napari-tmidas 0.1.3__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/PKG-INFO +29 -10
  2. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/README.md +28 -9
  3. napari_tmidas-0.1.4/src/napari_tmidas/_file_conversion.py +1477 -0
  4. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_file_selector.py +357 -60
  5. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_label_inspection.py +87 -26
  6. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_version.py +2 -2
  7. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/napari.yaml +5 -0
  8. napari_tmidas-0.1.4/src/napari_tmidas/processing_functions/basic.py +42 -0
  9. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/processing_functions/skimage_filters.py +60 -43
  10. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas.egg-info/PKG-INFO +29 -10
  11. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas.egg-info/SOURCES.txt +1 -0
  12. napari_tmidas-0.1.3/src/napari_tmidas/processing_functions/basic.py +0 -60
  13. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/.github/dependabot.yml +0 -0
  14. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/.github/workflows/test_and_deploy.yml +0 -0
  15. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/.gitignore +0 -0
  16. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/.napari-hub/DESCRIPTION.md +0 -0
  17. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/.napari-hub/config.yml +0 -0
  18. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/.pre-commit-config.yaml +0 -0
  19. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/LICENSE +0 -0
  20. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/MANIFEST.in +0 -0
  21. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/pyproject.toml +0 -0
  22. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/setup.cfg +0 -0
  23. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/__init__.py +0 -0
  24. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_reader.py +0 -0
  25. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_registry.py +0 -0
  26. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_sample_data.py +0 -0
  27. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_tests/__init__.py +0 -0
  28. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_tests/test_reader.py +0 -0
  29. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_tests/test_sample_data.py +0 -0
  30. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_tests/test_widget.py +0 -0
  31. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_tests/test_writer.py +0 -0
  32. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_widget.py +0 -0
  33. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/_writer.py +0 -0
  34. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/processing_functions/__init__.py +0 -0
  35. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas/processing_functions/scipy_filters.py +0 -0
  36. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas.egg-info/dependency_links.txt +0 -0
  37. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas.egg-info/entry_points.txt +0 -0
  38. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas.egg-info/requires.txt +0 -0
  39. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/src/napari_tmidas.egg-info/top_level.txt +0 -0
  40. {napari_tmidas-0.1.3 → napari_tmidas-0.1.4}/tox.ini +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: napari-tmidas
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Summary: Tissue Microscopy Image Data Analysis Suite
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
@@ -79,10 +79,13 @@ The Tissue Microscopy Image Data Analysis Suite (short: T-MIDAS), is a collectio
79
79
 
80
80
  ## Installation
81
81
 
82
- First install Napari in a virtual environment following the latest [Napari installation instructions](https://github.com/Napari/napari?tab=readme-ov-file#installation).
82
+ First install Napari in a virtual environment:
83
83
 
84
+ mamba create -y -n napari-tmidas -c conda-forge python=3.11
85
+ mamba activate napari-tmidas
86
+ python -m pip install "napari[all]"
84
87
 
85
- After you have activated the environment, you can install `napari-tmidas` via [pip]:
88
+ Now you can install `napari-tmidas` via [pip]:
86
89
 
87
90
  pip install napari-tmidas
88
91
 
@@ -90,31 +93,46 @@ To install the latest development version:
90
93
 
91
94
  pip install git+https://github.com/macromeer/napari-tmidas.git
92
95
 
96
+ ### Dependencies
97
+ For the File converter, we need some libraries to read some microscopy formats and to write ome-zarr:
98
+
99
+ pip install nd2 readlif tiffslide pylibCZIrw ome-zarr
100
+
101
+
93
102
  ## Usage
94
103
 
95
104
  You can find the installed plugin here:
96
-
105
+
97
106
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
98
107
 
108
+
109
+ ### File converter
110
+
111
+ You might first want to batch convert microscopy image data. Currently, this plugin supports `.nd2, .lif, .ndpi, .czi`. After launching the file converter, you can scan a folder of your choice for microscopy image data. It will also detect series images that you can preview. Start by selecting an original image in the first column of the table. This allows you to preview or convert.
112
+
113
+ ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
114
+
115
+
116
+
99
117
  ### File inspector
100
118
 
101
119
  1. After opening `Plugins > T-MIDAS > File selector`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
102
-
120
+
103
121
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
104
122
 
105
123
  2. As a result, a table appears with the found images.
106
-
124
+
107
125
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
108
126
 
109
127
  3. Next, select a processing function, set parameters if applicable and `Start Batch Processing`.
110
-
128
+
111
129
  ![image](https://github.com/user-attachments/assets/05929660-6672-4f76-89da-4f17749ccfad)
112
130
 
113
- 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
114
-
131
+ 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
132
+
115
133
  ![image](https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce)
116
134
 
117
- Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
135
+ Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
118
136
 
119
137
  ### Label inspector
120
138
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Label inspector`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
@@ -122,6 +140,7 @@ If you have already segmented a folder full of images and now you want to maybe
122
140
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
123
141
 
124
142
 
143
+
125
144
  ## Contributing
126
145
 
127
146
  Contributions are very welcome. Tests can be run with [tox], please ensure
@@ -11,10 +11,13 @@ The Tissue Microscopy Image Data Analysis Suite (short: T-MIDAS), is a collectio
11
11
 
12
12
  ## Installation
13
13
 
14
- First install Napari in a virtual environment following the latest [Napari installation instructions](https://github.com/Napari/napari?tab=readme-ov-file#installation).
14
+ First install Napari in a virtual environment:
15
15
 
16
+ mamba create -y -n napari-tmidas -c conda-forge python=3.11
17
+ mamba activate napari-tmidas
18
+ python -m pip install "napari[all]"
16
19
 
17
- After you have activated the environment, you can install `napari-tmidas` via [pip]:
20
+ Now you can install `napari-tmidas` via [pip]:
18
21
 
19
22
  pip install napari-tmidas
20
23
 
@@ -22,31 +25,46 @@ To install the latest development version:
22
25
 
23
26
  pip install git+https://github.com/macromeer/napari-tmidas.git
24
27
 
28
+ ### Dependencies
29
+ For the File converter, we need some libraries to read some microscopy formats and to write ome-zarr:
30
+
31
+ pip install nd2 readlif tiffslide pylibCZIrw ome-zarr
32
+
33
+
25
34
  ## Usage
26
35
 
27
36
  You can find the installed plugin here:
28
-
37
+
29
38
  ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
30
39
 
40
+
41
+ ### File converter
42
+
43
+ You might first want to batch convert microscopy image data. Currently, this plugin supports `.nd2, .lif, .ndpi, .czi`. After launching the file converter, you can scan a folder of your choice for microscopy image data. It will also detect series images that you can preview. Start by selecting an original image in the first column of the table. This allows you to preview or convert.
44
+
45
+ ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
46
+
47
+
48
+
31
49
  ### File inspector
32
50
 
33
51
  1. After opening `Plugins > T-MIDAS > File selector`, enter the path to the folder containing the images to be processed (currently supports TIF, later also ZARR). You can also filter for filename suffix.
34
-
52
+
35
53
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
36
54
 
37
55
  2. As a result, a table appears with the found images.
38
-
56
+
39
57
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
40
58
 
41
59
  3. Next, select a processing function, set parameters if applicable and `Start Batch Processing`.
42
-
60
+
43
61
  ![image](https://github.com/user-attachments/assets/05929660-6672-4f76-89da-4f17749ccfad)
44
62
 
45
- 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
46
-
63
+ 4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
64
+
47
65
  ![image](https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce)
48
66
 
49
- Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
67
+ Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
50
68
 
51
69
  ### Label inspector
52
70
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Label inspector`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
@@ -54,6 +72,7 @@ If you have already segmented a folder full of images and now you want to maybe
54
72
  ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
55
73
 
56
74
 
75
+
57
76
  ## Contributing
58
77
 
59
78
  Contributions are very welcome. Tests can be run with [tox], please ensure