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/setup.cfg +0 -0
  24. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/__init__.py +0 -0
  25. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_reader.py +0 -0
  26. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_registry.py +0 -0
  27. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_sample_data.py +0 -0
  28. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_tests/__init__.py +0 -0
  29. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_tests/test_reader.py +0 -0
  30. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
  31. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_tests/test_widget.py +0 -0
  32. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_tests/test_writer.py +0 -0
  33. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_widget.py +0 -0
  34. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/_writer.py +0 -0
  35. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/processing_functions/__init__.py +0 -0
  36. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
  37. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
  38. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
  39. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas.egg-info/requires.txt +0 -0
  40. {napari_tmidas-0.1.3 → napari_tmidas-0.1.5}/src/napari_tmidas.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: napari-tmidas
3
- Version: 0.1.3
3
+ Version: 0.1.5
4
4
  Summary: Tissue Microscopy Image Data Analysis Suite
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
@@ -65,6 +65,7 @@ Requires-Dist: pytest-cov; extra == "testing"
65
65
  Requires-Dist: pytest-qt; extra == "testing"
66
66
  Requires-Dist: napari; extra == "testing"
67
67
  Requires-Dist: pyqt5; extra == "testing"
68
+ Dynamic: license-file
68
69
 
69
70
  # napari-tmidas
70
71
 
@@ -74,15 +75,21 @@ Requires-Dist: pyqt5; extra == "testing"
74
75
  [![tests](https://github.com/macromeer/napari-tmidas/workflows/tests/badge.svg)](https://github.com/macromeer/napari-tmidas/actions)
75
76
  [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-tmidas)](https://napari-hub.org/plugins/napari-tmidas)
76
77
  <!-- [![codecov](https://codecov.io/gh/macromeer/napari-tmidas/branch/main/graph/badge.svg)](https://codecov.io/gh/macromeer/napari-tmidas) -->
78
+ This Napari plugin allows you to perform batch image processing without a graphics processing unit (GPU). It will still be fast because computations will run in parallel on your central processing unit (CPU).
77
79
 
78
- The Tissue Microscopy Image Data Analysis Suite (short: T-MIDAS), is a collection of pipelines for batch image preprocessing, segmentation, regions-of-interest (ROI) analysis and other useful features. This is a work in progress (WIP) and an evolutionary step away from the [terminal / command-line version of T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
80
+ This plugin provides you with a growing collection of pipelines for batch image preprocessing, segmentation, regions-of-interest (ROI) analysis and other useful features.
81
+
82
+ `napari-tmidas` is a work in progress (WIP) and an evolutionary step away from the [terminal / command-line version of T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
79
83
 
80
84
  ## Installation
81
85
 
82
- First install Napari in a virtual environment following the latest [Napari installation instructions](https://github.com/Napari/napari?tab=readme-ov-file#installation).
86
+ First install Napari in a virtual environment:
83
87
 
88
+ mamba create -y -n napari-tmidas -c conda-forge python=3.11 tqdm
89
+ mamba activate napari-tmidas
90
+ python -m pip install "napari[all]"
84
91
 
85
- After you have activated the environment, you can install `napari-tmidas` via [pip]:
92
+ Now you can install `napari-tmidas` via [pip]:
86
93
 
87
94
  pip install napari-tmidas
88
95
 
@@ -90,31 +97,46 @@ To install the latest development version:
90
97
 
91
98
  pip install git+https://github.com/macromeer/napari-tmidas.git
92
99
 
100
+ ### Dependencies
101
+ For the File converter, we need some libraries to read some microscopy formats and to write ome-zarr:
102
+
103
+ pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari ome-zarr
104
+
105
+
93
106
  ## Usage
94
107
 
95
108
  You can find the installed plugin here:
96
-
109
+
97
110
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
98
111
 
112
+
113
+ ### File converter
114
+
115
+ You might first want to batch convert microscopy image data. Currently, this plugin supports `.nd2, .lif, .ndpi, .czi` and acquifer data. After launching the file converter, you can scan a folder of your choice for microscopy image data. It will also detect series images that you can preview. Start by selecting an original image in the first column of the table. This allows you to preview or convert.
116
+
117
+ ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
118
+
119
+
120
+
99
121
  ### File inspector
100
122
 
101
123
  1. After opening `Plugins > T-MIDAS > File selector`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
102
-
124
+
103
125
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
104
126
 
105
127
  2. As a result, a table appears with the found images.
106
-
128
+
107
129
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
108
130
 
