multimodalrouter 0.1.3__tar.gz → 0.1.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multimodalrouter might be problematic. Click here for more details.
- multimodalrouter-0.1.5/NOTICE.md +44 -0
- {multimodalrouter-0.1.3/src/multiModalRouter.egg-info → multimodalrouter-0.1.5}/PKG-INFO +13 -1
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/README.md +8 -0
- multimodalrouter-0.1.5/docs/FlightPathPlot.png +0 -0
- multimodalrouter-0.1.5/docs/examples/flightRouter/__pycache__/plot.cpython-313.pyc +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/flightRouter/main.py +7 -6
- multimodalrouter-0.1.5/docs/examples/flightRouter/plot.py +25 -0
- multimodalrouter-0.1.5/docs/examples/mazePathfinder/__pycache__/main.cpython-313.pyc +0 -0
- multimodalrouter-0.1.5/docs/examples/mazePathfinder/__pycache__/plot.cpython-313.pyc +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/mazePathfinder/data/createMaze.py +15 -3
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/mazePathfinder/main.py +21 -11
- multimodalrouter-0.1.5/docs/examples/mazePathfinder/plot.py +32 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/graph.md +108 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/installation.md +9 -6
- multimodalrouter-0.1.5/docs/visualization.md +108 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/pyproject.toml +5 -3
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5/src/multiModalRouter.egg-info}/PKG-INFO +13 -1
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/SOURCES.txt +10 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/requires.txt +4 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/__init__.py +2 -2
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/graph/__init__.py +1 -1
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/graph/dataclasses.py +35 -1
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/graph/graph.py +76 -3
- multimodalrouter-0.1.5/src/multimodalrouter/graphics/__init__.py +1 -0
- multimodalrouter-0.1.5/src/multimodalrouter/graphics/graphicsWrapper.py +323 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/LICENSE.md +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/MANIFEST.in +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/cli.md +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/demoData.csv +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/flightRouter/data/fullDataset.csv +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/mazePathfinder/data/maze.csv +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/solvedMaze1.png +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/utils.md +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/setup.cfg +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/dependency_links.txt +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/entry_points.txt +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/top_level.txt +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/router/__init__.py +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/router/build.py +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/router/route.py +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/utils/__init__.py +0 -0
- {multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/utils/preprocessor.py +0 -0
|
@@ -0,0 +1,44 @@
|
|
|
1
|
+
# Dependencies and Licenses
|
|
2
|
+
|
|
3
|
+
This project `MultiModalRouter` depends on the following libraries. All licenses are permissive and compatible with MIT licensing for this project.
|
|
4
|
+
|
|
5
|
+
| Package | Version | License | License Link |
|
|
6
|
+
|---------|---------|---------|--------------|
|
|
7
|
+
| colorama | >=0.4.6 | BSD 3-Clause | [License](https://github.com/tartley/colorama/blob/master/LICENSE) |
|
|
8
|
+
| dill | >=0.4.0 | BSD | [License](https://github.com/uqfoundation/dill/blob/main/LICENSE) |
|
|
9
|
+
| filelock | >=3.19.1 | MIT | [License](https://github.com/tox-dev/py-filelock/blob/main/LICENSE) |
|
|
10
|
+
| fsspec | >=2025.9.0 | Apache 2.0 | [License](https://github.com/fsspec/filesystem_spec/blob/main/LICENSE) |
|
|
11
|
+
| Jinja2 | >=3.1.6 | BSD-3-Clause | [License](https://github.com/pallets/jinja/blob/main/LICENSE) |
|
|
12
|
+
| MarkupSafe | >=3.0.2 | BSD-3-Clause | [License](https://github.com/pallets/markupsafe/blob/main/LICENSE) |
|
|
13
|
+
| mpmath | >=1.3.0 | BSD | [License](https://github.com/fredrik-johansson/mpmath/blob/master/LICENSE) |
|
|
14
|
+
| networkx | >=3.5 | BSD | [License](https://github.com/networkx/networkx/blob/main/LICENSE.txt) |
|
|
15
|
+
| numpy | >=2.3.3 | BSD | [License](https://github.com/numpy/numpy/blob/main/LICENSE.txt) |
|
|
16
|
+
| pandas | >=2.3.2 | BSD-3-Clause | [License](https://github.com/pandas-dev/pandas/blob/main/LICENSE) |
|
|
17
|
+
| parquet | >=1.3.1 | Apache 2.0 | [License](https://github.com/urschrei/parquet-python/blob/master/LICENSE) |
|
|
18
|
+
| ply | >=3.11 | BSD | [License](https://github.com/dabeaz/ply/blob/master/LICENSE.txt) |
|
|
19
|
+
| pyarrow | >=21.0.0 | Apache 2.0 | [License](https://github.com/apache/arrow/blob/master/LICENSE) |
|
|
20
|
+
| python-dateutil | >=2.9.0.post0 | BSD | [License](https://github.com/dateutil/dateutil/blob/master/LICENSE.txt) |
|
|
21
|
+
| pytz | >=2025.2 | MIT | [License](https://github.com/stub42/pytz/blob/master/LICENSE) |
|
|
22
|
+
| setuptools | >=80.9.0 | MIT | [License](https://github.com/pypa/setuptools/blob/main/LICENSE) |
|
|
23
|
+
| six | >=1.17.0 | MIT | [License](https://github.com/benjaminp/six/blob/master/LICENSE) |
|
|
24
|
+
| sympy | >=1.14.0 | BSD | [License](https://github.com/sympy/sympy/blob/master/LICENSE) |
|
|
25
|
+
| thriftpy2 | >=0.5.3 | MIT | [License](https://github.com/Thriftpy/thriftpy2/blob/master/LICENSE) |
|
|
26
|
+
| tqdm | >=4.67.1 | MPL 2.0 | [License](https://github.com/tqdm/tqdm/blob/master/LICENSE) |
|
|
27
|
+
| typing_extensions | >=4.15.0 | PSF | [License](https://github.com/python/typing_extensions/blob/main/LICENSE) |
|
|
28
|
+
| tzdata | >=2025.2 | Public Domain | [License](https://github.com/python/tzdata) |
|
|
29
|
+
|
|
30
|
+
## Optional Dependencies
|
|
31
|
+
|
|
32
|
+
| Package | Version | License | License Link |
|
|
33
|
+
|---------|---------|---------|--------------|
|
|
34
|
+
| torch | >=2.8.0 | BSD | [License](https://github.com/pytorch/pytorch/blob/master/LICENSE) |
|
|
35
|
+
| plotly | >=6.3.0 | MIT | [License](https://github.com/plotly/plotly.py/blob/master/LICENSE) |
|
|
36
|
+
| pytest | >=8.0 | MIT | [License](https://github.com/pytest-dev/pytest/blob/main/LICENSE) |
|
|
37
|
+
|
|
38
|
+
---
|
|
39
|
+
|
|
40
|
+
### Notes
|
|
41
|
+
|
|
42
|
+
1. All packages listed above are permissively licensed (MIT, BSD, Apache 2.0, or Public Domain), so they are compatible with MIT licensing for this project.
|
|
43
|
+
2. If distributing this library, include this `DEPENDENCIES.md` file and your own MIT license file to give proper attribution.
|
|
44
|
+
3. Optional dependencies should be listed in documentation or `pyproject.toml` extras.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: multimodalrouter
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.5
|
|
4
4
|
Summary: A graph-based routing library for dynamic routing.
|
|
5
5
|
Author-email: Tobias Karusseit <karusseittobi@gmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -19,6 +19,7 @@ Project-URL: Repository, https://github.com/K-T0BIAS/MultiModalRouter
|
|
|
19
19
|
Requires-Python: >=3.11
|
|
20
20
|
Description-Content-Type: text/markdown
|
|
21
21
|
License-File: LICENSE.md
|
|
22
|
+
License-File: NOTICE.md
|
|
22
23
|
Requires-Dist: colorama>=0.4.6
|
|
23
24
|
Requires-Dist: dill>=0.4.0
|
|
24
25
|
Requires-Dist: filelock>=3.19.1
|
|
@@ -45,6 +46,9 @@ Provides-Extra: torch
|
|
|
45
46
|
Requires-Dist: torch>=2.8.0; extra == "torch"
|
|
46
47
|
Provides-Extra: dev
|
|
47
48
|
Requires-Dist: pytest>=8.0; extra == "dev"
|
|
49
|
+
Requires-Dist: plotly>=6.3.0; extra == "dev"
|
|
50
|
+
Provides-Extra: plotly
|
|
51
|
+
Requires-Dist: plotly>=6.3.0; extra == "plotly"
|
|
48
52
|
Dynamic: license-file
|
|
49
53
|
|
|
50
54
|
# Multi Modal Router
|
|
@@ -95,6 +99,12 @@ The graph can be build from any data aslong as the required fields are present (
|
|
|
95
99
|
|
|
96
100
|

|
|
97
101
|
|
|
102
|
+
## graph visualizations
|
|
103
|
+
|
|
104
|
+
Use the build-in [visualization](./docs/visualization.md) tool to plot any `2D` or `3D` Graph.
