mscore 25.3.0__tar.gz → 25.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. {mscore-25.3.0 → mscore-25.3.2}/PKG-INFO +25 -6
  2. {mscore-25.3.0 → mscore-25.3.2}/README.md +24 -5
  3. {mscore-25.3.0 → mscore-25.3.2}/mscore/__init__.pye +1 -1
  4. {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/PKG-INFO +25 -6
  5. {mscore-25.3.0 → mscore-25.3.2}/pyproject.toml +1 -1
  6. {mscore-25.3.0 → mscore-25.3.2}/mscore/__main__.py +0 -0
  7. {mscore-25.3.0 → mscore-25.3.2}/mscore/activate.pye +0 -0
  8. {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/__init__.pye +0 -0
  9. {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/hcc_descriptors.pye +0 -0
  10. {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/hierarchies.pye +0 -0
  11. {mscore-25.3.0 → mscore-25.3.2}/mscore/data_variables/variable_dict.pye +0 -0
  12. {mscore-25.3.0 → mscore-25.3.2}/mscore/demography_builder.pye +0 -0
  13. {mscore-25.3.0 → mscore-25.3.2}/mscore/demography_vars_applicator.pye +0 -0
  14. {mscore-25.3.0 → mscore-25.3.2}/mscore/file_handler.pye +0 -0
  15. {mscore-25.3.0 → mscore-25.3.2}/mscore/hcc_handler.pye +0 -0
  16. {mscore-25.3.0 → mscore-25.3.2}/mscore/ram_models.pye +0 -0
  17. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2221CW.TXT +0 -0
  18. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2222CW.TXT +0 -0
  19. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2223CW.TXT +0 -0
  20. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2224CW.TXT +0 -0
  21. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2225CW.TXT +0 -0
  22. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2421CW.TXT +0 -0
  23. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2422CW.TXT +0 -0
  24. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2423CW.TXT +0 -0
  25. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2424CW.TXT +0 -0
  26. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2425CW.TXT +0 -0
  27. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2824CW.TXT +0 -0
  28. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Crosswalks/F2825CW.TXT +0 -0
  29. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V22.csv +0 -0
  30. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V222179O1.csv +0 -0
  31. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V24.csv +0 -0
  32. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V242186P1.csv +0 -0
  33. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V22.csv +0 -0
  34. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V222279O1.csv +0 -0
  35. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V24.csv +0 -0
  36. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V242286P1.csv +0 -0
  37. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V22.csv +0 -0
  38. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V24.csv +0 -0
  39. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V22.csv +0 -0
  40. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V24.csv +0 -0
  41. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V28.csv +0 -0
  42. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V22.csv +0 -0
  43. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V24.csv +0 -0
  44. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V28.csv +0 -0
  45. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/application_tables/application_format_fact.parquet +0 -0
  46. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/application_tables/application_model_coefficient.parquet +0 -0
  47. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/application_tables/application_model_dimension.parquet +0 -0
  48. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V222379O1_format.csv +0 -0
  49. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V242386P1_format.csv +0 -0
  50. {mscore-25.3.0 → mscore-25.3.2}/mscore/reference_data/model_formats_all_columns/2024_CMS-HCC_V28_format.csv +0 -0
  51. {mscore-25.3.0 → mscore-25.3.2}/mscore/scoring_handler.pye +0 -0
  52. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/__init__.pye +0 -0
  53. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/authentication.pye +0 -0
  54. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/cli.pye +0 -0
  55. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/context.pye +0 -0
  56. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/data_models.pye +0 -0
  57. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/data_validation.pye +0 -0
  58. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/file_organizer.pye +0 -0
  59. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/licensing.pye +0 -0
  60. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/log_handler.pye +0 -0
  61. {mscore-25.3.0 → mscore-25.3.2}/mscore/utilities/user_models.pye +0 -0
  62. {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/SOURCES.txt +0 -0
  63. {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/dependency_links.txt +0 -0
  64. {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/entry_points.txt +0 -0
  65. {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/requires.txt +0 -0
  66. {mscore-25.3.0 → mscore-25.3.2}/mscore.egg-info/top_level.txt +0 -0
  67. {mscore-25.3.0 → mscore-25.3.2}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mscore
3
- Version: 25.3.0
3
+ Version: 25.3.2
4
4
  Summary: MScore: Risk Scores Made Easy
5
5
  Home-page: https://github.com/elevendatacorp/mscore.git
6
6
  Author: RAM Development Team
@@ -92,7 +92,6 @@ The <code>mscore</code> class requires 7 arguments in order to run with 2 option
92
92
  * <code>columns</code>
93
93
 
94
94
  ### Optional
95
- * <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
96
95
  * <code>dev</code> (boolean) - Runs the application in 'Development' mode
97
96
 
98
97
  **_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
@@ -124,8 +123,7 @@ model = MScore(
124
123
 
125
124
  scores = model.score_mscore()
126
125
 
127
- print(scores.risk_scores)
128
- print(scores.relative_factors)
126
+ risk_scores = scores.risk_scores
129
127
  ```
130
128
  The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
131
129
  - <span style="font-family:courier-new">scores.risk_scores</span>
@@ -133,6 +131,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
133
131
 
134
132
  From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
135
133
 
134
+ ### Features
135
+ #### relative_factors (attribute)
136
+ MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
137
+
138
+ To leverage this feature, you would do the following:
139
+ ```python
140
+ relative_factors = scores.relative_factors
141
+ ```
142
+ #### get_disease_scores (method)
143
+ For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
144
+
145
+ You can use the <code>get_disease_score</code> method as here:
146
+ ```python
147
+ disease_scores = model.get_disease_scores(scores)
148
+ ```
149
+
150
+ Or using the <code>join_scores</code> parameter:
151
+ ```python
152
+ disease_scores = model.get_disease_scores(scores, join_scores=True)
153
+ ```
154
+
136
155
  ### Supported Data
137
156
  The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
138
157
 
@@ -140,8 +159,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
140
159
 
141
160
  M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
142
161
 
143
- Operating Systems: Windows, macOS, Linux
144
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
162
+ - Operating Systems: Windows, macOS, Linux
163
+ - Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
145
164
 
146
165
  If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
147
166
 
@@ -67,7 +67,6 @@ The <code>mscore</code> class requires 7 arguments in order to run with 2 option
67
67
  * <code>columns</code>
68
68
 
69
69
  ### Optional
70
- * <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
71
70
  * <code>dev</code> (boolean) - Runs the application in 'Development' mode
72
71
 
73
72
  **_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
@@ -99,8 +98,7 @@ model = MScore(
99
98
 
100
99
  scores = model.score_mscore()
101
100
 
102
- print(scores.risk_scores)
103
- print(scores.relative_factors)
101
+ risk_scores = scores.risk_scores
104
102
  ```
105
103
  The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
106
104
  - <span style="font-family:courier-new">scores.risk_scores</span>
@@ -108,6 +106,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
108
106
 
109
107
  From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
110
108
 
109
+ ### Features
110
+ #### relative_factors (attribute)
111
+ MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
112
+
113
+ To leverage this feature, you would do the following:
114
+ ```python
115
+ relative_factors = scores.relative_factors
116
+ ```
117
+ #### get_disease_scores (method)
118
+ For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
119
+
120
+ You can use the <code>get_disease_score</code> method as here:
121
+ ```python
122
+ disease_scores = model.get_disease_scores(scores)
123
+ ```
124
+
125
+ Or using the <code>join_scores</code> parameter:
126
+ ```python
127
+ disease_scores = model.get_disease_scores(scores, join_scores=True)
128
+ ```
129
+
111
130
  ### Supported Data
112
131
  The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
113
132
 
@@ -115,8 +134,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
115
134
 
116
135
  M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
117
136
 
118
- Operating Systems: Windows, macOS, Linux
119
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
137
+ - Operating Systems: Windows, macOS, Linux
138
+ - Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
120
139
 
121
140
  If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
122
141
 
@@ -8,7 +8,7 @@ f^K9E%rAIgb`1~P6SebA
8
8
  ?EsgI=d&bZI6;L|5MvhI
9
9
  0j=ES&;x+;&%JCepm!Tf
10
10
  DIAv;pvFo2aL)H&7B;q}
11
- ^Jap~cfEq=;fPEz9U<))
11
+ ^Jap~cfW$?;fPEz9U<))
12
12
  xzH|Ol_YNteO{TTau!4K
13
13
  n|dgn8xRAB0r38HO6o^9
14
14
  Q^8=FsiiX{7suX;fkaKb
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mscore
3
- Version: 25.3.0
3
+ Version: 25.3.2
4
4
  Summary: MScore: Risk Scores Made Easy
5
5
  Home-page: https://github.com/elevendatacorp/mscore.git
6
6
  Author: RAM Development Team
@@ -92,7 +92,6 @@ The <code>mscore</code> class requires 7 arguments in order to run with 2 option
92
92
  * <code>columns</code>
93
93
 
94
94
  ### Optional
95
- * <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
96
95
  * <code>dev</code> (boolean) - Runs the application in 'Development' mode
97
96
 
98
97
  **_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
@@ -124,8 +123,7 @@ model = MScore(
124
123
 
125
124
  scores = model.score_mscore()
126
125
 
127
- print(scores.risk_scores)
128
- print(scores.relative_factors)
126
+ risk_scores = scores.risk_scores
129
127
  ```
130
128
  The resulting 'scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
131
129
  - <span style="font-family:courier-new">scores.risk_scores</span>
@@ -133,6 +131,27 @@ The resulting 'scores' output is a data model object of pandas.DataFrames. You c
133
131
 
134
132
  From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
135
133
 
134
+ ### Features
135
+ #### relative_factors (attribute)
136
+ MScore offers the ability to view the relative factors for each person run through M<span style="font-size:.8em;">SCORE<sup>®</sup></span>. To access this data, you simply access the <code>relative_factors</code> attribute of the <code>mscore</code> output. The relative factors are the individual contributions (from the variables in the model) to the risk score. M<span style="font-size:.8em;">SCORE's<sup>®</sup></span> <code>relative_factors</code> output contains these values with 1 row per person scored, and each relative factor in the output as the columns.
137
+
138
+ To leverage this feature, you would do the following:
139
+ ```python
140
+ relative_factors = scores.relative_factors
141
+ ```
142
+ #### get_disease_scores (method)
143
+ For users wanting to compute the disease contribution to a person's risk score, you can do this in MScore by using the <code>get_disease_score</code> method of <code>mscore</code>. After instantiating your <code>mscore</code> object, you can use <code>get_disease_score</code> and pass the <code>mscore</code> output as a parameter. This will create a new dataframe containing only the portion of the risk score that comes from disease factors. Alternatively, if you would like this data appended to your MScore risk score output, you can use <code>join_scores</code> parameter to do this. NOTE: Disease interactions with DISABLED variables are not included in the disease score.
144
+
145
+ You can use the <code>get_disease_score</code> method as here:
146
+ ```python
147
+ disease_scores = model.get_disease_scores(scores)
148
+ ```
149
+
150
+ Or using the <code>join_scores</code> parameter:
151
+ ```python
152
+ disease_scores = model.get_disease_scores(scores, join_scores=True)
153
+ ```
154
+
136
155
  ### Supported Data
137
156
  The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
138
157
 
@@ -140,8 +159,8 @@ The <code>mscore</code> class attributes, <code>person_data</code> and <code>dia
140
159
 
141
160
  M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
142
161
 
143
- Operating Systems: Windows, macOS, Linux
144
- Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
162
+ - Operating Systems: Windows, macOS, Linux
163
+ - Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
145
164
 
146
165
  If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
147
166
 
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "mscore"
7
- version = "25.3.0"
7
+ version = "25.3.2"
8
8
  dependencies = [
9
9
  "pandas",
10
10
  "pyarrow",
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes