multipers 2.2.0__tar.gz → 2.2.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- {multipers-2.2.0/multipers.egg-info → multipers-2.2.1}/PKG-INFO +11 -11
- {multipers-2.2.0 → multipers-2.2.1}/README.md +9 -9
- {multipers-2.2.0 → multipers-2.2.1}/multipers/function_rips.cpp +155 -155
- {multipers-2.2.0 → multipers-2.2.1}/multipers/grids.cpp +155 -155
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/Simplex_tree_multi_interface.h +4 -2
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/gudhi/Multi_critical_filtration.h +83 -2
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/gudhi/One_critical_filtration.h +60 -11
- {multipers-2.2.0 → multipers-2.2.1}/multipers/io.cpp +36 -25
- {multipers-2.2.0 → multipers-2.2.1}/multipers/io.pyx +4 -4
- {multipers-2.2.0 → multipers-2.2.1}/multipers/mma_structures.cpp +163 -163
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multi_parameter_rank_invariant/hilbert_function.h +2 -5
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multi_parameter_rank_invariant/rank_invariant.h +1 -1
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multiparameter_module_approximation.cpp +5090 -5090
- {multipers-2.2.0 → multipers-2.2.1}/multipers/point_measure.cpp +155 -155
- {multipers-2.2.0 → multipers-2.2.1}/multipers/simplex_tree_multi.cpp +43156 -39426
- {multipers-2.2.0 → multipers-2.2.1}/multipers/simplex_tree_multi.pyx +473 -177
- {multipers-2.2.0 → multipers-2.2.1}/multipers/slicer.cpp +11762 -9186
- {multipers-2.2.0 → multipers-2.2.1}/multipers/slicer.pyx +57 -57
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_simplextreemulti.py +16 -1
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_slicer.py +26 -0
- {multipers-2.2.0 → multipers-2.2.1/multipers.egg-info}/PKG-INFO +11 -11
- {multipers-2.2.0 → multipers-2.2.1}/multipers.egg-info/requires.txt +1 -1
- {multipers-2.2.0 → multipers-2.2.1}/pyproject.toml +2 -2
- {multipers-2.2.0 → multipers-2.2.1}/LICENSE +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/MANIFEST.in +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/__init__.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/_signed_measure_meta.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/_slicer_meta.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/MOL2.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/UCR.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/__init__.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/graphs.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/immuno_regions.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/minimal_presentation_to_st_bf.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/pytorch2simplextree.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/shape3d.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/data/synthetic.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/distances.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/function_rips.pyx +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/grids.pyx +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/Persistence_slices_interface.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/cubical_to_boundary.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/gudhi/Multi_persistence/Box.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/gudhi/gudhi/Multi_persistence/Line.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/__init__.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/accuracies.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/convolutions.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/invariants_with_persistable.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/kernels.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/mma.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/one.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/point_clouds.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/signed_betti.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/signed_measures.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/sliced_wasserstein.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/ml/tools.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/mma_structures.pyx +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multi_parameter_rank_invariant/euler_characteristic.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multi_parameter_rank_invariant/function_rips.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multiparameter_edge_collapse.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multiparameter_module_approximation/approximation.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multiparameter_module_approximation/utilities.h +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/multiparameter_module_approximation.pyx +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/pickle.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/plots.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/point_measure.pyx +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/test.pyx +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/__init__.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/old_test_rank_invariant.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_diff_helper.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_hilbert_function.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_mma.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_point_clouds.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_python-cpp_conversion.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_signed_betti.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/tests/test_signed_measure.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/torch/__init__.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/torch/diff_grids.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers/torch/rips_density.py +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers.egg-info/SOURCES.txt +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers.egg-info/dependency_links.txt +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/multipers.egg-info/top_level.txt +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/setup.cfg +0 -0
- {multipers-2.2.0 → multipers-2.2.1}/setup.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: multipers
|
|
3
|
-
Version: 2.2.