|
|
105
|
+
|
|
106
|
+

|
|
107
|
+
|
|
98
108
|
## Important considerations for your usecase
|
|
99
109
|
|
|
100
110
|
Depending on your usecase and datasets some features may not be usable see solutions below
|
|
@@ -116,4 +126,6 @@ Depending on your usecase and datasets some features may not be usable see solut
|
|
|
116
126
|
|
|
117
127
|
[see here](./LICENSE.md)
|
|
118
128
|
|
|
129
|
+
[dependencies](./NOTICE.md)
|
|
130
|
+
|
|
119
131
|
|
|
@@ -46,6 +46,12 @@ The graph can be build from any data aslong as the required fields are present (
|
|
|
46
46
|
|
|
47
47
|

|
|
48
48
|
|
|
49
|
+
## graph visualizations
|
|
50
|
+
|
|
51
|
+
Use the build-in [visualization](./docs/visualization.md) tool to plot any `2D` or `3D` Graph.
|
|
52
|
+
|
|
53
|
+

|
|
54
|
+
|
|
49
55
|
## Important considerations for your usecase
|
|
50
56
|
|
|
51
57
|
Depending on your usecase and datasets some features may not be usable see solutions below
|
|
@@ -67,4 +73,6 @@ Depending on your usecase and datasets some features may not be usable see solut
|
|
|
67
73
|
|
|
68
74
|
[see here](./LICENSE.md)
|
|
69
75
|
|
|
76
|
+
[dependencies](./NOTICE.md)
|
|
77
|
+
|
|
70
78
|
|
|
Binary file
|
|
Binary file
|
|
@@ -5,6 +5,7 @@
|
|
|
5
5
|
from multimodalrouter import RouteGraph
|
|
6
6
|
import os
|
|
7
7
|
|
|
8
|
+
|
|
8
9
|
def main():
|
|
9
10
|
path = os.path.dirname(os.path.abspath(__file__))
|
|
10
11
|
# initialize the graph
|
|
@@ -17,21 +18,21 @@ def main():
|
|
|
17
18
|
# build the graph
|
|
18
19
|
graph.build()
|
|
19
20
|
# set start and end points
|
|
20
|
-
start = [60.866699
|
|
21
|
-
end = [60.872747
|
|
21
|
+
start = [60.866699, -162.272996] # Atmautluak Airport
|
|
22
|
+
end = [60.872747, -162.5247] # Kasigluk Airport
|
|
22
23
|
|
|
23
24
|
start_hub = graph.findClosestHub(["airport"], start) # find the hubs
|
|
24
25
|
end_hub = graph.findClosestHub(["airport"], end)
|
|
25
26
|
# find the route
|
|
26
27
|
route = graph.find_shortest_path(
|
|
27
|
-
start_hub.id,
|
|
28
|
+
start_hub.id,
|
|
28
29
|
end_hub.id,
|
|
29
|
-
allowed_modes=["plane","car"],
|
|
30
|
+
allowed_modes=["plane", "car"],
|
|
30
31
|
verbose=True
|
|
31
|
-
|
|
32
|
+
)
|
|
32
33
|
# print the route
|
|
33
34
|
print(route.flatPath if route else "No route found")
|
|
34
35
|
|
|
35
36
|
|
|
36
37
|
if __name__ == "__main__":
|
|
37
|
-
main()
|
|
38
|
+
main()
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
# dataclasses.py
|
|
2
|
+
# Copyright (c) 2025 Tobias Karusseit
|
|
3
|
+
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
from multimodalrouter import RouteGraph
|
|
7
|
+
from multimodalrouter.graphics import GraphDisplay
|
|
8
|
+
import os
|
|
9
|
+
|
|
10
|
+
if __name__ == "__main__":
|
|
11
|
+
path = os.path.dirname(os.path.abspath(__file__))
|
|
12
|
+
graph = RouteGraph(
|
|
13
|
+
maxDistance=50,
|
|
14
|
+
transportModes={"airport": "fly", },
|
|
15
|
+
dataPaths={"airport": os.path.join(path, "data", "fullDataset.csv")},
|
|
16
|
+
compressed=False,
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
graph.build()
|
|
20
|
+
display = GraphDisplay(graph)
|
|
21
|
+
display.display(
|
|
22
|
+
displayEarth=True,
|
|
23
|
+
nodeTransform=GraphDisplay.degreesToCartesian3D,
|
|
24
|
+
edgeTransform=GraphDisplay.curvedEdges
|
|
25
|
+
)
|
|
Binary file
|
|
Binary file
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/mazePathfinder/data/createMaze.py
RENAMED
|
@@ -5,15 +5,17 @@
|
|
|
5
5
|
import random
|
|
6
6
|
import pandas as pd
|
|
7
7
|
|
|
8
|
+
|
|
8
9
|
# simple cell class for the maze
|
|
9
10
|
class Cell:
|
|
10
11
|
def __init__(self, x, y):
|
|
11
|
-
self.id = f"cell-{x,y}"
|
|
12
|
+
self.id = f"cell-{x, y}"
|
|
12
13
|
self.x = x
|
|
13
14
|
self.y = y
|
|
14
15
|
self.visited = False
|
|
15
16
|
self.connected = []
|
|
16
17
|
|
|
18
|
+
|
|
17
19
|
def main():
|
|
18
20
|
# init a 10x10 maze
|
|
19
21
|
mazeHeight = 10
|
|
@@ -53,7 +55,15 @@ def main():
|
|
|
53
55
|
cellStack.pop()
|
|
54
56
|
|
|
55
57
|
# init the dataframe
|
|
56
|
-
data = pd.DataFrame(columns=[
|
|
58
|
+
data = pd.DataFrame(columns=[
|
|
59
|
+
"source",
|
|
60
|
+
"destination",
|
|
61
|
+
"distance",
|
|
62
|
+
"source_lat",
|
|
63
|
+
"source_lng",
|
|
64
|
+
"destination_lat",
|
|
65
|
+
"destination_lng"
|
|
66
|
+
])
|
|
57
67
|
# add the edges to the dataframe
|
|
58
68
|
for cell in cells:
|
|
59
69
|
for neighbor in cell.connected:
|
|
@@ -61,4 +71,6 @@ def main():
|
|
|
61
71
|
# save the dataframe
|
|
62
72
|
data.to_csv("docs/examples/mazePathfinder/data/maze.csv", index=False)
|
|
63
73
|
|
|
64
|
-
|
|
74
|
+
|
|
75
|
+
if __name__ == "__main__":
|
|
76
|
+
main()
|
|
@@ -6,22 +6,26 @@ from multimodalrouter import RouteGraph
|
|
|
6
6
|
import os
|
|
7
7
|
import pandas as pd
|
|
8
8
|
|
|
9
|
+
|
|
9
10
|
def main():
|
|
10
11
|
try:
|
|
11
12
|
import matplotlib.pyplot as plt
|
|
12
13
|
except ImportError:
|
|
13
14
|
raise ImportError("matplotlib is not installed. Please install matplotlib to use this example.")
