msreport 0.0.24__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- msreport-0.0.24/LICENSE.txt +202 -0
- msreport-0.0.24/PKG-INFO +128 -0
- msreport-0.0.24/README.md +100 -0
- msreport-0.0.24/msreport/__init__.py +13 -0
- msreport-0.0.24/msreport/aggregate/__init__.py +0 -0
- msreport-0.0.24/msreport/aggregate/condense.py +163 -0
- msreport-0.0.24/msreport/aggregate/pivot.py +132 -0
- msreport-0.0.24/msreport/aggregate/summarize.py +281 -0
- msreport-0.0.24/msreport/analyze.py +586 -0
- msreport-0.0.24/msreport/errors.py +10 -0
- msreport-0.0.24/msreport/export.py +526 -0
- msreport-0.0.24/msreport/fasta.py +28 -0
- msreport-0.0.24/msreport/helper/__init__.py +23 -0
- msreport-0.0.24/msreport/helper/calc.py +120 -0
- msreport-0.0.24/msreport/helper/maxlfq.py +339 -0
- msreport-0.0.24/msreport/helper/table.py +267 -0
- msreport-0.0.24/msreport/helper/temp.py +99 -0
- msreport-0.0.24/msreport/impute.py +275 -0
- msreport-0.0.24/msreport/isobar.py +161 -0
- msreport-0.0.24/msreport/normalize.py +496 -0
- msreport-0.0.24/msreport/peptidoform.py +283 -0
- msreport-0.0.24/msreport/plot.py +1129 -0
- msreport-0.0.24/msreport/qtable.py +537 -0
- msreport-0.0.24/msreport/reader.py +2357 -0
- msreport-0.0.24/msreport/rinterface/__init__.py +3 -0
- msreport-0.0.24/msreport/rinterface/limma.py +126 -0
- msreport-0.0.24/msreport/rinterface/rinstaller.py +35 -0
- msreport-0.0.24/msreport/rinterface/rscripts/limma.R +104 -0
- msreport-0.0.24/msreport.egg-info/PKG-INFO +128 -0
- msreport-0.0.24/msreport.egg-info/SOURCES.txt +42 -0
- msreport-0.0.24/msreport.egg-info/dependency_links.txt +1 -0
- msreport-0.0.24/msreport.egg-info/requires.txt +12 -0
- msreport-0.0.24/msreport.egg-info/top_level.txt +1 -0
- msreport-0.0.24/pyproject.toml +55 -0
- msreport-0.0.24/setup.cfg +4 -0
- msreport-0.0.24/setup.py +3 -0
- msreport-0.0.24/tests/test_analyze.py +333 -0
- msreport-0.0.24/tests/test_export.py +69 -0
- msreport-0.0.24/tests/test_helper.py +557 -0
- msreport-0.0.24/tests/test_impute.py +123 -0
- msreport-0.0.24/tests/test_isobar.py +138 -0
- msreport-0.0.24/tests/test_maxlfq.py +351 -0
- msreport-0.0.24/tests/test_peptidoform.py +237 -0
- msreport-0.0.24/tests/test_qtable.py +501 -0
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
|
|
2
|
+
Apache License
|
|
3
|
+
Version 2.0, January 2004
|
|
4
|
+
http://www.apache.org/licenses/
|
|
5
|
+
|
|
6
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
7
|
+
|
|
8
|
+
1. Definitions.
|
|
9
|
+
|
|
10
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
11
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
12
|
+
|
|
13
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
14
|
+
the copyright owner that is granting the License.
|
|
15
|
+
|
|
16
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
17
|
+
other entities that control, are controlled by, or are under common
|
|
18
|
+
control with that entity. For the purposes of this definition,
|
|
19
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
20
|
+
direction or management of such entity, whether by contract or
|
|
21
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
22
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
23
|
+
|
|
24
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
25
|
+
exercising permissions granted by this License.
