mscore 25.3.0__tar.gz → 25.3.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mscore-25.3.0 → mscore-25.3.2}/PKG-INFO +25 -6
- {mscore-25.3.0 → mscore-25.3.2}/README.md +24 -5
- {mscore-25.3.0 → mscore-25.3.2}/mscore/__init__.pye +1 -1
- {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/PKG-INFO +25 -6
- {mscore-25.3.0 → mscore-25.3.2}/pyproject.toml +1 -1
- {mscore-25.3.0 → mscore-25.3.2}/mscore/__main__.py +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/activate.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/__init__.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/hcc_descriptors.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/hierarchies.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/variable_dict.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/demography_builder.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/demography_vars_applicator.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/file_handler.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/hcc_handler.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/ram_models.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2221CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2222CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2223CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2224CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2225CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2421CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2422CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2423CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2424CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2425CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2824CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2825CW.TXT +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V22.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V222179O1.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V24.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V242186P1.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V22.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V222279O1.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V24.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V242286P1.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V22.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V24.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V22.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V24.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V28.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V22.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V24.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V28.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/application_tables/application_format_fact.parquet +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/application_tables/application_model_coefficient.parquet +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/application_tables/application_model_dimension.parquet +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V222379O1_format.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V242386P1_format.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2024_CMS-HCC_V28_format.csv +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/scoring_handler.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/__init__.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/authentication.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/cli.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/context.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/data_models.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/data_validation.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/file_organizer.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/licensing.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/log_handler.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/user_models.pye +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/SOURCES.txt +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/dependency_links.txt +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/entry_points.txt +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/requires.txt +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/top_level.txt +0 -0
- {mscore-25.3.0 → mscore-25.3.2}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mscore
|
|
3
|
-
Version: 25.3.
|
|
3
|
+
Version: 25.3.2
|
|
4
4
|
Summary: MScore: Risk Scores Made Easy
|
|
5
5
|
Home-page: https://github.com/elevendatacorp/mscore.git
|
|
6
6
|
Author: RAM Development Team
|
|
@@ -92,7 +92,6 @@ The <code>mscore</code> class requires 7 arguments in order to run with 2 option
|
|
|
92
92
|
* <code>columns</code>
|
|
93
93
|
|
|
94
94
|
### Optional
|
|
95
|
-
* <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
|
|
96
95
|
* <code>dev</code> (boolean) - Runs the application in 'Development' mode
|
|
97
96
|
|
|
98
97
|
**_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
|
|
@@ -124,8 +123,7 @@ model = MScore(
|
|
|
124
123
|
|
|
125
124
|
scores = model.score_mscore()
|
|
126
125
|
|
|
127
|
-
|
|
128
|
-
print(scores.relative_factors)
|
|
126
|
+
risk_scores = scores.risk_scores
|
|
129
127
|
```
|
|
130
128
|
The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
|
|
131
129
|
- <span style="font-family:courier-new">scores.risk_scores</span>
|
|
@@ -133,6 +131,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
|
|
|
133
131
|
|
|
134
132
|
From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
|
|
135
133
|
|
|
134
|
+
### Features
|
|
135
|
+
#### relative_factors (attribute)
|
|
136
|
+
MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
|
|
137
|
+
|
|
138
|
+
To leverage this feature, you would do the following:
|
|
139
|
+
```python
|
|
140
|
+
relative_factors = scores.relative_factors
|
|
141
|
+
```
|
|
142
|
+
#### get_disease_scores (method)
|
|
143
|
+
For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
|
|
144
|
+
|
|
145
|
+
You can use the <code>get_disease_score</code> method as here:
|
|
146
|
+
```python
|
|
147
|
+
disease_scores = model.get_disease_scores(scores)
|
|
148
|
+
```
|
|
149
|
+
|
|
150
|
+
Or using the <code>join_scores</code> parameter:
|
|
151
|
+
```python
|
|
152
|
+
disease_scores = model.get_disease_scores(scores, join_scores=True)
|
|
153
|
+
```
|
|
154
|
+
|
|
136
155
|
### Supported Data
|
|
137
156
|
The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
|
|
138
157
|
|
|
@@ -140,8 +159,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
|
|
|
140
159
|
|
|
141
160
|
M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
|
|
142
161
|
|
|
143
|
-
|
|
144
|
-
|
|
162
|
+
- Operating Systems: Windows, macOS, Linux
|
|
163
|
+
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
|
|
145
164
|
|
|
146
165
|
If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
|
|
147
166
|
|
|
@@ -67,7 +67,6 @@ The <code>mscore</code> class requires 7 arguments in order to run with 2 option
|
|
|
67
67
|
* <code>columns</code>
|
|
68
68
|
|
|
69
69
|
### Optional
|
|
70
|
-
* <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
|
|
71
70
|
* <code>dev</code> (boolean) - Runs the application in 'Development' mode
|
|
72
71
|
|
|
73
72
|
**_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
|
|
@@ -99,8 +98,7 @@ model = MScore(
|
|
|
99
98
|
|
|
100
99
|
scores = model.score_mscore()
|
|
101
100
|
|
|
102
|
-
|
|
103
|
-
print(scores.relative_factors)
|
|
101
|
+
risk_scores = scores.risk_scores
|
|
104
102
|
```
|
|
105
103
|
The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
|
|
106
104
|
- <span style="font-family:courier-new">scores.risk_scores</span>
|
|
@@ -108,6 +106,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
|
|
|
108
106
|
|
|
109
107
|
From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
|
|
110
108
|
|
|
109
|
+
### Features
|
|
110
|
+
#### relative_factors (attribute)
|
|
111
|
+
MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
|
|
112
|
+
|
|
113
|
+
To leverage this feature, you would do the following:
|
|
114
|
+
```python
|
|
115
|
+
relative_factors = scores.relative_factors
|
|
116
|
+
```
|
|
117
|
+
#### get_disease_scores (method)
|
|
118
|
+
For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
|
|
119
|
+
|
|
120
|
+
You can use the <code>get_disease_score</code> method as here:
|
|
121
|
+
```python
|
|
122
|
+
disease_scores = model.get_disease_scores(scores)
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
Or using the <code>join_scores</code> parameter:
|
|
126
|
+
```python
|
|
127
|
+
disease_scores = model.get_disease_scores(scores, join_scores=True)
|
|
128
|
+
```
|
|
129
|
+
|
|
111
130
|
### Supported Data
|
|
112
131
|
The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
|
|
113
132
|
|
|
@@ -115,8 +134,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
|
|
|
115
134
|
|
|
116
135
|
M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
|
|
117
136
|
|
|
118
|
-
|
|
119
|
-
|
|
137
|
+
- Operating Systems: Windows, macOS, Linux
|
|
138
|
+
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
|
|
120
139
|
|
|
121
140
|
If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
|
|
122
141
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mscore
|
|
3
|
-
Version: 25.3.
|
|
3
|
+
Version: 25.3.2
|
|
4
4
|
Summary: MScore: Risk Scores Made Easy
|
|
5
5
|
Home-page: https://github.com/elevendatacorp/mscore.git
|
|
6
6
|
Author: RAM Development Team
|
|
@@ -92,7 +92,6 @@ The <code>mscore</code> class requires 7 arguments in order to run with 2 option
|
|
|
92
92
|
* <code>columns</code>
|
|
93
93
|
|
|
94
94
|
### Optional
|
|
95
|
-
* <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
|
|
96
95
|
* <code>dev</code> (boolean) - Runs the application in 'Development' mode
|
|
97
96
|
|
|
98
97
|
**_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
|
|
@@ -124,8 +123,7 @@ model = MScore(
|
|
|
124
123
|
|
|
125
124
|
scores = model.score_mscore()
|
|
126
125
|
|
|
127
|
-
|
|
128
|
-
print(scores.relative_factors)
|
|
126
|
+
risk_scores = scores.risk_scores
|
|
129
127
|
```
|
|
130
128
|
The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
|
|
131
129
|
- <span style="font-family:courier-new">scores.risk_scores</span>
|
|
@@ -133,6 +131,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
|
|
|
133
131
|
|
|
134
132
|
From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
|
|
135
133
|
|
|
134
|
+
### Features
|
|
135
|
+
#### relative_factors (attribute)
|
|
136
|
+
MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
|
|
137
|
+
|
|
138
|
+
To leverage this feature, you would do the following:
|
|
139
|
+
```python
|
|
140
|
+
relative_factors = scores.relative_factors
|
|
141
|
+
```
|
|
142
|
+
#### get_disease_scores (method)
|
|
143
|
+
For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
|
|
144
|
+
|
|
145
|
+
You can use the <code>get_disease_score</code> method as here:
|
|
146
|
+
```python
|
|
147
|
+
disease_scores = model.get_disease_scores(scores)
|
|
148
|
+
```
|
|
149
|
+
|
|
150
|
+
Or using the <code>join_scores</code> parameter:
|
|
151
|
+
```python
|
|
152
|
+
disease_scores = model.get_disease_scores(scores, join_scores=True)
|
|
153
|
+
```
|
|
154
|
+
|
|
136
155
|
### Supported Data
|
|
137
156
|
The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
|
|
138
157
|
|
|
@@ -140,8 +159,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
|
|
|
140
159
|
|
|
141
160
|
M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
|
|
142
161
|
|
|
143
|
-
|
|
144
|
-
|
|
162
|
+
- Operating Systems: Windows, macOS, Linux
|
|
163
|
+
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
|
|
145
164
|
|
|
146
165
|
If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
|
|
147
166
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V22.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V222179O1.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V24.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V242186P1.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V22.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V222279O1.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V24.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V242286P1.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V22.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V24.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V22.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V24.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V28.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V22.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V24.csv
RENAMED
|
File without changes
|
{mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V28.csv
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|