|
|
14
|
-
|
|
15
|
+
|
|
15
16
|
path = os.path.dirname(os.path.abspath(__file__))
|
|
16
17
|
# init the maze df for the plot
|
|
17
18
|
mazeDf = pd.read_csv(os.path.join(path, "data", "maze.csv"))
|
|
18
19
|
# init the plot
|
|
19
|
-
plt.figure(figsize=(10,10))
|
|
20
|
+
plt.figure(figsize=(10, 10))
|
|
20
21
|
# draw the maze
|
|
22
|
+
# draw the maze (grid lines)
|
|
21
23
|
for _, row in mazeDf.iterrows():
|
|
22
|
-
plt.plot(
|
|
23
|
-
|
|
24
|
-
|
|
24
|
+
plt.plot(
|
|
25
|
+
[row.source_lng, row.destination_lng], # x = "lng" column
|
|
26
|
+
[row.source_lat, row.destination_lat], # y = "lat" column
|
|
27
|
+
"k-"
|
|
28
|
+
)
|
|
25
29
|
|
|
26
30
|
# initialize the graph
|
|
27
31
|
graph = RouteGraph(
|
|
@@ -35,7 +39,7 @@ def main():
|
|
|
35
39
|
graph.build()
|
|
36
40
|
# find the shortest route
|
|
37
41
|
route = graph.find_shortest_path(
|
|
38
|
-
start_id="cell-(0, 0)",
|
|
42
|
+
start_id="cell-(0, 0)",
|
|
39
43
|
end_id="cell-(0, 9)",
|
|
40
44
|
allowed_modes=["walk"],
|
|
41
45
|
verbose=True,
|
|
@@ -49,11 +53,17 @@ def main():
|
|
|
49
53
|
if s_prev is not None:
|
|
50
54
|
h1 = graph.getHubById(s_prev)
|
|
51
55
|
h2 = graph.getHubById(s)
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
56
|
+
# Swap coords so x=column, y=row
|
|
57
|
+
plt.plot(
|
|
58
|
+
[h1.coords[1], h2.coords[1]], # x-axis
|
|
59
|
+
[h1.coords[0], h2.coords[0]], # y-axis
|
|
60
|
+
"b-"
|
|
61
|
+
)
|
|
55
62
|
s_prev = s
|
|
63
|
+
|
|
56
64
|
# display the plot
|
|
57
65
|
plt.show()
|
|
58
|
-
|
|
59
|
-
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
if __name__ == "__main__":
|
|
69
|
+
main()
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
# dataclasses.py
|
|
2
|
+
# Copyright (c) 2025 Tobias Karusseit
|
|
3
|
+
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
from multimodalrouter import RouteGraph
|
|
7
|
+
from multimodalrouter.graphics import GraphDisplay
|
|
8
|
+
import os
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
# custom transform to make lat lng to x y (-> lng lat)
|
|
12
|
+
def NodeTransform(coords):
|
|
13
|
+
for coord in coords:
|
|
14
|
+
yield list((coord[0], coord[1]))
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
if __name__ == "__main__":
|
|
18
|
+
path = os.path.dirname(os.path.abspath(__file__))
|
|
19
|
+
# initialize the graph
|
|
20
|
+
graph = RouteGraph(
|
|
21
|
+
maxDistance=50,
|
|
22
|
+
transportModes={"cell": "walk", },
|
|
23
|
+
dataPaths={"cell": os.path.join(path, "data", "maze.csv")},
|
|
24
|
+
compressed=False,
|
|
25
|
+
drivingEnabled=False
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
graph.build()
|
|
29
|
+
# init the display
|
|
30
|
+
display = GraphDisplay(graph)
|
|
31
|
+
# display the graph (uses the transform to swap lat lng to x y)
|
|
32
|
+
display.display(nodeTransform=NodeTransform)
|
|
@@ -146,6 +146,31 @@ def find_shortest_path(
|
|
|
146
146
|
|
|
147
147
|
**returns** : [Route](#route) or None if no route was found
|
|
148
148
|
|
|
149
|
+
### radial search /finding all hubs inside a radius
|
|
150
|
+
|
|
151
|
+
> Note: this doesn't search a direct radius but rather a reachablity distance (e.g.: A and B may have a distance $x \leq r$, but the shortest connecting path has distance $y \geq r$)
|
|
152
|
+
|
|
153
|
+
```python
|
|
154
|
+
def radial_search(
|
|
155
|
+
self,
|
|
156
|
+
hub_id: str,
|
|
157
|
+
radius: float,
|
|
158
|
+
optimization_metric: OptimizationMetric | str = OptimizationMetric.DISTANCE,
|
|
159
|
+
allowed_modes: list[str] = None,
|
|
160
|
+
custom_filter: Filter = None
|
|
161
|
+
) -> list[float, Hub]:
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
#### args
|
|
165
|
+
|
|
166
|
+
- `hub_id`: str = the id of the center hub the search starts at
|
|
167
|
+
- `radius`: float = the maximum value the search metric is allowed to have from the start
|
|
168
|
+
- `optimization_metric`: str = the target metric you want to use for the distance (default='distance')
|
|
169
|
+
- `allowed_modes`: list[str] = the types of edges that are considered (default= None => all edges are checked)
|
|
170
|
+
- `custom_filter`: Filter = a [filter](#filter) object you can pass to add filters for Hubs and edgeMetadata
|
|
171
|
+
|
|
172
|
+
**returns:** list[ tuple[float, [Hub](#hub)] ] = a list of all reachable hubs with the 'distance' to the start
|
|
173
|
+
|
|
149
174
|
### save
|
|
150
175
|
|
|
151
176
|
```python
|
|
@@ -359,7 +384,51 @@ nDimGraph = RouteGraph(
|
|
|
359
384
|
|
|
360
385
|
> It is theoretically possible to combine hubs from differnt dimensions as long as a distance metric is given or the distance is pre calculated
|
|
361
386
|
|
|
387
|
+
#### custom filters in searches
|
|
388
|
+
|
|
389
|
+
To add custom rulesets to searches like [`find_shortest_path`](#routing--finding-the-shortest-path-form-a-to-b) you can add your own [`Filter`](#filter) objects
|
|
390
|
+
|
|
391
|
+
#### example
|
|
392
|
+
|
|
393
|
+
Imagine one of your datasets has the following keys
|
|
394
|
+
|
|
395
|
+
```csv
|
|
396
|
+
source, destination, distance, cost, sx, sy, dx, dy, namex, namey
|
|
397
|
+
```
|
|
398
|
+
|
|
399
|
+
You have now build your graph with the extra keys: `cost`, `namex`,`namey`, and you want to start a shortest path search that excludes edges where `cost` > `C` and the where the destination `namey` = `N`. Additionally you want to exclude a list of `hub Ids` = `I`
|
|
400
|
+
|
|
401
|
+
**create Filter:**
|
|
402
|
+
|
|
403
|
+
```python
|
|
404
|
+
from multimodalrouter import Filter
|
|
405
|
+
|
|
406
|
+
class CustomFilter(Filter):
|
|
407
|
+
|
|
408
|
+
def __init__(self, C: float, N: str, I: list[str]):
|
|
409
|
+
self.C = C
|
|
410
|
+
self.N = N
|
|
411
|
+
self.I = I
|
|
412
|
+
|
|
413
|
+
def filterHub(self, hub: Hub):
|
|
414
|
+
return hub.id not in self.I
|
|
415
|
+
|
|
416
|
+
def filterEdge(self, edge: EdgeMetadata):
|
|
417
|
+
return (edge.getMetric('cost') < self.C
|
|
418
|
+
and egde-getMetric('namey') != self.N
|
|
419
|
+
)
|
|
420
|
+
```
|
|
421
|
+
|
|
422
|
+
**use filter**
|
|
423
|
+
|
|
424
|
+
```python
|
|
425
|
+
# graph creation code here
|
|
362
426
|
|
|
427
|
+
route = graph.find_shortest_path(
|
|
428
|
+
**kwargs,
|
|
429
|
+
custom_filter=CustomFilter(c, n, i) # your filter instance
|
|
430
|
+
)
|
|
431
|
+
```
|
|
363
432
|
---
|
|
364
433
|
---
|
|
365
434
|
---
|
|
@@ -509,6 +578,45 @@ Start: GOM
|
|
|
509
578
|
-> LOK
|
|
510
579
|
```
|
|
511
580
|
|
|
581
|
+
### Filter
|
|
582
|
+
|
|
583
|
+
The `Filter` class is an abstract class you can implement to add custom filter to you searches
|
|
584
|
+
|
|
585
|
+
#### example
|
|
586
|
+
|
|
587
|
+
```python
|
|
588
|
+
class ExampleFilter(Filter):
|
|
589
|
+
|
|
590
|
+
def __init__(
|
|
591
|
+
self,
|
|
592
|
+
forbiddenHubs: list[str],
|
|
593
|
+
filterVal: str | float
|
|
594
|
+
):
|
|
595
|
+
self.forbiddenHubs = forbiddenHubs
|
|
596
|
+
self.filterVal = filterVal
|
|
597
|
+
|
|
598
|
+
def filterHub(self, hub: Hub) -> bool:
|
|
599
|
+
return hub.id not in self.forbiddenHubs
|
|
600
|
+
|
|
601
|
+
def filterEdge(self, edge: EdgeMetadata) -> bool:
|
|
602
|
+
return edge.getMetric('distance') < 3 and edge.getMetric('yourCustomMetric') != self.filterVal
|
|
603
|
+
```
|
|
604
|
+
|
|
605
|
+
This `ExampleFilter` will remove all hubs with Ids in the forbidden hubs list and ignore all edges where: $distance > 3 \lor customMetric = filterVal $
|
|
606
|
+
|
|
607
|
+
To make your own `Filter` just implement the ``__init__``, `filterHUb` & `filterEdge` functions and pass an object to the search (custom_filter = your flter object)
|
|
608
|
+
|
|
609
|
+
> Tipp: if you want to only add a filter for either Hubs or Edges set the function that shouldn't filter to return `True`
|
|
610
|
+
|
|
611
|
+
**example**
|
|
612
|
+
```python
|
|
613
|
+
def filterHub(self, hub: Hub) -> bool:
|
|
614
|
+
return True
|
|
615
|
+
```
|
|
616
|
+
|
|
617
|
+
will let any hub pass through the filter
|
|
618
|
+
|
|
619
|
+
|
|
512
620
|
|
|
513
621
|
|
|
514
622
|
|
|
@@ -7,12 +7,15 @@
|
|
|
7
7
|
First check if your data comes with precomputed distances and if you are going to want to use the default [driving connections](./graph.md) when building your graph.
|
|
8
8
|
Depending on your choices you will need to install the library with torch. To see what your use case requires check the table below and copy the command.
|
|
9
9
|
|
|
10
|
-
| data has distances | use driving edges | installation mode |
|
|
11
|
-
|
|
12
|
-
| YES | YES |`pip install
|
|
13
|
-
| YES | NO |`pip install
|
|
14
|
-
| NO | YES |`pip install
|
|
15
|
-
| NO | NO |
|
|
10
|
+
| data has distances | use driving edges | planning to use build-in [Haversine distance](../src/multimodalrouter/graph/graph.py) | installation mode |
|
|
11
|
+
|--------------------|-------------------|---------------------------------------------|-------------------------------------|
|
|
12
|
+
| YES | YES | / |`pip install multimodalrouter[torch]`|
|
|
13
|
+
| YES | NO | / |`pip install multimodalrouter[torch]`|
|
|
14
|
+
| NO | YES | / |`pip install multimodalrouter[torch]`|
|
|
15
|
+
| NO | NO | NO | `pip install multimodalrouter` |
|
|
16
|
+
| / | / | YES | `pip install multimodalrouter[torch]`
|
|
17
|
+
|
|
18
|
+
> Tip: if unsure whether you will need torch or not, install without it first and install torch later if necessary
|
|
16
19
|
|
|
17
20
|
## Step 2
|
|
18
21
|
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
[HOME](../README.md)
|
|
2
|
+
|
|
3
|
+
# Graph Plotting
|
|
4
|
+
|
|
5
|
+
Using the build-in graph plotting tool you can [plotly](https://plotly.com/python/) plot any graph in `2D` or `3D`, while defining [transformations](#transformations) for your coordiante space or even path curvature etc.
|
|
6
|
+
|
|
7
|
+
## GraphDisplay
|
|
8
|
+
|
|
9
|
+
```python
|
|
10
|
+
def __init__(
|
|
11
|
+
self,
|
|
12
|
+
graph: RouteGraph,
|
|
13
|
+
name: str = "Graph",
|
|
14
|
+
iconSize: int = 10
|
|
15
|
+
) -> None:
|
|
16
|
+
```
|
|
17
|
+
|
|
18
|
+
#### args:
|
|
19
|
+
- graph: RouteDisplay = the graph instance you want to plot
|
|
20
|
+
- name: str = (not in use at the moment)
|
|
21
|
+
- iconSize: int = the size of the nodes in the plot
|
|
22
|
+
|
|
23
|
+
#### example
|
|
24
|
+
|
|
25
|
+
```
|
|
26
|
+
gd = GraphDisplay(myGraphInstance)
|
|
27
|
+
```
|
|
28
|
+
|
|
29
|
+
[flight path CODE example on sphere](./examples/flightRouter/plot.py)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
### display()
|
|
33
|
+
|
|
34
|
+
The display function will collect data from your Graph and create a [plotly](https://plotly.com/python/) plot from it.
|
|
35
|
+
|
|
36
|
+
```python
|
|
37
|
+
def display(
|
|
38
|
+
self,
|
|
39
|
+
nodeTransform=None,
|
|
40
|
+
edgeTransform=None,
|
|
41
|
+
displayEarth=False
|
|
42
|
+
):
|
|
43
|
+
```
|
|
44
|
+
|
|
45
|
+
#### args:
|
|
46
|
+
|
|
47
|
+
- nodeTransform: function = a [transformation](#transformations) function that transformes all node coordinates
|
|
48
|
+
- edgeTransform: funstion = a function that [transformes](#transformations) all your edges
|
|
49
|
+
- displayEarth: bool = if True -> will display a sphere that (roughly) matches earth
|
|
50
|
+
|
|
51
|
+
#### example:
|
|
52
|
+
|
|
53
|
+
this call will create the plot for your graph while mapping all coords onto the surface of the earth
|
|
54
|
+
|
|
55
|
+
```python
|
|
56
|
+
gd.display(
|
|
57
|
+
nodeTransform = gd.degreesToCartesian3D,
|
|
58
|
+
displayEarth: True
|
|
59
|
+
)
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
### transformations
|
|
63
|
+
|
|
64
|
+
#### base function style
|
|
65
|
+
|
|
66
|
+
IF you want to implement your own transformation function note that the call must adhere to the following parameters:
|
|
67
|
+
|
|
68
|
+
```python
|
|
69
|
+
def customNodeTrandsform(coords: list[list[float]]):
|
|
70
|
+
return list[list[float]]
|
|
71
|
+
|
|
72
|
+
def customEdgeTransform(start: list[list[float]], end: list[list[float]]):
|
|
73
|
+
return list[list[list[float]]]
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
#### args
|
|
77
|
+
|
|
78
|
+
- coords: list[list[float]] = a nested list of coordinates for all nodes
|
|
79
|
+
- start: list[list[float]] = a nested list of all start coordinates
|
|
80
|
+
- end: list[list[float]] = a nested list of all end coordinates
|
|
81
|
+
|
|
82
|
+
#### returns:
|
|
83
|
+
|
|
84
|
+
- list[list[float]] = a list of all transformed node coordinates
|
|
85
|
+
- list[list[list[float]]] = a list of curves whare each curve / edge can have n points defining it
|
|
86
|
+
|
|
87
|
+
### build-in Node Transforms:
|
|
88
|
+
|
|
89
|
+
#### degreesToCartesian3D
|
|
90
|
+
|
|
91
|
+
```python
|
|
92
|
+
@staticmethod
|
|
93
|
+
def degreesToCartesian3D(coords):
|
|
94
|
+
```
|
|
95
|
+
This function maps any valid `2D` coordinates (best if in degrees) to spherical coords on the surface of earth
|
|
96
|
+
|
|
97
|
+
### build-in Edge Transformations
|
|
98
|
+
|
|
99
|
+
```python
|
|
100
|
+
@staticmethod
|
|
101
|
+
def curvedEdges(start, end, R=6371.0, H=0.05, n=20):
|
|
102
|
+
```
|
|
103
|
+
|
|
104
|
+
curves edges for coordinates on spheres (here earth) so that the edges curve along the spherical surface with a curvature that places the midpoint of the curve at $H \dot R$ above the surface. (great for displaying flights).
|
|
105
|
+
|
|
106
|
+
If torch is installed this will use great-circle distance for the curves
|
|
107
|
+
|
|
108
|
+
> Note if torch is not installed this will fall back to using `math` with quadratic bezier curves -> some curves may end up inside the sphere to bezier inaccuracy
|
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "multimodalrouter"
|
|
7
|
-
version = "0.1.
|
|
7
|
+
version = "0.1.5"
|
|
8
8
|
description = "A graph-based routing library for dynamic routing."
|
|
9
9
|
readme = "README.md"
|
|
10
10
|
license = { file = "LICENSE.md" }
|
|
@@ -46,12 +46,14 @@ Repository = "https://github.com/K-T0BIAS/MultiModalRouter"
|
|
|
46
46
|
[project.optional-dependencies]
|
|
47
47
|
torch = ["torch>=2.8.0"]
|
|
48
48
|
dev = [
|
|
49
|
-
"pytest>=8.0"
|
|
49
|
+
"pytest>=8.0",
|
|
50
|
+
"plotly>=6.3.0"
|
|
50
51
|
]
|
|
52
|
+
plotly = ["plotly>=6.3.0"]
|
|
51
53
|
|
|
52
54
|
[tool.setuptools]
|
|
53
55
|
package-dir = {"" = "src"}
|
|
54
|
-
packages = ["multimodalrouter", "multimodalrouter.graph", "multimodalrouter.router", "multimodalrouter.utils"]
|
|
56
|
+
packages = ["multimodalrouter", "multimodalrouter.graph", "multimodalrouter.router", "multimodalrouter.utils", "multimodalrouter.graphics"]
|
|
55
57
|
|
|
56
58
|
[project.scripts]
|
|
57
59
|
multiModalRouter-build = "multimodalrouter.router.build:main"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: multimodalrouter
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.5
|
|
4
4
|
Summary: A graph-based routing library for dynamic routing.
|
|
5
5
|
Author-email: Tobias Karusseit <karusseittobi@gmail.com>
|
|
6
6
|
License: MIT License
|
|
@@ -19,6 +19,7 @@ Project-URL: Repository, https://github.com/K-T0BIAS/MultiModalRouter
|
|
|
19
19
|
Requires-Python: >=3.11
|
|
20
20
|
Description-Content-Type: text/markdown
|
|
21
21
|
License-File: LICENSE.md
|
|
22
|
+
License-File: NOTICE.md
|
|
22
23
|
Requires-Dist: colorama>=0.4.6
|
|
23
24
|
Requires-Dist: dill>=0.4.0
|
|
24
25
|
Requires-Dist: filelock>=3.19.1
|
|
@@ -45,6 +46,9 @@ Provides-Extra: torch
|
|
|
45
46
|
Requires-Dist: torch>=2.8.0; extra == "torch"
|
|
46
47
|
Provides-Extra: dev
|
|
47
48
|
Requires-Dist: pytest>=8.0; extra == "dev"
|
|
49
|
+
Requires-Dist: plotly>=6.3.0; extra == "dev"
|
|
50
|
+
Provides-Extra: plotly
|
|
51
|
+
Requires-Dist: plotly>=6.3.0; extra == "plotly"
|
|
48
52
|
Dynamic: license-file
|
|
49
53
|
|
|
50
54
|
# Multi Modal Router
|
|
@@ -95,6 +99,12 @@ The graph can be build from any data aslong as the required fields are present (
|
|
|
95
99
|
|
|
96
100
|

|
|
97
101
|
|
|
102
|
+
## graph visualizations
|
|
103
|
+
|
|
104
|
+
Use the build-in [visualization](./docs/visualization.md) tool to plot any `2D` or `3D` Graph.
|
|
105
|
+
|
|
106
|
+

|
|
107
|
+
|
|
98
108
|
## Important considerations for your usecase
|
|
99
109
|
|
|
100
110
|
Depending on your usecase and datasets some features may not be usable see solutions below
|
|
@@ -116,4 +126,6 @@ Depending on your usecase and datasets some features may not be usable see solut
|
|
|
116
126
|
|
|
117
127
|
[see here](./LICENSE.md)
|
|
118
128
|
|
|
129
|
+
[dependencies](./NOTICE.md)
|
|
130
|
+
|
|
119
131
|
|
|
@@ -1,16 +1,24 @@
|
|
|
1
1
|
LICENSE.md
|
|
2
2
|
MANIFEST.in
|
|
3
|
+
NOTICE.md
|
|
3
4
|
README.md
|
|
4
5
|
pyproject.toml
|
|
6
|
+
docs/FlightPathPlot.png
|
|
5
7
|
docs/cli.md
|
|
6
8
|
docs/graph.md
|
|
7
9
|
docs/installation.md
|
|
8
10
|
docs/solvedMaze1.png
|
|
9
11
|
docs/utils.md
|
|
12
|
+
docs/visualization.md
|
|
10
13
|
docs/examples/demoData.csv
|
|
11
14
|
docs/examples/flightRouter/main.py
|
|
15
|
+
docs/examples/flightRouter/plot.py
|
|
16
|
+
docs/examples/flightRouter/__pycache__/plot.cpython-313.pyc
|
|
12
17
|
docs/examples/flightRouter/data/fullDataset.csv
|
|
13
18
|
docs/examples/mazePathfinder/main.py
|
|
19
|
+
docs/examples/mazePathfinder/plot.py
|
|
20
|
+
docs/examples/mazePathfinder/__pycache__/main.cpython-313.pyc
|
|
21
|
+
docs/examples/mazePathfinder/__pycache__/plot.cpython-313.pyc
|
|
14
22
|
docs/examples/mazePathfinder/data/createMaze.py
|
|
15
23
|
docs/examples/mazePathfinder/data/maze.csv
|
|
16
24
|
src/multiModalRouter.egg-info/PKG-INFO
|
|
@@ -29,6 +37,8 @@ src/multimodalrouter.egg-info/top_level.txt
|
|
|
29
37
|
src/multimodalrouter/graph/__init__.py
|
|
30
38
|
src/multimodalrouter/graph/dataclasses.py
|
|
31
39
|
src/multimodalrouter/graph/graph.py
|
|
40
|
+
src/multimodalrouter/graphics/__init__.py
|
|
41
|
+
src/multimodalrouter/graphics/graphicsWrapper.py
|
|
32
42
|
src/multimodalrouter/router/__init__.py
|
|
33
43
|
src/multimodalrouter/router/build.py
|
|
34
44
|
src/multimodalrouter/router/route.py
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
from .graph import RouteGraph, Hub, EdgeMetadata, OptimizationMetric, Route, VerboseRoute
|
|
1
|
+
from .graph import RouteGraph, Hub, EdgeMetadata, OptimizationMetric, Route, VerboseRoute, Filter
|
|
2
2
|
from .utils import preprocessor
|
|
3
3
|
|
|
4
|
-
__all__ = ["RouteGraph", "Hub", "EdgeMetadata", "OptimizationMetric", "Route", "VerboseRoute", "preprocessor"]
|
|
4
|
+
__all__ = ["RouteGraph", "Hub", "EdgeMetadata", "OptimizationMetric", "Route", "VerboseRoute", "preprocessor", "Filter"]
|
|
@@ -1,2 +1,2 @@
|
|
|
1
1
|
from .graph import RouteGraph # noqa: F401
|
|
2
|
-
from .dataclasses import Hub, EdgeMetadata, OptimizationMetric, Route, VerboseRoute # noqa: F401
|
|
2
|
+
from .dataclasses import Hub, EdgeMetadata, OptimizationMetric, Route, VerboseRoute, Filter # noqa: F401
|
|
@@ -5,6 +5,7 @@
|
|
|
5
5
|
|
|
6
6
|
from dataclasses import dataclass
|
|
7
7
|
from enum import Enum
|
|
8
|
+
from abc import abstractmethod, ABC
|
|
8
9
|
|
|
9
10
|
|
|
10
11
|
class OptimizationMetric(Enum):
|
|
@@ -49,7 +50,8 @@ class Hub:
|
|
|
49
50
|
self.coords: list[float] = coords
|
|
50
51
|
self.id = id
|
|
51
52
|
self.hubType = hubType
|
|
52
|
-
|
|
53
|
+
# dict like {mode -> {dest_id -> EdgeMetadata}}
|
|
54
|
+
self.outgoing: dict[str, dict[str, EdgeMetadata]] = {}
|
|
53
55
|
|
|
54
56
|
def addOutgoing(self, mode: str, dest_id: str, metrics: EdgeMetadata):
|
|
55
57
|
if mode not in self.outgoing:
|
|
@@ -104,3 +106,35 @@ class Route:
|
|
|
104
106
|
class VerboseRoute(Route):
|
|
105
107
|
"""Uses base Route class but adds additional info to hold the edge metadata for every leg"""
|
|
106
108
|
path: list[tuple[str, str, EdgeMetadata]]
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
class Filter(ABC):
|
|
112
|
+
|
|
113
|
+
@abstractmethod
|
|
114
|
+
def filterEdge(self, edge: EdgeMetadata) -> bool:
|
|
115
|
+
"""
|
|
116
|
+
Return True if you want to keep the edge else False
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
edge (EdgeMetadata): Edge to filter
|
|
120
|
+
|
|
121
|
+
Returns:
|
|
122
|
+
bool: True if you want to keep the edge
|
|
123
|
+
"""
|
|
124
|
+
pass
|
|
125
|
+
|
|
126
|
+
@abstractmethod
|
|
127
|
+
def filterHub(self, hub: Hub) -> bool:
|
|
128
|
+
"""
|
|
129
|
+
Return True if you want to keep the hub else False
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
hub (Hub): Hub to filter
|
|
133
|
+
|
|
134
|
+
Returns:
|
|
135
|
+
bool: True if you want to keep the hub
|
|
136
|
+
"""
|
|
137
|
+
pass
|
|
138
|
+
|
|
139
|
+
def filter(self, start: Hub, end: Hub, edge: EdgeMetadata) -> bool:
|
|
140
|
+
return self.filterHub(start) and self.filterHub(end) and self.filterEdge(edge)
|
|
@@ -9,8 +9,9 @@ import dill
|
|
|
9
9
|
import heapq
|
|
10
10
|
import os
|
|
11
11
|
import pandas as pd
|
|
12
|
-
from .dataclasses import Hub, EdgeMetadata, OptimizationMetric, Route
|
|
12
|
+
from .dataclasses import Hub, EdgeMetadata, OptimizationMetric, Route, Filter
|
|
13
13
|
from threading import Lock
|
|
14
|
+
from collections import deque
|
|
14
15
|
|
|
15
16
|
|
|
16
17
|
class RouteGraph:
|
|
@@ -371,10 +372,11 @@ class RouteGraph:
|
|
|
371
372
|
self,
|
|
372
373
|
start_id: str,
|
|
373
374
|
end_id: str,
|
|
374
|
-
allowed_modes: list[str],
|
|
375
|
+
allowed_modes: list[str] = None,
|
|
375
376
|
optimization_metric: OptimizationMetric | str = OptimizationMetric.DISTANCE,
|
|
376
377
|
max_segments: int = 10,
|
|
377
|
-
verbose: bool = False
|
|
378
|
+
verbose: bool = False,
|
|
379
|
+
custom_filter: Filter = None,
|
|
378
380
|
) -> Route | None:
|
|
379
381
|
"""
|
|
380
382
|
Find the optimal path between two hubs using Dijkstra
|
|
@@ -399,6 +401,9 @@ class RouteGraph:
|
|
|
399
401
|
if end_hub is None:
|
|
400
402
|
raise ValueError(f"End hub '{end_id}' not found in graph")
|
|
401
403
|
|
|
404
|
+
if allowed_modes is None:
|
|
405
|
+
allowed_modes = list(self.TransportModes.values())
|
|
406
|
+
|
|
402
407
|
if start_id == end_id:
|
|
403
408
|
# create a route with only the start hub
|
|
404
409
|
# no verbose since no edges are needed
|
|
@@ -460,6 +465,15 @@ class RouteGraph:
|
|
|
460
465
|
if connection_metrics is None: # skip if the connection has no metrics
|
|
461
466
|
continue
|
|
462
467
|
|
|
468
|
+
try:
|
|
469
|
+
next_hub = self.getHubById(next_hub_id)
|
|
470
|
+
except KeyError:
|
|
471
|
+
raise ValueError(
|
|
472
|
+
f"Hub with ID '{next_hub_id}' not found in graph! But it is connected to hub '{current_hub_id}' via mode '{mode}'." # noqa: E501
|
|
473
|
+
)
|
|
474
|
+
if custom_filter is not None and not custom_filter.filter(current_hub, next_hub, connection_metrics):
|
|
475
|
+
continue
|
|
476
|
+
|
|
463
477
|
# get the selected metric alue for this connection
|
|
464
478
|
connection_value = connection_metrics.getMetric(optimization_metric)
|
|
465
479
|
new_metric_value = current_metric_value + connection_value
|
|
@@ -488,6 +502,65 @@ class RouteGraph:
|
|
|
488
502
|
|
|
489
503
|
return None
|
|
490
504
|
|
|
505
|
+
def radial_search(
|
|
506
|
+
self,
|
|
507
|
+
hub_id: str,
|
|
508
|
+
radius: float,
|
|
509
|
+
optimization_metric: OptimizationMetric | str = OptimizationMetric.DISTANCE,
|
|
510
|
+
allowed_modes: list[str] = None,
|
|
511
|
+
custom_filter: Filter = None,
|
|
512
|
+
) -> list[float, Hub]:
|
|
513
|
+
"""
|
|
514
|
+
Find all hubs within a given radius of a given hub
|
|
515
|
+
(Note: distance is measured from the connecting paths not direct)
|
|
516
|
+
|
|
517
|
+
Args:
|
|
518
|
+
hub_id: ID of the center hub
|
|
519
|
+
radius: maximum distance from the center hub
|
|
520
|
+
optimization_metric: metric to optimize for (e.g. distance, time, cost)
|
|
521
|
+
allowed_modes: list of allowed transport modes (default: None => all modes)
|
|
522
|
+
|
|
523
|
+
Returns:
|
|
524
|
+
list of tuples containing the metric value and the corresponding hub object
|
|
525
|
+
"""
|
|
526
|
+
|
|
527
|
+
center = self.getHubById(hub_id)
|
|
528
|
+
if center is None:
|
|
529
|
+
return [center]
|
|
530
|
+
|
|
531
|
+
if allowed_modes is None:
|
|
532
|
+
allowed_modes = list(self.TransportModes.values())
|
|
533
|
+
|
|
534
|
+
hubsToSearch = deque([center])
|
|
535
|
+
queued = set([hub_id])
|
|
536
|
+
reachableHubs: dict[str, tuple[float, Hub]] = {hub_id: (0.0, center)}
|
|
537
|
+
|
|
538
|
+
while hubsToSearch:
|
|
539
|
+
hub = hubsToSearch.popleft() # get the current hub to search
|
|
540
|
+
currentMetricVal, _ = reachableHubs[hub.id] # get the current metric value
|
|
541
|
+
for mode in allowed_modes:
|
|
542
|
+
outgoing = hub.outgoing.get(mode, {}) # find all outgoing connections
|
|
543
|
+
# dict like {dest_id: EdgeMetadata}
|
|
544
|
+
for id, edgemetadata in outgoing.items(): # iter over outgoing connections
|
|
545
|
+
thisMetricVal = edgemetadata.getMetric(optimization_metric)
|
|
546
|
+
if thisMetricVal is None:
|
|
547
|
+
continue
|
|
548
|
+
nextMetricVal = currentMetricVal + thisMetricVal
|
|
549
|
+
if nextMetricVal > radius:
|
|
550
|
+
continue
|
|
551
|
+
knownMetric = reachableHubs.get(id, None)
|
|
552
|
+
destHub = self.getHubById(id)
|
|
553
|
+
if custom_filter is not None and not custom_filter.filter(hub, destHub, edgemetadata):
|
|
554
|
+
continue
|
|
555
|
+
# only save smaller metric values
|
|
556
|
+
if knownMetric is None or knownMetric[0] > nextMetricVal:
|
|
557
|
+
reachableHubs.update({id: (nextMetricVal, destHub)})
|
|
558
|
+
if id not in queued:
|
|
559
|
+
queued.add(id)
|
|
560
|
+
hubsToSearch.append(destHub)
|
|
561
|
+
|
|
562
|
+
return [v for v in reachableHubs.values()]
|
|
563
|
+
|
|
491
564
|
def compare_routes(
|
|
492
565
|
self,
|
|
493
566
|
start_id: str,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .graphicsWrapper import GraphDisplay # noqa: F401
|
|
@@ -0,0 +1,323 @@
|
|
|
1
|
+
# dataclasses.py
|
|
2
|
+
# Copyright (c) 2025 Tobias Karusseit
|
|
3
|
+
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