|
|
26
|
+
|
|
27
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
28
|
+
including but not limited to software source code, documentation
|
|
29
|
+
source, and configuration files.
|
|
30
|
+
|
|
31
|
+
"Object" form shall mean any form resulting from mechanical
|
|
32
|
+
transformation or translation of a Source form, including but
|
|
33
|
+
not limited to compiled object code, generated documentation,
|
|
34
|
+
and conversions to other media types.
|
|
35
|
+
|
|
36
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
37
|
+
Object form, made available under the License, as indicated by a
|
|
38
|
+
copyright notice that is included in or attached to the work
|
|
39
|
+
(an example is provided in the Appendix below).
|
|
40
|
+
|
|
41
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
42
|
+
form, that is based on (or derived from) the Work and for which the
|
|
43
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
44
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
45
|
+
of this License, Derivative Works shall not include works that remain
|
|
46
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
47
|
+
the Work and Derivative Works thereof.
|
|
48
|
+
|
|
49
|
+
"Contribution" shall mean any work of authorship, including
|
|
50
|
+
the original version of the Work and any modifications or additions
|
|
51
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
52
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
53
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
54
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
55
|
+
means any form of electronic, verbal, or written communication sent
|
|
56
|
+
to the Licensor or its representatives, including but not limited to
|
|
57
|
+
communication on electronic mailing lists, source code control systems,
|
|
58
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
59
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
60
|
+
excluding communication that is conspicuously marked or otherwise
|
|
61
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
62
|
+
|
|
63
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
64
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
65
|
+
subsequently incorporated within the Work.
|
|
66
|
+
|
|
67
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
68
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
69
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
70
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
71
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
72
|
+
Work and such Derivative Works in Source or Object form.
|
|
73
|
+
|
|
74
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
75
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
76
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
77
|
+
(except as stated in this section) patent license to make, have made,
|
|
78
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
79
|
+
where such license applies only to those patent claims licensable
|
|
80
|
+
by such Contributor that are necessarily infringed by their
|
|
81
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
82
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
83
|
+
institute patent litigation against any entity (including a
|
|
84
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
85
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
86
|
+
or contributory patent infringement, then any patent licenses
|
|
87
|
+
granted to You under this License for that Work shall terminate
|
|
88
|
+
as of the date such litigation is filed.
|
|
89
|
+
|
|
90
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
91
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
92
|
+
modifications, and in Source or Object form, provided that You
|
|
93
|
+
meet the following conditions:
|
|
94
|
+
|
|
95
|
+
(a) You must give any other recipients of the Work or
|
|
96
|
+
Derivative Works a copy of this License; and
|
|
97
|
+
|
|
98
|
+
(b) You must cause any modified files to carry prominent notices
|
|
99
|
+
stating that You changed the files; and
|
|
100
|
+
|
|
101
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
102
|
+
that You distribute, all copyright, patent, trademark, and
|
|
103
|
+
attribution notices from the Source form of the Work,
|
|
104
|
+
excluding those notices that do not pertain to any part of
|
|
105
|
+
the Derivative Works; and
|
|
106
|
+
|
|
107
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
108
|
+
distribution, then any Derivative Works that You distribute must
|
|
109
|
+
include a readable copy of the attribution notices contained
|
|
110
|
+
within such NOTICE file, excluding those notices that do not
|
|
111
|
+
pertain to any part of the Derivative Works, in at least one
|
|
112
|
+
of the following places: within a NOTICE text file distributed
|
|
113
|
+
as part of the Derivative Works; within the Source form or
|
|
114
|
+
documentation, if provided along with the Derivative Works; or,
|
|
115
|
+
within a display generated by the Derivative Works, if and
|
|
116
|
+
wherever such third-party notices normally appear. The contents
|
|
117
|
+
of the NOTICE file are for informational purposes only and
|
|
118
|
+
do not modify the License. You may add Your own attribution
|
|
119
|
+
notices within Derivative Works that You distribute, alongside
|
|
120
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
121
|
+
that such additional attribution notices cannot be construed
|
|
122
|
+
as modifying the License.
|
|
123
|
+
|
|
124
|
+
You may add Your own copyright statement to Your modifications and
|
|
125
|
+
may provide additional or different license terms and conditions
|
|
126
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
127
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
128
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
129
|
+
the conditions stated in this License.
|
|
130
|
+
|
|
131
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
132
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
133
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
134
|
+
this License, without any additional terms or conditions.
|
|
135
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
136
|
+
the terms of any separate license agreement you may have executed
|
|
137
|
+
with Licensor regarding such Contributions.
|
|
138
|
+
|
|
139
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
140
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
141
|
+
except as required for reasonable and customary use in describing the
|
|
142
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
143
|
+
|
|
144
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
145
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
146
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
147
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
148
|
+
implied, including, without limitation, any warranties or conditions
|
|
149
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
150
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
151
|
+
appropriateness of using or redistributing the Work and assume any
|
|
152
|
+
risks associated with Your exercise of permissions under this License.
|
|
153
|
+
|
|
154
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
155
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
156
|
+
unless required by applicable law (such as deliberate and grossly
|
|
157
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
158
|
+
liable to You for damages, including any direct, indirect, special,
|
|
159
|
+
incidental, or consequential damages of any character arising as a
|
|
160
|
+
result of this License or out of the use or inability to use the
|
|
161
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
162
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
163
|
+
other commercial damages or losses), even if such Contributor
|
|
164
|
+
has been advised of the possibility of such damages.
|
|
165
|
+
|
|
166
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
167
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
168
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
169
|
+
or other liability obligations and/or rights consistent with this
|
|
170
|
+
License. However, in accepting such obligations, You may act only
|
|
171
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
172
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
173
|
+
defend, and hold each Contributor harmless for any liability
|
|
174
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
175
|
+
of your accepting any such warranty or additional liability.
|
|
176
|
+
|
|
177
|
+
END OF TERMS AND CONDITIONS
|
|
178
|
+
|
|
179
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
180
|
+
|
|
181
|
+
To apply the Apache License to your work, attach the following
|
|
182
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
183
|
+
replaced with your own identifying information. (Don't include
|
|
184
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
185
|
+
comment syntax for the file format. We also recommend that a
|
|
186
|
+
file or class name and description of purpose be included on the
|
|
187
|
+
same "printed page" as the copyright notice for easier
|
|
188
|
+
identification within third-party archives.
|
|
189
|
+
|
|
190
|
+
Copyright [yyyy] [name of copyright owner]
|
|
191
|
+
|
|
192
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
193
|
+
you may not use this file except in compliance with the License.
|
|
194
|
+
You may obtain a copy of the License at
|
|
195
|
+
|
|
196
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
197
|
+
|
|
198
|
+
Unless required by applicable law or agreed to in writing, software
|
|
199
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
200
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
201
|
+
See the License for the specific language governing permissions and
|
|
202
|
+
limitations under the License.
|
msreport-0.0.24/PKG-INFO
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: msreport
|
|
3
|
+
Version: 0.0.24
|
|
4
|
+
Summary: Post processing and analysis of quantitative proteomics data
|
|
5
|
+
Author-email: "David M. Hollenstein" <hollenstein.david@gmail.com>
|
|
6
|
+
License: Apache-2.0
|
|
7
|
+
Keywords: mass spectrometry,proteomics,post processing,data analysis
|
|
8
|
+
Classifier: Development Status :: 3 - Alpha
|
|
9
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
11
|
+
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
|
|
12
|
+
Requires-Python: >=3.9
|
|
13
|
+
Description-Content-Type: text/markdown
|
|
14
|
+
License-File: LICENSE.txt
|
|
15
|
+
Requires-Dist: adjustText<1.0.0,>=0.7.0
|
|
16
|
+
Requires-Dist: matplotlib>=3.5.2
|
|
17
|
+
Requires-Dist: numpy>=1.21.5
|
|
18
|
+
Requires-Dist: pandas>=1.4.4
|
|
19
|
+
Requires-Dist: profasta>=0.0.4
|
|
20
|
+
Requires-Dist: pyteomics>=4.6.0
|
|
21
|
+
Requires-Dist: pyyaml>=6.0.0
|
|
22
|
+
Requires-Dist: rpy2>=3.5.3
|
|
23
|
+
Requires-Dist: scikit-learn>=1.0.0
|
|
24
|
+
Requires-Dist: scipy>=1.9.1
|
|
25
|
+
Requires-Dist: seaborn>=0.12.0
|
|
26
|
+
Requires-Dist: statsmodels>=0.13.2
|
|
27
|
+
Dynamic: license-file
|
|
28
|
+
|
|
29
|
+
[](https://www.repostatus.org/#wip)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
# MsReport
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
## Introduction
|
|
36
|
+
|
|
37
|
+
MsReport is a python library that allows simple and standardized post processing of
|
|
38
|
+
quantitative proteomics data from bottom up, mass spectrometry experiments. Currently
|
|
39
|
+
working with label free protein quantification reports from MaxQuant and FragPipe is
|
|
40
|
+
fully supported. Other data analysis pipelines can be added by writing a software
|
|
41
|
+
specific reader function.
|
|
42
|
+
|
|
43
|
+
MsReport is primarily developed as a tool for the Mass Spectrometry Facility at the Max
|
|
44
|
+
Perutz Labs (University of Vienna), to allow the generation of Quantitative Protein and
|
|
45
|
+
PTM reports, and to facilitate project specific data analysis tasks.
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
## Release
|
|
49
|
+
|
|
50
|
+
Development is currently in early alpha and the interface is not yet stable.
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
## Scope
|
|
54
|
+
|
|
55
|
+
The `reader` module contains software specific reader classes that provide access to the
|
|
56
|
+
outputs of the respective software. Reader instances allow importing protein and ion
|
|
57
|
+
tables, and provide the ability to standardize column names and data formats during the
|
|
58
|
+
import. To do so, reader classes must know the file structure and naming conventions of
|
|
59
|
+
the respective software.
|
|
60
|
+
|
|
61
|
+
The `qtable` class allows storing and accessing quantitative data from a particular
|
|
62
|
+
level of abstraction, such as proteins or ions, and an experimental design table that
|
|
63
|
+
describes to which experiment a sample belongs to. The quantitative data are in the wide
|
|
64
|
+
format, i.e. the quantification data of each sample is stored in a separate column. The
|
|
65
|
+
`Qtable` allows convenient handling and access to quantitative data through information
|
|
66
|
+
from the experimental design, and represents the data structure used by the `analyze`,
|
|
67
|
+
`plot`, and `export` modules.
|
|
68
|
+
|
|
69
|
+
The `analyze` module provides a high-level interface for post-processing of quantitative
|
|
70
|
+
data, such as filtering valid values, normalization between samples, imputation of
|
|
71
|
+
missing values, and statistical testing with the R package LIMMA.
|
|
72
|
+
|
|
73
|
+
The `plot` module allows generation of quality control and data analysis plots.
|
|
74
|
+
|
|
75
|
+
Using methods from the `export` module allows conversion and export of quantitative data
|
|
76
|
+
into the Amica input format, and generating contaminant tables for the inspection of
|
|
77
|
+
potential contaminants.
|
|
78
|
+
|
|
79
|
+
Additional scripts
|
|
80
|
+
|
|
81
|
+
- The `excel_report` module enables the creation of a formatted excel protein report
|
|
82
|
+
by using the XlsxReport library.
|
|
83
|
+
- The `benchmark` module contains functions to generate benchmark plots from multiple
|
|
84
|
+
`Qtable` instances, and can be used for method or software comparison.
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
## Install
|
|
88
|
+
|
|
89
|
+
If you do not already have a Python installation, we recommend installing the
|
|
90
|
+
[Anaconda distribution](https://www.continuum.io/downloads) of Continuum Analytics,
|
|
91
|
+
which already contains a large number of popular Python packages for Data Science.
|
|
92
|
+
Alternatively, you can also get Python from the
|
|
93
|
+
[Python homepage](https://www.python.org/downloads/windows). MsReport requires Python
|
|
94
|
+
version 3.9 or higher.
|
|
95
|
+
|
|
96
|
+
You can use pip to install MsReport from the distribution file with the following
|
|
97
|
+
command:
|
|
98
|
+
|
|
99
|
+
```
|
|
100
|
+
pip install msreport-X.Y.Z-py3-none-any.whl
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
To uninstall the MsReport library type:
|
|
104
|
+
|
|
105
|
+
```
|
|
106
|
+
pip uninstall msreport
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
### Installation when using Anaconda
|
|
111
|
+
If you are using Anaconda, you will need to install the MsReport package into a conda
|
|
112
|
+
environment. Open the Anaconda navigator, activate the conda environment you want to
|
|
113
|
+
use, run the "CMD.exe" application to open a terminal, and then use the pip install
|
|
114
|
+
command as described above.
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
### Additional requirements
|
|
118
|
+
|
|
119
|
+
MsReport provides an interface to the R package LIMMA for differential expression
|
|
120
|
+
analysis, which requires a local installation of R (R version 3.4 or higher) and the
|
|
121
|
+
system environment variable "R_HOME" to be set to the R home directory. Note that it
|
|
122
|
+
might be necessary to restart the computer after adding the "R_HOME" variable. The R
|
|
123
|
+
home directory can also be found from within R by using the command below, and might
|
|
124
|
+
look similar to "C:\Program Files\R\R-4.2.1" on windows.
|
|
125
|
+
|
|
126
|
+
```
|
|
127
|
+
normalizePath(R.home("home"))
|
|
128
|
+
```
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
[](https://www.repostatus.org/#wip)
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
# MsReport
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
## Introduction
|
|
8
|
+
|
|
9
|
+
MsReport is a python library that allows simple and standardized post processing of
|
|
10
|
+
quantitative proteomics data from bottom up, mass spectrometry experiments. Currently
|
|
11
|
+
working with label free protein quantification reports from MaxQuant and FragPipe is
|
|
12
|
+
fully supported. Other data analysis pipelines can be added by writing a software
|
|
13
|
+
specific reader function.
|
|
14
|
+
|
|
15
|
+
MsReport is primarily developed as a tool for the Mass Spectrometry Facility at the Max
|
|
16
|
+
Perutz Labs (University of Vienna), to allow the generation of Quantitative Protein and
|
|
17
|
+
PTM reports, and to facilitate project specific data analysis tasks.
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
## Release
|
|
21
|
+
|
|
22
|
+
Development is currently in early alpha and the interface is not yet stable.
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
## Scope
|
|
26
|
+
|
|
27
|
+
The `reader` module contains software specific reader classes that provide access to the
|
|
28
|
+
outputs of the respective software. Reader instances allow importing protein and ion
|
|
29
|
+
tables, and provide the ability to standardize column names and data formats during the
|
|
30
|
+
import. To do so, reader classes must know the file structure and naming conventions of
|
|
31
|
+
the respective software.
|
|
32
|
+
|
|
33
|
+
The `qtable` class allows storing and accessing quantitative data from a particular
|
|
34
|
+
level of abstraction, such as proteins or ions, and an experimental design table that
|
|
35
|
+
describes to which experiment a sample belongs to. The quantitative data are in the wide
|
|
36
|
+
format, i.e. the quantification data of each sample is stored in a separate column. The
|
|
37
|
+
`Qtable` allows convenient handling and access to quantitative data through information
|
|
38
|
+
from the experimental design, and represents the data structure used by the `analyze`,
|
|
39
|
+
`plot`, and `export` modules.