109
131
  3. Next, select a processing function, set parameters if applicable and `Start Batch Processing`.
110
-
132
+
111
133
  ![image](https://github.com/user-attachments/assets/05929660-6672-4f76-89da-4f17749ccfad)
112
134
 
113
- 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
114
-
135
+ 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
136
+
115
137
  ![image](https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce)
116
138
 
117
- Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
139
+ Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
118
140
 
119
141
  ### Label inspector
120
142
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Label inspector`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
@@ -122,6 +144,7 @@ If you have already segmented a folder full of images and now you want to maybe
122
144
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
123
145
 
124
146
 
147
+
125
148
  ## Contributing
126
149
 
127
150
  Contributions are very welcome. Tests can be run with [tox], please ensure
@@ -6,15 +6,21 @@
6
6
  [![tests](https://github.com/macromeer/napari-tmidas/workflows/tests/badge.svg)](https://github.com/macromeer/napari-tmidas/actions)
7
7
  [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-tmidas)](https://napari-hub.org/plugins/napari-tmidas)
8
8
  <!-- [![codecov](https://codecov.io/gh/macromeer/napari-tmidas/branch/main/graph/badge.svg)](https://codecov.io/gh/macromeer/napari-tmidas) -->
9
+ This Napari plugin allows you to perform batch image processing without a graphics processing unit (GPU). It will still be fast because computations will run in parallel on your central processing unit (CPU).
9
10
 
10
- The Tissue Microscopy Image Data Analysis Suite (short: T-MIDAS), is a collection of pipelines for batch image preprocessing, segmentation, regions-of-interest (ROI) analysis and other useful features. This is a work in progress (WIP) and an evolutionary step away from the [terminal / command-line version of T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
11
+ This plugin provides you with a growing collection of pipelines for batch image preprocessing, segmentation, regions-of-interest (ROI) analysis and other useful features.
12
+
13
+ `napari-tmidas` is a work in progress (WIP) and an evolutionary step away from the [terminal / command-line version of T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
11
14
 
12
15
  ## Installation
13
16
 
14
- First install Napari in a virtual environment following the latest [Napari installation instructions](https://github.com/Napari/napari?tab=readme-ov-file#installation).
17
+ First install Napari in a virtual environment:
15
18
 
19
+ mamba create -y -n napari-tmidas -c conda-forge python=3.11 tqdm
20
+ mamba activate napari-tmidas
21
+ python -m pip install "napari[all]"
16
22
 
17
- After you have activated the environment, you can install `napari-tmidas` via [pip]:
23
+ Now you can install `napari-tmidas` via [pip]:
18
24
 
19
25
  pip install napari-tmidas
20
26
 
@@ -22,31 +28,46 @@ To install the latest development version:
22
28
 
23
29
  pip install git+https://github.com/macromeer/napari-tmidas.git
24
30
 
31
+ ### Dependencies
32
+ For the File converter, we need some libraries to read some microscopy formats and to write ome-zarr:
33
+
34
+ pip install nd2 readlif tiffslide pylibCZIrw acquifer-napari ome-zarr
35
+
36
+
25
37
  ## Usage
26
38
 
27
39
  You can find the installed plugin here:
28
-
40
+
29
41
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
30
42
 
43
+
44
+ ### File converter
45
+
46
+ You might first want to batch convert microscopy image data. Currently, this plugin supports `.nd2, .lif, .ndpi, .czi` and acquifer data. After launching the file converter, you can scan a folder of your choice for microscopy image data. It will also detect series images that you can preview. Start by selecting an original image in the first column of the table. This allows you to preview or convert.
47
+
48
+ ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
49
+
50
+
51
+
31
52
  ### File inspector
32
53
 
33
54
  1. After opening `Plugins > T-MIDAS > File selector`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
34
-
55
+
35
56
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
36
57
 
37
58
  2. As a result, a table appears with the found images.
38
-
59
+
39
60
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
40
61
 
41
62
  3. Next, select a processing function, set parameters if applicable and `Start Batch Processing`.
42
-
63
+
43
64
  ![image](https://github.com/user-attachments/assets/05929660-6672-4f76-89da-4f17749ccfad)
44
65
 
45
- 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
46
-
66
+ 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
67
+
47
68
  ![image](https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce)
48
69
 
49
- Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
70
+ Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
50
71
 
51
72
  ### Label inspector
52
73
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Label inspector`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
@@ -54,6 +75,7 @@ If you have already segmented a folder full of images and now you want to maybe
54
75
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
55
76
 
56
77
 
78
+
57
79
  ## Contributing
58
80
 
59
81
  Contributions are very welcome. Tests can be run with [tox], please ensure