from ..graph import RouteGraph
|
|
7
|
+
import plotly.graph_objects as go
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class GraphDisplay():
|
|
11
|
+
|
|
12
|
+
def __init__(self, graph: RouteGraph, name: str = "Graph", iconSize: int = 10) -> None:
|
|
13
|
+
self.graph: RouteGraph = graph
|
|
14
|
+
self.name: str = name
|
|
15
|
+
self.iconSize: int = iconSize
|
|
16
|
+
|
|
17
|
+
def _toPlotlyFormat(
|
|
18
|
+
self,
|
|
19
|
+
nodeTransform=None,
|
|
20
|
+
edgeTransform=None
|
|
21
|
+
):
|
|
22
|
+
"""
|
|
23
|
+
transform the graph data into plotly format.to use the display function
|
|
24
|
+
|
|
25
|
+
args:
|
|
26
|
+
- nodeTransform: function to transform the node coordinates (default = None)
|
|
27
|
+
- edgeTransform: function to transform the edge coordinates (default = None)
|
|
28
|
+
returns:
|
|
29
|
+
- None (modifies self.nodes and self.edges)
|
|
30
|
+
"""
|
|
31
|
+
self.nodes = {
|
|
32
|
+
f"{hub.hubType}-{hub.id}": {
|
|
33
|
+
"coords": hub.coords,
|
|
34
|
+
"hubType": hub.hubType,
|
|
35
|
+
"id": hub.id
|
|
36
|
+
}
|
|
37
|
+
for hub in self.graph._allHubs()
|
|
38
|
+
}
|
|
39
|
+
|
|
40
|
+
self.edges = [
|
|
41
|
+
{
|
|
42
|
+
"from": f"{hub.hubType}-{hub.id}",
|
|
43
|
+
"to": f"{self.graph.getHubById(dest).hubType}-{dest}",
|
|
44
|
+
**edge.allMetrics
|
|
45
|
+
}
|
|
46
|
+
for hub in self.graph._allHubs()
|
|
47
|
+
for _, edge in hub.outgoing.items()
|
|
48
|
+
for dest, edge in edge.items()
|
|
49
|
+
]
|
|
50
|
+
self.dim = max(len(node.get("coords")) for node in self.nodes.values())
|
|
51
|
+
|
|
52
|
+
if nodeTransform is not None:
|
|
53
|
+
expandedCoords = [node.get("coords") + [0] * (self.dim - len(node.get("coords"))) for node in self.nodes.values()]
|
|
54
|
+
transformedCoords = nodeTransform(expandedCoords)
|
|
55
|
+
for node, coords in zip(self.nodes.values(), transformedCoords):
|
|
56
|
+
node["coords"] = coords
|
|
57
|
+
|
|
58
|
+
self.dim = max(len(node.get("coords")) for node in self.nodes.values())
|
|
59
|
+
|
|
60
|
+
if edgeTransform is not None:
|
|
61
|
+
starts = [edge["from"] for edge in self.edges]
|
|
62
|
+
startCoords = [self.nodes[start]["coords"] for start in starts]
|
|
63
|
+
ends = [edge["to"] for edge in self.edges]
|
|
64
|
+
endCoords = [self.nodes[end]["coords"] for end in ends]
|
|
65
|
+
|
|
66
|
+
transformedEdges = edgeTransform(startCoords, endCoords)
|
|
67
|
+
for edge, transformedEdge in zip(self.edges, transformedEdges):
|
|
68
|
+
edge["curve"] = transformedEdge
|
|
69
|
+
|
|
70
|
+
def display(
|
|
71
|
+
self,
|
|
72
|
+
nodeTransform=None,
|
|
73
|
+
edgeTransform=None,
|
|
74
|
+
displayEarth=False
|
|
75
|
+
):
|
|
76
|
+
"""
|
|
77
|
+
function to display any 2D or 3D RouteGraph
|
|
78
|
+
|
|
79
|
+
args:
|
|
80
|
+
- nodeTransform: function to transform the node coordinates (default = None)
|
|
81
|
+
- edgeTransform: function to transform the edge coordinates (default = None)
|
|
82
|
+
- displayEarth: whether to display the earth as a background (default = False, only in 3D)
|
|
83
|
+
|
|
84
|
+
returns:
|
|
85
|
+
- None (modifies self.nodes and self.edges opens the plot in a browser)
|
|
86
|
+
|
|
87
|
+
"""
|
|
88
|
+
# transform the graph
|
|
89
|
+
self._toPlotlyFormat(nodeTransform, edgeTransform)
|
|
90
|
+
# init plotly placeholders
|
|
91
|
+
node_x, node_y, node_z, text, colors = [], [], [], [], []
|
|
92
|
+
edge_x, edge_y, edge_z, edge_text = [], [], [], []
|
|
93
|
+
|
|
94
|
+
# add all the nodes
|
|
95
|
+
for node_key, node_data in self.nodes.items():
|
|
96
|
+
x, y, *rest = node_data["coords"]
|
|
97
|
+
node_x.append(x)
|
|
98
|
+
node_y.append(y)
|
|
99
|
+
if self.dim == 3:
|
|
100
|
+
node_z.append(node_data["coords"][2])
|
|
101
|
+
text.append(f"{node_data['id']}<br>Type: {node_data['hubType']}")
|
|
102
|
+
colors.append(hash(node_data['hubType']) % 10)
|
|
103
|
+
|
|
104
|
+
# add all the edges
|
|
105
|
+
for edge in self.edges:
|
|
106
|
+
# check if edge has been transformed
|
|
107
|
+
if "curve" in edge:
|
|
108
|
+
curve = edge["curve"]
|
|
109
|
+
# add all the points of the edge
|
|
110
|
+
for point in curve:
|
|
111
|
+
edge_x.append(point[0])
|
|
112
|
+
edge_y.append(point[1])
|
|
113
|
+
if self.dim == 3:
|
|
114
|
+
edge_z.append(point[2])
|
|
115
|
+
edge_x.append(None)
|
|
116
|
+
edge_y.append(None)
|
|
117
|
+
# if 3d add the extra none to close the edge
|
|
118
|
+
if self.dim == 3:
|
|
119
|
+
edge_z.append(None)
|
|
120
|
+
else:
|
|
121
|
+
source = self.nodes[edge["from"]]["coords"]
|
|
122
|
+
target = self.nodes[edge["to"]]["coords"]
|
|
123
|
+
|
|
124
|
+
edge_x += [source[0], target[0], None]
|
|
125
|
+
edge_y += [source[1], target[1], None]
|
|
126
|
+
|
|
127
|
+
if self.dim == 3:
|
|
128
|
+
edge_z += [source[2], target[2], None]
|
|
129
|
+
|
|
130
|
+
# add text and hover display
|
|
131
|
+
hover = f"{edge['from']} → {edge['to']}"
|
|
132
|
+
metrics = {k: v for k, v in edge.items() if k not in ("from", "to", "curve")}
|
|
133
|
+
if metrics:
|
|
134
|
+
hover += "<br>" + "<br>".join(f"{k}: {v}" for k, v in metrics.items())
|
|
135
|
+
edge_text.append(hover)
|
|
136
|
+
|
|
137
|
+
if self.dim == 2:
|
|
138
|
+
# ceate the plot in 2d
|
|
139
|
+
node_trace = go.Scatter(
|
|
140
|
+
x=node_x,
|
|
141
|
+
y=node_y,
|
|
142
|
+
mode="markers",
|
|
143
|
+
hoverinfo="text",
|
|
144
|
+
text=text,
|
|
145
|
+
marker=dict(
|
|
146
|
+
size=self.iconSize,
|
|
147
|
+
color=colors,
|
|
148
|
+
colorscale="Viridis",
|
|
149
|
+
showscale=True
|
|
150
|
+
)
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
edge_trace = go.Scatter(
|
|
154
|
+
x=edge_x,
|
|
155
|
+
y=edge_y,
|
|
156
|
+
line=dict(width=2, color="#888"),
|
|
157
|
+
hoverinfo="text",
|
|
158
|
+
text=edge_text,
|
|
159
|
+
mode="lines"
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
elif self.dim == 3:
|
|
163
|
+
# create the plot in 3d
|
|
164
|
+
node_trace = go.Scatter3d(
|
|
165
|
+
x=node_x,
|
|
166
|
+
y=node_y,
|
|
167
|
+
z=node_z,
|
|
168
|
+
mode="markers",
|
|
169
|
+
hoverinfo="text",
|
|
170
|
+
text=text,
|
|
171
|
+
marker=dict(
|
|