|
|
3
|
+
Version: 2.2.1
|
|
4
4
|
Summary: Multiparameter Topological Persistence for Machine Learning
|
|
5
5
|
Author: Hannah Schreiber
|
|
6
6
|
Author-email: David Loiseaux <david.lapous@proton.me>
|
|
@@ -46,7 +46,7 @@ Requires-Python: >=3.10
|
|
|
46
46
|
Description-Content-Type: text/markdown
|
|
47
47
|
License-File: LICENSE
|
|
48
48
|
Requires-Dist: numpy
|
|
49
|
-
Requires-Dist: gudhi
|
|
49
|
+
Requires-Dist: gudhi>=3.8
|
|
50
50
|
Requires-Dist: tqdm
|
|
51
51
|
Requires-Dist: scipy
|
|
52
52
|
Requires-Dist: joblib
|
|
@@ -60,14 +60,14 @@ Requires-Dist: pot
|
|
|
60
60
|
[](https://github.com/DavidLapous/multipers/actions/workflows/python_PR.yml)
|
|
61
61
|
[](https://pypi.org/project/multipers)
|
|
62
62
|
[](https://pepy.tech/project/multipers)
|
|
63
|
-
[Documentation](https://
|
|
63
|
+
[Documentation](https://davidlapous.github.io/multipers/index.html)
|
|
64
64
|
<br>
|
|
65
65
|
Scikit-style PyTorch-autodiff multiparameter persistent homology python library.
|
|
66
66
|
This library aims to provide easy to use and performant strategies for applied multiparameter topology.
|
|
67
67
|
<br> Meant to be integrated in [the Gudhi library](https://gudhi.inria.fr/).
|
|
68
68
|
|
|
69
69
|
## Multiparameter Persistence
|
|
70
|
-
This library allows
|
|
70
|
+
This library allows computing several representations from "geometrical datasets", e.g., point clouds, images, graphs, that have multiple scales. A well known example is the following one.
|
|
71
71
|
<br>
|
|
72
72
|
Pick a point cloud that has diffuse noise, or on which the sampling measure has some interesting properties, e.g., in the following example the measure has three modes.
|
|
73
73
|
<br>
|
|
@@ -76,13 +76,13 @@ This filtration $X$, indexed over a radius parameter $r$ and a codensity paramet
|
|
|
76
76
|
|
|
77
77
|
$$ X_{r,s} = \bigcup_{x \in P, \, \mathrm{density}(x) \ge s} B(x,r) = \lbrace x\in \mathbb R^2 \mid \exists p \in P, \, \mathrm{density}(p) \ge s \text{ and } d(x,p) \le r \rbrace$$
|
|
78
78
|
|
|
79
|
-
The green shape on the left
|
|
79
|
+
The green shape on the left represents the lifetime of the biggest annulus. On the right, each cycle appearing on the left gets a colored shape (the color is only a label) and the shape of this colored shape represents the lifetime of this cycle.
|
|
80
80
|
<br>
|
|
81
81
|
In our case, the big green shape on the left corresponds to the largest green shape appearing on the right, recovering the structure of the annulus here.
|
|
82
82
|

|
|
83
83
|
|
|
84
84
|
The **magic** part is that we never had to choose any parameter to remove the noise in this construction, but the annulus still naturally appears!
|
|
85
|
-
<br>A more
|
|
85
|
+
<br>A more striking example is the following one.
|
|
86
86
|
Using the same constructions, we can identify topological structure, and their size, in a parameter free approach, even though the majority of the sampling measure's mass is noise.
|
|
87
87
|
<br> In this example, the lifetime shape associated to each cycle can be identified from
|
|
88
88
|
- Their radius : the smaller cycle will naturally live more this shape will appear on the "left" (smaller radius)
|
|
@@ -94,7 +94,7 @@ We also provide several other descriptors, as well as associated Machine Learnin
|
|
|
94
94
|

|
|
95
95
|
|
|
96
96
|
|
|
97
|
-
A non-exhaustive list of features can be found in the **Features** section, and in the [documentation](https://
|
|
97
|
+
A non-exhaustive list of features can be found in the **Features** section, and in the [documentation](https://davidlapous.github.io/multipers/index.html).
|
|
98
98
|
## Quick start
|
|
99
99
|
|
|
100
100
|
|
|
@@ -104,7 +104,7 @@ pip install multipers
|
|
|
104
104
|
```
|
|
105
105
|
We recommend Windows user to use [WSL](https://learn.microsoft.com/en-us/windows/wsl/).
|
|
106
106
|
<br>
|
|
107
|
-
A documentation and building instructions are available [here](https://
|
|
107
|
+
A documentation and building instructions are available [here](https://davidlapous.github.io/multipers/contributions.html).
|
|
108
108
|
|
|
109
109
|
## Features, and linked projects
|
|
110
110
|
This library features a bunch of different functions and helpers. See below for a non-exhaustive list.
|
|
@@ -115,11 +115,11 @@ This library features a bunch of different functions and helpers. See below for
|
|
|
115
115
|
- [x] [[Differentiability and Optimization of Multiparameter Persistent Homology, ICML2024]](https://proceedings.mlr.press/v235/scoccola24a.html) An approach to compute a (clarke) gradient for any reasonable multiparameter persistent invariant. Currently, any `multipers` computation is auto-differentiable using this strategy, provided that the input are pytorch gradient capable tensor.
|
|
116
116
|
- [x] [[Multiparameter Persistence Landscapes, JMLR]](https://jmlr.org/papers/v21/19-054.html) A vectorization technic for multiparameter persistence modules.
|
|
117
117
|
- [x] [[Filtration-Domination in Bifiltered Graphs, ALENEX2023]](https://doi.org/10.1137/1.9781611977561.ch3) Allows for 2-parameter edge collapses for 1-critical clique complexes. Very useful to speed up, e.g., Rips-Codensity bifiltrations.
|
|
118
|
-
- [x] [[Chunk Reduction for Multi-Parameter Persistent Homology,
|
|
118
|
+
- [x] [[Chunk Reduction for Multi-Parameter Persistent Homology, SOCG2019]](https://doi.org/10.4230/LIPIcs.SoCG.2019.37) Multi-filtration preprocessing algorithm for homology computations.
|
|
119
119
|
- [x] [[Computing Minimal Presentations and Bigraded Betti Numbers of 2-Parameter Persistent Homology, JAAG]](https://doi.org/10.1137/20M1388425) Minimal presentation of multiparameter persistence modules, using [mpfree](https://bitbucket.org/mkerber/mpfree/src/master/). Hilbert, Rank Decomposition Signed Measures, and MMA decompositions can be computed using the mpfree backend.
|
|
120
|
-
- [x] [[Delaunay Bifiltrations of Functions on Point Clouds, SODA2024]](https://epubs.siam.org/doi/10.1137/1.9781611977912.173) Provides an alternative to function rips bifiltrations, using Delaunay complexes. Very good alternative to Rips-Density like
|
|
120
|
+
- [x] [[Delaunay Bifiltrations of Functions on Point Clouds, SODA2024]](https://epubs.siam.org/doi/10.1137/1.9781611977912.173) Provides an alternative to function rips bifiltrations, using Delaunay complexes. Very good alternative to Rips-Density like bifiltrations.
|
|
121
121
|
- [x] [[Rivet]](https://github.com/rivetTDA/rivet) Interactive two parameter persistence
|
|
122
|
-
- [x] [[Kernel Operations on the GPU, with Autodiff, without Memory Overflows, JMLR]](http://jmlr.org/papers/v22/20-275.html) Although not linked, at first glance, to persistence in any way, this library allows
|
|
122
|
+
- [x] [[Kernel Operations on the GPU, with Autodiff, without Memory Overflows, JMLR]](http://jmlr.org/papers/v22/20-275.html) Although not linked, at first glance, to persistence in any way, this library allows computing blazingly fast signed measures convolutions (and more!) with custom kernels.
|
|
123
123
|
- [ ] [Backend only] [[Projected distances for multi-parameter persistence modules]](https://arxiv.org/abs/2206.08818) Provides a strategy to estimate the convolution distance between multiparameter persistence module using projected barcodes. Implementation is a WIP.