|
|
40
|
+
|
|
41
|
+
The `analyze` module provides a high-level interface for post-processing of quantitative
|
|
42
|
+
data, such as filtering valid values, normalization between samples, imputation of
|
|
43
|
+
missing values, and statistical testing with the R package LIMMA.
|
|
44
|
+
|
|
45
|
+
The `plot` module allows generation of quality control and data analysis plots.
|
|
46
|
+
|
|
47
|
+
Using methods from the `export` module allows conversion and export of quantitative data
|
|
48
|
+
into the Amica input format, and generating contaminant tables for the inspection of
|
|
49
|
+
potential contaminants.
|
|
50
|
+
|
|
51
|
+
Additional scripts
|
|
52
|
+
|
|
53
|
+
- The `excel_report` module enables the creation of a formatted excel protein report
|
|
54
|
+
by using the XlsxReport library.
|
|
55
|
+
- The `benchmark` module contains functions to generate benchmark plots from multiple
|
|
56
|
+
`Qtable` instances, and can be used for method or software comparison.
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
## Install
|
|
60
|
+
|
|
61
|
+
If you do not already have a Python installation, we recommend installing the
|
|
62
|
+
[Anaconda distribution](https://www.continuum.io/downloads) of Continuum Analytics,
|
|
63
|
+
which already contains a large number of popular Python packages for Data Science.
|
|
64
|
+
Alternatively, you can also get Python from the
|
|
65
|
+
[Python homepage](https://www.python.org/downloads/windows). MsReport requires Python
|
|
66
|
+
version 3.9 or higher.
|
|
67
|
+
|
|
68
|
+
You can use pip to install MsReport from the distribution file with the following
|
|
69
|
+
command:
|
|
70
|
+
|
|
71
|
+
```
|
|
72
|
+
pip install msreport-X.Y.Z-py3-none-any.whl
|
|
73
|
+
```
|
|
74
|
+
|
|
75
|
+
To uninstall the MsReport library type:
|
|
76
|
+
|
|
77
|
+
```
|
|
78
|
+
pip uninstall msreport
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
### Installation when using Anaconda
|
|
83
|
+
If you are using Anaconda, you will need to install the MsReport package into a conda
|
|
84
|
+
environment. Open the Anaconda navigator, activate the conda environment you want to
|
|
85
|
+
use, run the "CMD.exe" application to open a terminal, and then use the pip install
|
|
86
|
+
command as described above.
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
### Additional requirements
|
|
90
|
+
|
|
91
|
+
MsReport provides an interface to the R package LIMMA for differential expression
|
|
92
|
+
analysis, which requires a local installation of R (R version 3.4 or higher) and the
|
|
93
|
+
system environment variable "R_HOME" to be set to the R home directory. Note that it
|
|
94
|
+
might be necessary to restart the computer after adding the "R_HOME" variable. The R
|
|
95
|
+
home directory can also be found from within R by using the command below, and might
|
|
96
|
+
look similar to "C:\Program Files\R\R-4.2.1" on windows.
|
|
97
|
+
|
|
98
|
+
```
|
|
99
|
+
normalizePath(R.home("home"))
|
|
100
|
+
```
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
from msreport.qtable import Qtable
|
|
2
|
+
from msreport.reader import MaxQuantReader, FragPipeReader, SpectronautReader
|
|
3
|
+
|
|
4
|
+
from msreport.fasta import import_protein_database
|
|
5
|
+
|
|
6
|
+
import msreport.analyze
|
|
7
|
+
import msreport.export
|
|
8
|
+
import msreport.impute
|
|
9
|
+
import msreport.normalize
|
|
10
|
+
import msreport.plot
|
|
11
|
+
import msreport.reader
|
|
12
|
+
|
|
13
|
+
__version__ = "0.0.24"
|
|
File without changes
|
|
@@ -0,0 +1,163 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
import msreport.helper.maxlfq as MAXLFQ
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def join_str(array: np.ndarray, sep: str = ";") -> str:
|
|
7
|
+
"""Returns a joined string of sorted values from the array.
|
|
8
|
+
|
|
9
|
+
Note that empty strings or np.nan are not included in the joined string.
|
|
10
|
+
"""
|
|
11
|
+
elements = []
|
|
12
|
+
for value in array.flatten():
|
|
13
|
+
if value != "" and not (isinstance(value, float) and np.isnan(value)):
|
|
14
|
+
elements.append(str(value))
|
|
15
|
+
return sep.join(sorted(elements))
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def join_str_per_column(array: np.ndarray, sep: str = ";") -> np.ndarray:
|
|
19
|
+
"""Returns for each column a joined string of sorted values.
|
|
20
|
+
|
|
21
|
+
Note that empty strings or np.nan are not included in the joined string.
|
|
22
|
+
"""
|
|
23
|
+
return np.array([join_str(i) for i in array.transpose()])
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def join_unique_str(array: np.ndarray, sep: str = ";") -> str:
|
|
27
|
+
"""Returns a joined string of unique sorted values from the array."""
|
|
28
|
+
elements = []
|
|
29
|
+
for value in array.flatten():
|
|
30
|
+
if value != "" and not (isinstance(value, float) and np.isnan(value)):
|
|
31
|
+
elements.append(str(value))
|
|
32
|
+
return sep.join(sorted(set(elements)))
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def join_unique_str_per_column(array: np.ndarray, sep: str = ";") -> np.ndarray:
|
|
36
|
+
"""Returns for each column a joined strings of unique sorted values."""
|
|
37
|
+
return np.array([join_unique_str(i) for i in array.transpose()])
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def sum(array: np.ndarray) -> float:
|
|
41
|
+
"""Returns sum of values from one or multiple columns.
|
|
42
|
+
|
|
43
|
+
Note that if no finite values are present in the array np.nan is returned.
|
|
44
|
+
"""
|
|
45
|
+
array = array.flatten()
|
|
46
|
+
if np.isfinite(array).any():
|
|
47
|
+
return np.nansum(array)
|
|
48
|
+
else:
|
|
49
|
+
return np.nan
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def sum_per_column(array: np.ndarray) -> np.ndarray:
|
|
53
|
+
"""Returns for each column the sum of values.
|
|
54
|
+
|
|
55
|
+
Note that if no finite values are present in a column np.nan is returned.
|
|
56
|
+
"""
|
|
57
|
+
return np.array([sum(i) for i in array.transpose()])
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def maximum(array: np.ndarray) -> float:
|
|
61
|
+
"""Returns the highest finitevalue from one or multiple columns."""
|
|
62
|
+
array = array.flatten()
|
|
63
|
+
if np.isfinite(array).any():
|
|
64
|
+
return np.nanmax(array)
|
|
65
|
+
else:
|
|
66
|
+
return np.nan
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def maximum_per_column(array: np.ndarray) -> np.ndarray:
|
|
70
|
+
"""Returns for each column the highest finite value."""
|
|
71
|
+
return np.array([maximum(i) for i in array.transpose()])
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def minimum(array: np.ndarray) -> int:
|
|
75
|
+
"""Returns the lowest finite value from one or multiple columns."""
|
|
76
|
+
array = array.flatten()
|
|
77
|
+
if np.isfinite(array).any():
|
|
78
|
+
return np.nanmin(array)
|
|
79
|
+
else:
|
|
80
|
+
return np.nan
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def minimum_per_column(array: np.ndarray) -> np.ndarray:
|
|
84
|
+
"""Returns for each column the lowest finite value."""
|
|
85
|
+
return np.array([minimum(i) for i in array.transpose()])
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def count_unique(array: np.ndarray) -> int:
|
|
89
|
+
"""Returns the number of unique values from one or multiple columns.
|
|
90
|
+
|
|
91
|
+
Note that empty strings or np.nan are not counted as unique values.
|
|
92
|
+
"""
|
|
93
|
+
unique_elements = {
|
|
94
|
+
x for x in array.flatten() if not (isinstance(x, float) and np.isnan(x))
|
|
95
|
+
}
|
|
96
|
+
unique_elements.discard("")
|
|
97
|
+
|
|
98
|
+
return len(unique_elements)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def count_unique_per_column(array: np.ndarray) -> np.ndarray:
|
|
102
|
+
"""Returns for each column the number of unique values.
|
|
103
|
+
|
|
104
|
+
Note that empty strings or np.nan are not counted as unique values.
|
|
105
|
+
"""
|
|
106
|
+
if array.size > 0:
|
|
107
|
+
return np.array([count_unique(i) for i in array.transpose()])
|
|
108
|
+
else:
|
|
109
|
+
return np.full(array.shape[0], 0)
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def profile_by_median_ratio_regression(array: np.ndarray) -> np.ndarray:
|
|
113
|
+
"""Calculates abundance profiles by lstsq regression of pair-wise median ratios.
|
|
114
|
+
|
|
115
|
+
The function performs a least squares regression of pair-wise median ratios to
|
|
116
|
+
calculate estimated abundance profiles.
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
array: A two-dimensional array containing abundance values, with the first
|
|
120
|
+
dimension corresponding to rows and the second dimension to columns.
|
|
121
|
+
Abundance values must not be log transformed.
|
|
122
|
+
|
|
123
|
+
Returns:
|
|
124
|
+
An array containing estimated abundance profiles, with length equal to the
|
|
125
|
+
number of columns in the input array.
|
|
126
|
+
"""
|
|
127
|
+
ratio_matrix = MAXLFQ.calculate_pairwise_median_log_ratio_matrix(
|
|
128
|
+
array, log_transformed=False
|
|
129
|
+
)
|
|
130
|
+
coef_matrix, ratio_array, initial_rows = MAXLFQ.prepare_coefficient_matrix(
|
|
131
|
+
ratio_matrix
|
|
132
|
+
)
|
|
133
|
+
log_profile = MAXLFQ.log_profiles_by_lstsq(coef_matrix, ratio_array)
|
|
134
|
+
profile = np.power(2, log_profile)
|
|
135
|
+
return profile
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def sum_by_median_ratio_regression(array: np.ndarray) -> np.ndarray:
|
|
139
|
+
"""Calculates summed abundance by lstsq regression of pair-wise median ratios.
|
|
140
|
+
|
|
141
|
+
The function performs a least squares regression of pair-wise median ratios to
|
|
142
|
+
calculate estimated abundance profiles. These profiles are then scaled based on the
|
|
143
|
+
input array such that the columns with finite profile values are used and the sum of
|
|
144
|
+
the scaled profiles matches the sum of the input array.
|
|
145
|
+
|
|
146
|
+
Args:
|
|
147
|
+
array: A two-dimensional array containing abundance values, with the first
|
|
148
|
+
dimension corresponding to rows and the second dimension to columns.
|
|
149
|
+
Abundance values must not be log transformed.
|
|
150
|
+
|
|
151
|
+
Returns:
|
|
152
|
+
An array containing summed abundance estimates, with length equal to the number
|
|
153
|
+
of columns in the input array.
|
|
154
|
+
"""
|
|
155
|
+
profile = profile_by_median_ratio_regression(array)
|
|
156
|
+
scaled_profile = profile
|
|
157
|
+
if np.isfinite(profile).any():
|
|
158
|
+
profile_mask = np.isfinite(profile)
|
|
159
|
+
scaled_profile[profile_mask] = profile[profile_mask] * (
|
|
160
|
+
np.nansum(array[:, profile_mask]) / np.nansum(profile[profile_mask])
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
return scaled_profile
|