172
|
+
size=self.iconSize,
|
|
173
|
+
color=colors,
|
|
174
|
+
colorscale="Viridis",
|
|
175
|
+
showscale=True
|
|
176
|
+
)
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
edge_trace = go.Scatter3d(
|
|
180
|
+
x=edge_x,
|
|
181
|
+
y=edge_y,
|
|
182
|
+
z=edge_z,
|
|
183
|
+
line=dict(width=1, color="#888"),
|
|
184
|
+
hoverinfo="text",
|
|
185
|
+
text=edge_text,
|
|
186
|
+
mode="lines",
|
|
187
|
+
opacity=0.6
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
# create the plotly figure
|
|
191
|
+
fig = go.Figure(data=[edge_trace, node_trace])
|
|
192
|
+
# render earth / sphere in 3d
|
|
193
|
+
if self.dim == 3 and displayEarth:
|
|
194
|
+
try:
|
|
195
|
+
import numpy as np
|
|
196
|
+
R = 6369.9 # sphere radius
|
|
197
|
+
u = np.linspace(0, 2 * np.pi, 50) # azimuthal angle
|
|
198
|
+
v = np.linspace(0, np.pi, 50) # polar angle
|
|
199
|
+
u, v = np.meshgrid(u, v)
|
|
200
|
+
|
|
201
|
+
# Cartesian coordinates
|
|
202
|
+
x = R * np.cos(u) * np.sin(v)
|
|
203
|
+
y = R * np.sin(u) * np.sin(v)
|
|
204
|
+
z = R * np.cos(v)
|
|
205
|
+
except ImportError:
|
|
206
|
+
raise ImportError("numpy is required to display the earth")
|
|
207
|
+
|
|
208
|
+
sphere_surface = go.Surface(
|
|
209
|
+
x=x, y=y, z=z,
|
|
210
|
+
colorscale='Blues',
|
|
211
|
+
opacity=1,
|
|
212
|
+
showscale=False,
|
|
213
|
+
hoverinfo='skip'
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
fig.add_trace(sphere_surface)
|
|
217
|
+
|
|
218
|
+
fig.update_layout(title="Interactive Graph", showlegend=False, hovermode="closest")
|
|
219
|
+
fig.show()
|
|
220
|
+
|
|
221
|
+
@staticmethod
|
|
222
|
+
def degreesToCartesian3D(coords):
|
|
223
|
+
try:
|
|
224
|
+
import torch
|
|
225
|
+
C = torch.tensor(coords)
|
|
226
|
+
if C.dim() == 1:
|
|
227
|
+
C = C.unsqueeze(0)
|
|
228
|
+
R = 6371.0
|
|
229
|
+
lat = torch.deg2rad(C[:, 0])
|
|
230
|
+
lng = torch.deg2rad(C[:, 1])
|
|
231
|
+
x = R * torch.cos(lat) * torch.cos(lng)
|
|
232
|
+
y = R * torch.cos(lat) * torch.sin(lng)
|
|
233
|
+
z = R * torch.sin(lat)
|
|
234
|
+
return list(torch.stack((x, y, z), dim=1).numpy())
|
|
235
|
+
except ImportError:
|
|
236
|
+
import math
|
|
237
|
+
R = 6371.0
|
|
238
|
+
output = []
|
|
239
|
+
for lat, lng in coords:
|
|
240
|
+
lat = math.radians(lat)
|
|
241
|
+
lng = math.radians(lng)
|
|
242
|
+
x = R * math.cos(lat) * math.cos(lng)
|
|
243
|
+
y = R * math.cos(lat) * math.sin(lng)
|
|
244
|
+
z = R * math.sin(lat)
|
|
245
|
+
output.append([x, y, z])
|
|
246
|
+
return output
|
|
247
|
+
|
|
248
|
+
@staticmethod
|
|
249
|
+
def curvedEdges(start, end, R=6371.0, H=0.05, n=20):
|
|
250
|
+
try:
|
|
251
|
+
# if torch and np are available calc vectorized graeter circle curves
|
|
252
|
+
import numpy as np
|
|
253
|
+
import torch
|
|
254
|
+
|
|
255
|
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
256
|
+
|
|
257
|
+
start_np = np.array(start, dtype=np.float32)
|
|
258
|
+
end_np = np.array(end, dtype=np.float32)
|
|
259
|
+
|
|
260
|
+
start = torch.tensor(start_np, device=device)
|
|
261
|
+
end = torch.tensor(end_np, device=device)
|
|
262
|
+
start = start.float()
|
|
263
|
+
end = end.float()
|
|
264
|
+
|
|
265
|
+
# normalize to sphere
|
|
266
|
+
start_norm = R * start / start.norm(dim=1, keepdim=True)
|
|
267
|
+
end_norm = R * end / end.norm(dim=1, keepdim=True)
|
|
268
|
+
|
|
269
|
+
# compute angle between vectors
|
|
270
|
+
dot = (start_norm * end_norm).sum(dim=1, keepdim=True) / (R**2)
|
|
271
|
+
dot = torch.clamp(dot, -1.0, 1.0)
|
|
272
|
+
theta = torch.acos(dot).unsqueeze(2) # shape: (num_edges,1,1)
|
|
273
|
+
|
|
274
|
+
# linear interpolation along great circle
|
|
275
|
+
t = torch.linspace(0, 1, n, device=device).view(1, n, 1)
|
|
276
|
+
one_minus_t = 1 - t
|
|
277
|
+
sin_theta = torch.sin(theta)
|
|
278
|
+
sin_theta[sin_theta == 0] = 1e-6
|
|
279
|
+
|
|
280
|
+
factor_start = torch.sin(one_minus_t * theta) / sin_theta
|
|
281
|
+
factor_end = torch.sin(t * theta) / sin_theta
|
|
282
|
+
|
|
283
|
+
curve = factor_start * start_norm.unsqueeze(1) + factor_end * end_norm.unsqueeze(1)
|
|
284
|
+
|
|
285
|
+
# normalize to radius
|
|
286
|
+
curve = R * curve / curve.norm(dim=2, keepdim=True)
|
|
287
|
+
|
|
288
|
+
# apply radial lift at curve center using sin weight
|
|
289
|
+
weight = torch.sin(torch.pi * t) # 0 at endpoints, 1 at center
|
|
290
|
+
curve = curve * (1 + H * weight)
|
|
291
|
+
|
|
292
|
+
return curve
|
|
293
|
+
except ImportError:
|
|
294
|
+
# fallback to calculating quadratic bezier curves with math
|
|
295
|
+
import math
|
|
296
|
+
curves_all = []
|
|
297
|
+
|
|
298
|
+
def multiply_vec(vec, factor):
|
|
299
|
+
return [factor * x for x in vec]
|
|
300
|
+
|
|
301
|
+
def add_vec(*vecs):
|
|
302
|
+
return [sum(items) for items in zip(*vecs)]
|
|
303
|
+
|
|
304
|
+
for startP, endP in zip(start, end):
|
|
305
|
+
mid = [(s + e) / 2 for s, e in zip(startP, endP)]
|
|
306
|
+
norm = math.sqrt(sum(c ** 2 for c in mid))
|
|
307
|
+
mid_proj = [R * c / norm for c in mid]
|
|
308
|
+
mid_arch = [c * (1 + H) for c in mid_proj]
|
|
309
|
+
|
|
310
|
+
curve = []
|
|
311
|
+
for i in range(n):
|
|
312
|
+
t_i = i / (n - 1)
|
|
313
|
+
one_minus_t = 1 - t_i
|
|
314
|
+
point = add_vec(
|
|
315
|
+
multiply_vec(startP, one_minus_t ** 2),
|
|
316
|
+
multiply_vec(mid_arch, 2 * one_minus_t * t_i),
|
|
317
|
+
multiply_vec(endP, t_i ** 2)
|
|
318
|
+
)
|
|
319
|
+
curve.append(point)
|
|
320
|
+
|
|
321
|
+
curves_all.append(curve)
|
|
322
|
+
|
|
323
|
+
return curves_all
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/flightRouter/data/fullDataset.csv
RENAMED
|
File without changes
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/docs/examples/mazePathfinder/data/maze.csv
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/entry_points.txt
RENAMED
|
File without changes
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multiModalRouter.egg-info/top_level.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{multimodalrouter-0.1.3 → multimodalrouter-0.1.5}/src/multimodalrouter/utils/preprocessor.py
RENAMED
|
File without changes
|