|
|
124
124
|
- [ ] [Partial, and experimental] [[Efficient Two-Parameter Persistence Computation via Cohomology, SoCG2023]](https://doi.org/10.4230/LIPIcs.SoCG.2023.15) Minimal presentations for 2-parameter persistence algorithm.
|
|
125
125
|
|
|
@@ -2,14 +2,14 @@
|
|
|
2
2
|
[](https://github.com/DavidLapous/multipers/actions/workflows/python_PR.yml)
|
|
3
3
|
[](https://pypi.org/project/multipers)
|
|
4
4
|
[](https://pepy.tech/project/multipers)
|
|
5
|
-
[Documentation](https://
|
|
5
|
+
[Documentation](https://davidlapous.github.io/multipers/index.html)
|
|
6
6
|
<br>
|
|
7
7
|
Scikit-style PyTorch-autodiff multiparameter persistent homology python library.
|
|
8
8
|
This library aims to provide easy to use and performant strategies for applied multiparameter topology.
|
|
9
9
|
<br> Meant to be integrated in [the Gudhi library](https://gudhi.inria.fr/).
|
|
10
10
|
|
|
11
11
|
## Multiparameter Persistence
|
|
12
|
-
This library allows
|
|
12
|
+
This library allows computing several representations from "geometrical datasets", e.g., point clouds, images, graphs, that have multiple scales. A well known example is the following one.
|
|
13
13
|
<br>
|
|
14
14
|
Pick a point cloud that has diffuse noise, or on which the sampling measure has some interesting properties, e.g., in the following example the measure has three modes.
|
|
15
15
|
<br>
|
|
@@ -18,13 +18,13 @@ This filtration $X$, indexed over a radius parameter $r$ and a codensity paramet
|
|
|
18
18
|
|
|
19
19
|
$$ X_{r,s} = \bigcup_{x \in P, \, \mathrm{density}(x) \ge s} B(x,r) = \lbrace x\in \mathbb R^2 \mid \exists p \in P, \, \mathrm{density}(p) \ge s \text{ and } d(x,p) \le r \rbrace$$
|
|
20
20
|
|
|
21
|
-
The green shape on the left
|
|
21
|
+
The green shape on the left represents the lifetime of the biggest annulus. On the right, each cycle appearing on the left gets a colored shape (the color is only a label) and the shape of this colored shape represents the lifetime of this cycle.
|
|
22
22
|
<br>
|
|
23
23
|
In our case, the big green shape on the left corresponds to the largest green shape appearing on the right, recovering the structure of the annulus here.
|
|
24
24
|

|
|
25
25
|
|
|
26
26
|
The **magic** part is that we never had to choose any parameter to remove the noise in this construction, but the annulus still naturally appears!
|
|
27
|
-
<br>A more
|
|
27
|
+
<br>A more striking example is the following one.
|
|
28
28
|
Using the same constructions, we can identify topological structure, and their size, in a parameter free approach, even though the majority of the sampling measure's mass is noise.
|
|
29
29
|
<br> In this example, the lifetime shape associated to each cycle can be identified from
|
|
30
30
|
- Their radius : the smaller cycle will naturally live more this shape will appear on the "left" (smaller radius)
|
|
@@ -36,7 +36,7 @@ We also provide several other descriptors, as well as associated Machine Learnin
|
|
|
36
36
|

|
|
37
37
|
|
|
38
38
|
|
|
39
|
-
A non-exhaustive list of features can be found in the **Features** section, and in the [documentation](https://
|
|
39
|
+
A non-exhaustive list of features can be found in the **Features** section, and in the [documentation](https://davidlapous.github.io/multipers/index.html).
|
|
40
40
|
## Quick start
|
|
41
41
|
|
|
42
42
|
|
|
@@ -46,7 +46,7 @@ pip install multipers
|
|
|
46
46
|
```
|
|
47
47
|
We recommend Windows user to use [WSL](https://learn.microsoft.com/en-us/windows/wsl/).
|
|
48
48
|
<br>
|
|
49
|
-
A documentation and building instructions are available [here](https://
|
|
49
|
+
A documentation and building instructions are available [here](https://davidlapous.github.io/multipers/contributions.html).
|
|
50
50
|
|
|
51
51
|
## Features, and linked projects
|
|
52
52
|
This library features a bunch of different functions and helpers. See below for a non-exhaustive list.
|
|
@@ -57,11 +57,11 @@ This library features a bunch of different functions and helpers. See below for
|
|
|
57
57
|
- [x] [[Differentiability and Optimization of Multiparameter Persistent Homology, ICML2024]](https://proceedings.mlr.press/v235/scoccola24a.html) An approach to compute a (clarke) gradient for any reasonable multiparameter persistent invariant. Currently, any `multipers` computation is auto-differentiable using this strategy, provided that the input are pytorch gradient capable tensor.
|
|
58
58
|
- [x] [[Multiparameter Persistence Landscapes, JMLR]](https://jmlr.org/papers/v21/19-054.html) A vectorization technic for multiparameter persistence modules.
|
|
59
59
|
- [x] [[Filtration-Domination in Bifiltered Graphs, ALENEX2023]](https://doi.org/10.1137/1.9781611977561.ch3) Allows for 2-parameter edge collapses for 1-critical clique complexes. Very useful to speed up, e.g., Rips-Codensity bifiltrations.
|
|
60
|
-
- [x] [[Chunk Reduction for Multi-Parameter Persistent Homology,
|
|
60
|
+
- [x] [[Chunk Reduction for Multi-Parameter Persistent Homology, SOCG2019]](https://doi.org/10.4230/LIPIcs.SoCG.2019.37) Multi-filtration preprocessing algorithm for homology computations.
|
|
61
61
|
- [x] [[Computing Minimal Presentations and Bigraded Betti Numbers of 2-Parameter Persistent Homology, JAAG]](https://doi.org/10.1137/20M1388425) Minimal presentation of multiparameter persistence modules, using [mpfree](https://bitbucket.org/mkerber/mpfree/src/master/). Hilbert, Rank Decomposition Signed Measures, and MMA decompositions can be computed using the mpfree backend.
|
|
62
|
-
- [x] [[Delaunay Bifiltrations of Functions on Point Clouds, SODA2024]](https://epubs.siam.org/doi/10.1137/1.9781611977912.173) Provides an alternative to function rips bifiltrations, using Delaunay complexes. Very good alternative to Rips-Density like
|
|
62
|
+
- [x] [[Delaunay Bifiltrations of Functions on Point Clouds, SODA2024]](https://epubs.siam.org/doi/10.1137/1.9781611977912.173) Provides an alternative to function rips bifiltrations, using Delaunay complexes. Very good alternative to Rips-Density like bifiltrations.
|
|
63
63
|
- [x] [[Rivet]](https://github.com/rivetTDA/rivet) Interactive two parameter persistence
|
|
64
|
-
- [x] [[Kernel Operations on the GPU, with Autodiff, without Memory Overflows, JMLR]](http://jmlr.org/papers/v22/20-275.html) Although not linked, at first glance, to persistence in any way, this library allows
|
|
64
|
+
- [x] [[Kernel Operations on the GPU, with Autodiff, without Memory Overflows, JMLR]](http://jmlr.org/papers/v22/20-275.html) Although not linked, at first glance, to persistence in any way, this library allows computing blazingly fast signed measures convolutions (and more!) with custom kernels.
|
|
65
65
|
- [ ] [Backend only] [[Projected distances for multi-parameter persistence modules]](https://arxiv.org/abs/2206.08818) Provides a strategy to estimate the convolution distance between multiparameter persistence module using projected barcodes. Implementation is a WIP.
|
|
66
66
|
- [ ] [Partial, and experimental] [[Efficient Two-Parameter Persistence Computation via Cohomology, SoCG2023]](https://doi.org/10.4230/LIPIcs.SoCG.2023.15) Minimal presentations for 2-parameter persistence algorithm.
|
|
67
67
|
|