mscore 25.3.1__tar.gz → 25.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. {mscore-25.3.1 → mscore-25.3.2}/PKG-INFO +25 -5
  2. {mscore-25.3.1 → mscore-25.3.2}/README.md +24 -4
  3. {mscore-25.3.1 → mscore-25.3.2}/mscore/__init__.pye +1 -1
  4. {mscore-25.3.1 → mscore-25.3.2}/mscore.egg-info/PKG-INFO +25 -5
  5. {mscore-25.3.1 → mscore-25.3.2}/pyproject.toml +1 -1
  6. {mscore-25.3.1 → mscore-25.3.2}/mscore/__main__.py +0 -0
  7. {mscore-25.3.1 → mscore-25.3.2}/mscore/activate.pye +0 -0
  8. {mscore-25.3.1 → mscore-25.3.2}/mscore/data_variables/__init__.pye +0 -0
  9. {mscore-25.3.1 → mscore-25.3.2}/mscore/data_variables/hcc_descriptors.pye +0 -0
  10. {mscore-25.3.1 → mscore-25.3.2}/mscore/data_variables/hierarchies.pye +0 -0
  11. {mscore-25.3.1 → mscore-25.3.2}/mscore/data_variables/variable_dict.pye +0 -0
  12. {mscore-25.3.1 → mscore-25.3.2}/mscore/demography_builder.pye +0 -0
  13. {mscore-25.3.1 → mscore-25.3.2}/mscore/demography_vars_applicator.pye +0 -0
  14. {mscore-25.3.1 → mscore-25.3.2}/mscore/file_handler.pye +0 -0
  15. {mscore-25.3.1 → mscore-25.3.2}/mscore/hcc_handler.pye +0 -0
  16. {mscore-25.3.1 → mscore-25.3.2}/mscore/ram_models.pye +0 -0
  17. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2221CW.TXT +0 -0
  18. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2222CW.TXT +0 -0
  19. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2223CW.TXT +0 -0
  20. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2224CW.TXT +0 -0
  21. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2225CW.TXT +0 -0
  22. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2421CW.TXT +0 -0
  23. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2422CW.TXT +0 -0
  24. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2423CW.TXT +0 -0
  25. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2424CW.TXT +0 -0
  26. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2425CW.TXT +0 -0
  27. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2824CW.TXT +0 -0
  28. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2825CW.TXT +0 -0
  29. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V22.csv +0 -0
  30. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V222179O1.csv +0 -0
  31. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V24.csv +0 -0
  32. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V242186P1.csv +0 -0
  33. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V22.csv +0 -0
  34. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V222279O1.csv +0 -0
  35. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V24.csv +0 -0
  36. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V242286P1.csv +0 -0
  37. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V22.csv +0 -0
  38. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V24.csv +0 -0
  39. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V22.csv +0 -0
  40. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V24.csv +0 -0
  41. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V28.csv +0 -0
  42. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V22.csv +0 -0
  43. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V24.csv +0 -0
  44. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V28.csv +0 -0
  45. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/application_tables/application_format_fact.parquet +0 -0
  46. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/application_tables/application_model_coefficient.parquet +0 -0
  47. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/application_tables/application_model_dimension.parquet +0 -0
  48. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V222379O1_format.csv +0 -0
  49. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V242386P1_format.csv +0 -0
  50. {mscore-25.3.1 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2024_CMS-HCC_V28_format.csv +0 -0
  51. {mscore-25.3.1 → mscore-25.3.2}/mscore/scoring_handler.pye +0 -0
  52. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/__init__.pye +0 -0
  53. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/authentication.pye +0 -0
  54. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/cli.pye +0 -0
  55. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/context.pye +0 -0
  56. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/data_models.pye +0 -0
  57. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/data_validation.pye +0 -0
  58. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/file_organizer.pye +0 -0
  59. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/licensing.pye +0 -0
  60. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/log_handler.pye +0 -0
  61. {mscore-25.3.1 → mscore-25.3.2}/mscore/utilities/user_models.pye +0 -0
  62. {mscore-25.3.1 → mscore-25.3.2}/mscore.egg-info/SOURCES.txt +0 -0
  63. {mscore-25.3.1 → mscore-25.3.2}/mscore.egg-info/dependency_links.txt +0 -0
  64. {mscore-25.3.1 → mscore-25.3.2}/mscore.egg-info/entry_points.txt +0 -0
  65. {mscore-25.3.1 → mscore-25.3.2}/mscore.egg-info/requires.txt +0 -0
  66. {mscore-25.3.1 → mscore-25.3.2}/mscore.egg-info/top_level.txt +0 -0
  67. {mscore-25.3.1 → mscore-25.3.2}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mscore
3
- Version: 25.3.1
3
+ Version: 25.3.2
4
4
  Summary: MScore: Risk Scores Made Easy
5
5
  Home-page: https://github.com/elevendatacorp/mscore.git
6
6
  Author: RAM Development Team
@@ -123,8 +123,7 @@ model = MScore(
123
123
 
124
124
  scores = model.score_mscore()
125
125
 
126
- print(scores.risk_scores)
127
- print(scores.relative_factors)
126
+ risk_scores = scores.risk_scores
128
127
  ```
129
128
  The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
130
129
  - <span style="font-family:courier-new">scores.risk_scores</span>
@@ -132,6 +131,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
132
131
 
133
132
  From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
134
133
 
134
+ ### Features
135
+ #### relative_factors (attribute)
136
+ MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
137
+
138
+ To leverage this feature, you would do the following:
139
+ ```python
140
+ relative_factors = scores.relative_factors
141
+ ```
142
+ #### get_disease_scores (method)
143
+ For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
144
+
145
+ You can use the <code>get_disease_score</code> method as here:
146
+ ```python
147
+ disease_scores = model.get_disease_scores(scores)
148
+ ```
149
+
150
+ Or using the <code>join_scores</code> parameter:
151
+ ```python
152
+ disease_scores = model.get_disease_scores(scores, join_scores=True)
153
+ ```
154
+
135
155
  ### Supported Data
136
156
  The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
137
157
 
@@ -139,8 +159,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
139
159
 
140
160
  M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
141
161
 
142
- Operating Systems: Windows, macOS, Linux
143
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
162
+ - Operating Systems: Windows, macOS, Linux
163
+ - Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
144
164
 
145
165
  If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
146
166
 
@@ -98,8 +98,7 @@ model = MScore(
98
98
 
99
99
  scores = model.score_mscore()
100
100
 
101
- print(scores.risk_scores)
102
- print(scores.relative_factors)
101
+ risk_scores = scores.risk_scores
103
102
  ```
104
103
  The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
105
104
  - <span style="font-family:courier-new">scores.risk_scores</span>
@@ -107,6 +106,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
107
106
 
108
107
  From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
109
108
 
109
+ ### Features
110
+ #### relative_factors (attribute)
111
+ MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
112
+
113
+ To leverage this feature, you would do the following:
114
+ ```python
115
+ relative_factors = scores.relative_factors
116
+ ```
117
+ #### get_disease_scores (method)
118
+ For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
119
+
120
+ You can use the <code>get_disease_score</code> method as here:
121
+ ```python
122
+ disease_scores = model.get_disease_scores(scores)
123
+ ```
124
+
125
+ Or using the <code>join_scores</code> parameter:
126
+ ```python
127
+ disease_scores = model.get_disease_scores(scores, join_scores=True)
128
+ ```
129
+
110
130
  ### Supported Data
111
131
  The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
112
132
 
@@ -114,8 +134,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
114
134
 
115
135
  M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
116
136
 
117
- Operating Systems: Windows, macOS, Linux
118
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
137
+ - Operating Systems: Windows, macOS, Linux
138
+ - Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
119
139
 
120
140
  If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
121
141
 
@@ -8,7 +8,7 @@ f^K9E%rAIgb`1~P6SebA
8
8
  ?EsgI=d&bZI6;L|5MvhI
9
9
  0j=ES&;x+;&%JCepm!Tf
10
10
  DIAv;pvFo2aL)H&7B;q}
11
- ^Jap~cf5k<;fPEz9U<))
11
+ ^Jap~cfW$?;fPEz9U<))
12
12
  xzH|Ol_YNteO{TTau!4K
13
13
  n|dgn8xRAB0r38HO6o^9
14
14
  Q^8=FsiiX{7suX;fkaKb
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mscore
3
- Version: 25.3.1
3
+ Version: 25.3.2
4
4
  Summary: MScore: Risk Scores Made Easy
5
5
  Home-page: https://github.com/elevendatacorp/mscore.git
6
6
  Author: RAM Development Team
@@ -123,8 +123,7 @@ model = MScore(
123
123
 
124
124
  scores = model.score_mscore()
125
125
 
126
- print(scores.risk_scores)
127
- print(scores.relative_factors)
126
+ risk_scores = scores.risk_scores
128
127
  ```
129
128
  The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
130
129
  - <span style="font-family:courier-new">scores.risk_scores</span>
@@ -132,6 +131,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
132
131
 
133
132
  From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
134
133
 
134
+ ### Features
135
+ #### relative_factors (attribute)
136
+ MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
137
+
138
+ To leverage this feature, you would do the following:
139
+ ```python
140
+ relative_factors = scores.relative_factors
141
+ ```
142
+ #### get_disease_scores (method)
143
+ For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
144
+
145
+ You can use the <code>get_disease_score</code> method as here:
146
+ ```python
147
+ disease_scores = model.get_disease_scores(scores)
148
+ ```
149
+
150
+ Or using the <code>join_scores</code> parameter:
151
+ ```python
152
+ disease_scores = model.get_disease_scores(scores, join_scores=True)
153
+ ```
154
+
135
155
  ### Supported Data
136
156
  The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
137
157
 
@@ -139,8 +159,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
139
159
 
140
160
  M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
141
161
 
142
- Operating Systems: Windows, macOS, Linux
143
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
162
+ - Operating Systems: Windows, macOS, Linux
163
+ - Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
144
164
 
145
165
  If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
146
166
 
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "mscore"
7
- version = "25.3.1"
7
+ version = "25.3.2"
8
8
  dependencies = [
9
9
  "pandas",
10
10
  "pyarrow",
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes