mscore 25.0.0__tar.gz → 25.0.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. {mscore-25.0.0 → mscore-25.0.4}/PKG-INFO +151 -158
  2. {mscore-25.0.0 → mscore-25.0.4}/mscore/__init__.pye +59 -60
  3. {mscore-25.0.0 → mscore-25.0.4}/mscore/__main__.py +5 -5
  4. {mscore-25.0.0 → mscore-25.0.4}/mscore/activate.pye +111 -111
  5. mscore-25.0.4/mscore/data_variables/__init__.pye +6 -0
  6. {mscore-25.0.0 → mscore-25.0.4}/mscore/data_variables/hcc_descriptors.pye +995 -996
  7. {mscore-25.0.0 → mscore-25.0.4}/mscore/data_variables/hierarchies.pye +408 -408
  8. {mscore-25.0.0 → mscore-25.0.4}/mscore/data_variables/variable_dict.pye +1065 -1065
  9. {mscore-25.0.0 → mscore-25.0.4}/mscore/demography_builder.pye +798 -799
  10. {mscore-25.0.0 → mscore-25.0.4}/mscore/demography_vars_applicator.pye +381 -382
  11. {mscore-25.0.0 → mscore-25.0.4}/mscore/file_handler.pye +720 -720
  12. {mscore-25.0.0 → mscore-25.0.4}/mscore/hcc_handler.pye +431 -432
  13. {mscore-25.0.0 → mscore-25.0.4}/mscore/ram_models.pye +472 -473
  14. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2221CW.TXT +9697 -9697
  15. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2222CW.TXT +9719 -9719
  16. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2223CW.TXT +0 -0
  17. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2224CW.TXT +9905 -9905
  18. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2225CW.TXT +9905 -9905
  19. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2421CW.TXT +9856 -9856
  20. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2422CW.TXT +9875 -9875
  21. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2423CW.TXT +0 -0
  22. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2424CW.TXT +10137 -10137
  23. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2425CW.TXT +10137 -10137
  24. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2825CW.TXT +8090 -8090
  25. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V22.csv +2 -2
  26. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V222179O1.csv +2 -2
  27. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V24.csv +2 -2
  28. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2021_CMS-HCC_V242186P1.csv +2 -2
  29. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V22.csv +2 -2
  30. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V222279O1.csv +2 -2
  31. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V24.csv +2 -2
  32. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2022_CMS-HCC_V242286P1.csv +2 -2
  33. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V22.csv +2 -2
  34. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2023_CMS-HCC_V24.csv +2 -2
  35. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V22.csv +2 -2
  36. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V24.csv +2 -2
  37. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2024_CMS-HCC_V28.csv +2 -2
  38. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V22.csv +2 -2
  39. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V24.csv +2 -2
  40. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Model_Coefficients/2025_CMS-HCC_V28.csv +2 -2
  41. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V222379O1_format.csv +10368 -10368
  42. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/model_formats_all_columns/2023_CMS-HCC_V242386P1_format.csv +10649 -10649
  43. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/model_formats_all_columns/2024_CMS-HCC_V28_format.csv +16759 -16759
  44. {mscore-25.0.0 → mscore-25.0.4}/mscore/scoring_handler.pye +768 -769
  45. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/__init__.pye +43 -44
  46. mscore-25.0.4/mscore/utilities/authentication.pye +521 -0
  47. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/cli.pye +322 -323
  48. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/context.pye +200 -200
  49. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/data_models.pye +97 -97
  50. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/data_validation.pye +536 -537
  51. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/file_organizer.pye +93 -94
  52. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/licensing.pye +403 -403
  53. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/log_handler.pye +107 -108
  54. {mscore-25.0.0 → mscore-25.0.4}/mscore/utilities/user_models.pye +99 -100
  55. {mscore-25.0.0 → mscore-25.0.4}/mscore.egg-info/PKG-INFO +151 -158
  56. {mscore-25.0.0 → mscore-25.0.4}/mscore.egg-info/SOURCES.txt +0 -1
  57. {mscore-25.0.0 → mscore-25.0.4}/pyproject.toml +55 -55
  58. {mscore-25.0.0 → mscore-25.0.4}/setup.cfg +4 -4
  59. mscore-25.0.0/README.md +0 -135
  60. mscore-25.0.0/mscore/data_variables/__init__.pye +0 -7
  61. mscore-25.0.0/mscore/utilities/authentication.pye +0 -522
  62. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/Crosswalks/F2824CW.TXT +0 -0
  63. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/application_tables/application_format_fact.parquet +0 -0
  64. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/application_tables/application_model_coefficient.parquet +0 -0
  65. {mscore-25.0.0 → mscore-25.0.4}/mscore/reference_data/application_tables/application_model_dimension.parquet +0 -0
  66. {mscore-25.0.0 → mscore-25.0.4}/mscore.egg-info/dependency_links.txt +0 -0
  67. {mscore-25.0.0 → mscore-25.0.4}/mscore.egg-info/entry_points.txt +0 -0
  68. {mscore-25.0.0 → mscore-25.0.4}/mscore.egg-info/requires.txt +0 -0
  69. {mscore-25.0.0 → mscore-25.0.4}/mscore.egg-info/top_level.txt +0 -0
@@ -1,158 +1,151 @@
1
- Metadata-Version: 2.1
2
- Name: mscore
3
- Version: 25.0.0
4
- Summary: MScore: Risk Scores Made Easy
5
- Home-page: https://github.com/elevendatacorp/mscore.git
6
- Author: RAM Development Team
7
- Author-email: RAM Development Team <dev@riskadjustmentmodel.com>
8
- Project-URL: Homepage, https://riskadjustmentmodel.com/mscore-product
9
- Project-URL: Bug Tracker, https://github.com/elevendatacorp/mscore/issues
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Operating System :: OS Independent
12
- Requires-Python: >=3.10
13
- Description-Content-Type: text/markdown
14
- Requires-Dist: pandas
15
- Requires-Dist: pyarrow
16
- Requires-Dist: numpy
17
- Requires-Dist: requests
18
- Requires-Dist: getmac
19
- Requires-Dist: cython
20
- Requires-Dist: pydantic
21
- Requires-Dist: cryptography
22
- Requires-Dist: sourcedefender
23
-
24
- <p align="center"><a href="https://www.riskadjustmentmodel.com/" target="_blank">
25
- <img src="https://ram-site-assets-pub.s3.amazonaws.com/images/mscore_logo_white_space.png">
26
- </a></p>
27
-
28
- ---
29
-
30
- M<span style="font-size:.8em;">SCORE</span>™ is a python package designed to streamline the CMS-HCC model risk score calculation process for health plans and providers participating in Medicare Advantage and value-based care. It provides a SAS®-free alternative to produce HCCs and risk scores. It streamlines your data processing for enhanced accessibility and allows you to keep your data secure in-house, so you can focus on execution of your risk adjustment strategy.
31
-
32
- ## Features
33
- - **Implement Anywhere**: M<span style="font-size:.8em;">SCORE</span>™ unlocks multiple integration opportunities including real-time scoring, embedding in EHR or enterprise data warehouse, incorporating into cloud applications, and traditional batch scoring.
34
- - **SAS<sup><span style="font-size:.8em;">&reg;</span></sup>-Free**: Create HCC and risk scores without SAS<sup><span style="font-size:.8em;">&reg;</span></sup> software, reduce software license costs and the headache of recoding and maintaining the software in another programming language.
35
- - **Enhanced Output**: M<span style="font-size:.8em;">SCORE</span>™ provides the numeric relative factor value for each HCC assigned to a person allowing for a deeper understanding of how each factor contributes to an individual's overall risk score.
36
- - **Reliable**: Validated on over 1 million plus enrollees. M<span style="font-size:.8em;">SCORE</span>™ is rigorously tested and updated with each HCC model release.
37
- - **CMS-HCC Model Support**: Supports HCC models V22, V24, and V28, covering payment years 2021-2024 with upgrades for each release from CMS (Initial, Mid-Year, Final).
38
- - **Easy to Set Up & Maintain**: Easily installed and upgraded using pip, Python's standard package manager.
39
- - **Platform Compatibility**: Compatible with Windows, Mac, and Linux operating systems.
40
- - **Optimized Performance**: Efficient processing with fast runtimes, ensuring quick and accurate risk score calculations.
41
- - **Improved Data Security**: Securely process personal health information within your organization's IT infrastructure.
42
-
43
-
44
- ## Installation
45
-
46
- pip install mscore
47
-
48
- ## Registration
49
-
50
- Registration is required to use the <code>mscore</code> package. Please visit https://riskadjustmentmodel.com/registration to create user account and obtain a license key.
51
-
52
- ## Trial License
53
-
54
- After you've installed <code>mscore</code>, run the following command to activate your free 90-day trial. An internet connection is required to activate & run the package.
55
-
56
- mscore -a <license key>
57
-
58
- ## Subscribe
59
-
60
- To use M<span style="font-size:.8em;">SCORE</span>™ for internal business operations beyond the 90-day trial period, a pay-as-you-go subscription and payment method is needed. Please set up your payment method in our [customer portal](https://riskadjustmentmodel.com/account/login/) on the billing tab. To license M<span style="font-size:.8em;">SCORE</span>™ for commercial purposes other than internal business operations, please [contact us](https://riskadjustmentmodel.com/contact-us) directly for alternative licensing.
61
-
62
- For more information on pricing, please see our product page. If you do not see a price you like, then please email us so we can discuss your requirements.
63
-
64
- Academic users are eligible for a free license of our software. Please [contact us](https://riskadjustmentmodel.com/contact-us) to obtain your complimentary academic license.
65
-
66
-
67
- ## Basic Use
68
-
69
- Before you can run your scores, you will need to generate an authorization token object.
70
-
71
- ```python
72
- import sourcedefender #This package is required at the top
73
- from mscore import AuthorizeLicense, MScore
74
-
75
- auth = AuthorizeLicense(staging_key).validate()
76
- ```
77
- > **<span style="color:orange">_NOTE:_</span>** You must import sourcedefender at the top of every package that imports MScore.
78
-
79
- The <code>mscore</code> class requires 7 arguments in order to run with 2 optional arguments.
80
-
81
- ### Required
82
- * <code>authorizer</code> - The authorization token obtained when <span style="font-family:courier-new">AuthroizeLicense</span> is ran
83
- * <code>year</code>
84
- * <code>version</code>
85
- * <code>model</code>
86
- * <code>person_data</code> (Pandas DataFrame, csv, or parquet file)
87
- * <code>diag_data</code> (Pandas DataFrame, csv, or parquet file)
88
- * <code>columns</code>
89
-
90
- ### Optional
91
- * <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
92
- * <code>dev</code> (boolean) - Runs the application in 'Development' mode
93
-
94
- **_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
95
- If you don't have this data yet and want to test <code>mscore</code>, download our synthetic data files here:
96
- * [Person File](https://mph-static-site.s3.amazonaws.com/static/tutorial-files/person.csv)
97
- * [Diagnosis File](https://mph-static-site.s3.amazonaws.com/static/tutorial-files/diag.csv)
98
-
99
-
100
- ```python
101
- import sourcedefender
102
- import pandas as pd
103
- from mscore import AuthorizeLicense, MScore
104
-
105
- # Generate DataFrames if using our test files
106
- person_df = pd.read_csv('person.csv')
107
- diag_df = pd.read_csv('diag.csv')
108
-
109
- auth = AuthorizeLicense(staging_key).validate()
110
-
111
- model = MScore(
112
- authorizer = auth,
113
- year = '2024',
114
- version = 'V24',
115
- model = 'CMS-HCC',
116
- person_data = person_df,
117
- diag_data = diag_df,
118
- columns = 'all-fields',
119
- rf_output = True,
120
- )
121
-
122
- v24_2024_scores = model.score_mscore()
123
-
124
- print(v24_2024_scores.risk_scores)
125
- print(v24_2024_scores.relative_factors)
126
- ```
127
- The resulting 'v24_2024_scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
128
- - <span style="font-family:courier-new">v24_2024_scores.risk_scores</span>
129
- - <span style="font-family:courier-new">v24_2024_scores.relative_factors</span>
130
-
131
- From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
132
-
133
- ### Supported Data
134
- The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
135
-
136
- ### Supported Environments
137
-
138
- M<span style="font-size:.8em;">SCORE</span>™ is designed to be universally compatible, ensuring seamless integration across various platforms.
139
-
140
- • Operating Systems: Windows, macOS, Linux
141
- • Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
142
-
143
- If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
144
-
145
- ## User Resources
146
- For a more in-depth dive into all available model options, arguments, and reference documents, visit our [User Guides](https://riskadjustmentmodel.com/resources/user-guides).
147
-
148
- ## Support
149
-
150
- We are experts in Risk Adjustment and we're here to help. Whether it's general questions, billing, or integration support, please [contact us](https://riskadjustmentmodel.com/contact-us)📧. We are here to make risk scoring easy.
151
-
152
- ## Stay Connected
153
-
154
- Please [subscribe](https://riskadjustmentmodel.com/articles#userEmail) to our newsletter, to receive updates on new M<span style="font-size:.8em;">SCORE</span>™ features, model releases, tutorials, and to stay up-to-date on the latest news in risk adjustment.
155
-
156
- ## Legal
157
-
158
- To review the M<span style="font-size:.8em;">SCORE</span>™ license agreement, please visit [EULA](https://riskadjustmentmodel.com/legal/eula) webpage.
1
+ Metadata-Version: 2.1
2
+ Name: mscore
3
+ Version: 25.0.4
4
+ Summary: MScore: Risk Scores Made Easy
5
+ Home-page: https://github.com/elevendatacorp/mscore.git
6
+ Author: RAM Development Team
7
+ Author-email: RAM Development Team <dev@riskadjustmentmodel.com>
8
+ Project-URL: Homepage, https://riskadjustmentmodel.com/mscore-product
9
+ Project-URL: Bug Tracker, https://github.com/elevendatacorp/mscore/issues
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Operating System :: OS Independent
12
+ Requires-Python: >=3.10
13
+ Description-Content-Type: text/markdown
14
+
15
+ <p align="center">
16
+ <a href="https://www.riskadjustmentmodel.com/" target="_blank">
17
+ <img src="https://ram-site-assets-pub.s3.us-east-1.amazonaws.com/images/mscore_registered_logo_updated_subtitle.png">
18
+ </a>
19
+ </p>
20
+
21
+ ---
22
+
23
+ M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is a python package designed to streamline the CMS-HCC model risk score calculation process for health plans and providers participating in Medicare Advantage and value-based care. It provides a SAS®-free alternative to produce HCCs and risk scores. It streamlines your data processing for enhanced accessibility and allows you to keep your data secure in-house, so you can focus on execution of your risk adjustment strategy.
24
+
25
+ ## Features
26
+ - **Implement Anywhere**: M<span style="font-size:.8em;">SCORE<sup>®</sup></span> unlocks multiple integration opportunities including real-time scoring, embedding in EHR or enterprise data warehouse, incorporating into cloud applications, and traditional batch scoring.
27
+ - **SAS<sup><span style="font-size:.8em;">&reg;</span></sup>-Free**: Create HCC and risk scores without SAS<sup><span style="font-size:.8em;">&reg;</span></sup> software, reduce software license costs and the headache of recoding and maintaining the software in another programming language.
28
+ - **Enhanced Output**: M<span style="font-size:.8em;">SCORE<sup>®</sup></span> provides the numeric relative factor value for each HCC assigned to a person allowing for a deeper understanding of how each factor contributes to an individual's overall risk score.
29
+ - **Reliable**: Validated on over 1 million plus enrollees. M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is rigorously tested and updated with each HCC model release.
30
+ - **CMS-HCC Model Support**: Supports HCC models V22, V24, and V28, covering payment years 2021-2025 with upgrades for each release from CMS (Initial, Mid-Year, Final).
31
+ - **Easy to Set Up & Maintain**: Easily installed and upgraded using pip, Python's standard package manager.
32
+ - **Platform Compatibility**: Compatible with Windows, Mac, and Linux operating systems.
33
+ - **Optimized Performance**: Efficient processing with fast runtimes, ensuring quick and accurate risk score calculations.
34
+ - **Improved Data Security**: Securely process personal health information within your organization's IT infrastructure.
35
+
36
+
37
+ ## Installation
38
+
39
+ pip install mscore
40
+
41
+ ## Registration
42
+
43
+ Registration is required to use the <code>mscore</code> package. Please visit https://riskadjustmentmodel.com/registration to create user account and obtain a license key.
44
+
45
+ ## Trial License
46
+
47
+ After you've installed <code>mscore</code>, run the following command to activate your free 30-day trial. An internet connection is required to activate & run the package.
48
+
49
+ mscore -a <license key>
50
+
51
+ ## Subscribe
52
+
53
+ To use M<span style="font-size:.8em;">SCORE<sup>®</sup></span> for internal business operations beyond the 30-day trial period, a pay-as-you-go subscription and payment method is needed. Please set up your payment method in our [customer portal](https://riskadjustmentmodel.com/account/login/) on the billing tab. To license M<span style="font-size:.8em;">SCORE<sup>®</sup></span> for commercial purposes other than internal business operations, please [contact us](https://riskadjustmentmodel.com/contact-us) directly for alternative licensing.
54
+
55
+ For more information on pricing, please see our product page. If you do not see a price you like, then please email us so we can discuss your requirements.
56
+
57
+ Academic users are eligible for a free license of our software. Please [contact us](https://riskadjustmentmodel.com/contact-us) to obtain your complimentary academic license.
58
+
59
+
60
+ ## Basic Use
61
+
62
+ Before you can run your scores, you will need to generate an authorization token object.
63
+
64
+ ```python
65
+ import sourcedefender #This package is required at the top
66
+ from mscore import AuthorizeLicense, MScore
67
+
68
+ auth = AuthorizeLicense(staging_key).validate()
69
+ ```
70
+ > **<span style="color:orange">_NOTE:_</span>** You must import sourcedefender at the top of every package that imports MScore.
71
+
72
+ The <code>mscore</code> class requires 7 arguments in order to run with 2 optional arguments.
73
+
74
+ ### Required
75
+ * <code>authorizer</code> - The authorization token obtained when <span style="font-family:courier-new">AuthroizeLicense</span> is ran
76
+ * <code>year</code>
77
+ * <code>version</code>
78
+ * <code>model</code>
79
+ * <code>person_data</code> (Pandas DataFrame, csv, or parquet file)
80
+ * <code>diag_data</code> (Pandas DataFrame, csv, or parquet file)
81
+ * <code>columns</code>
82
+
83
+ ### Optional
84
+ * <code>rf-output</code> (boolean) - Generates a file of your scores Relative Factors
85
+ * <code>dev</code> (boolean) - Runs the application in 'Development' mode
86
+
87
+ **_NOTE:_** The example below assumes you already have a [Pandas](https://pandas.pydata.org/) DataFrame generated for your person and diagnosis datasets.
88
+ If you don't have this data yet and want to test <code>mscore</code>, download our synthetic data files here:
89
+ * [Person File](https://mph-static-site.s3.amazonaws.com/static/tutorial-files/person.csv)
90
+ * [Diagnosis File](https://mph-static-site.s3.amazonaws.com/static/tutorial-files/diag.csv)
91
+
92
+
93
+ ```python
94
+ import sourcedefender
95
+ import pandas as pd
96
+ from mscore import AuthorizeLicense, MScore
97
+
98
+ # Generate DataFrames if using our test files
99
+ person_df = pd.read_csv('person.csv')
100
+ diag_df = pd.read_csv('diag.csv')
101
+
102
+ auth = AuthorizeLicense(staging_key).validate()
103
+
104
+ model = MScore(
105
+ authorizer = auth,
106
+ year = '2024',
107
+ version = 'V24',
108
+ model = 'CMS-HCC',
109
+ person_data = person_df,
110
+ diag_data = diag_df,
111
+ columns = 'all-fields',
112
+ rf_output = True,
113
+ )
114
+
115
+ v24_2024_scores = model.score_mscore()
116
+
117
+ print(v24_2024_scores.risk_scores)
118
+ print(v24_2024_scores.relative_factors)
119
+ ```
120
+ The resulting 'v24_2024_scores' output is a data model object of pandas.DataFrames. You can access your risk scores or relative factors data sets by calling the respective model name from the grouped data model.
121
+ - <span style="font-family:courier-new">v24_2024_scores.risk_scores</span>
122
+ - <span style="font-family:courier-new">v24_2024_scores.relative_factors</span>
123
+
124
+ From here you can proceed to use the risk score or relative factor DataFrames for further downstream processing or utilize the [Pandas](https://pandas.pydata.org/docs/user_guide/index.html) built-in methods to save to a file type of your choosing.
125
+
126
+ ### Supported Data
127
+ The <code>mscore</code> class attributes, <code>person_data</code> and <code>diag_data</code>, will accept a Pandas.DataFrame object, CSV or Parquet filepath directly without the need to load your input data to DataFrame first. The resulting outputs will be a Pandas DataFrame object.
128
+
129
+ ### Supported Environments
130
+
131
+ M<span style="font-size:.8em;">SCORE<sup>®</sup></span> is designed to be universally compatible, ensuring seamless integration across various platforms.
132
+
133
+ • Operating Systems: Windows, macOS, Linux
134
+ • Python Versions: 3.10 or greater (both 32-bit and 64-bit architectures)
135
+
136
+ If your required environment is not listed, please contact us as support@riskadjustmentmodel.com for an alternate solution.
137
+
138
+ ## User Resources
139
+ For a more in-depth dive into all available model options, arguments, and reference documents, visit our [User Guides](https://riskadjustmentmodel.com/resources/user-guides).
140
+
141
+ ## Support
142
+
143
+ We are experts in Risk Adjustment and we're here to help. Whether it's general questions, billing, or integration support, please [contact us](https://riskadjustmentmodel.com/contact-us)📧. We are here to make risk scoring easy.
144
+
145
+ ## Stay Connected
146
+
147
+ Please [subscribe](https://riskadjustmentmodel.com/articles#userEmail) to our newsletter, to receive updates on new M<span style="font-size:.8em;">SCORE<sup>®</sup></span> features, model releases, tutorials, and to stay up-to-date on the latest news in risk adjustment.
148
+
149
+ ## Legal
150
+
151
+ To review the M<span style="font-size:.8em;">SCORE<sup>®</sup></span> license agreement, please visit [EULA](https://riskadjustmentmodel.com/legal/eula) webpage.
@@ -1,61 +1,60 @@
1
- ---BEGIN PYE FILE---
2
- ?xs8yw=-%~arI6N8WsJJ
3
- iEq4>vPyJHQk8a?X3EQ5
4
- ?*TsJz2(cM58Ovcu^x+j
5
- N%H~=8sc4*N=1_DDgAJB
6
- M3B(hFT|1vA^WQWmdr^c
7
- f^K9E%rAIgb`1~P6SebA
8
- ?EsgI=d&bZI6;L|5MvhI
9
- 0j=ES&;x+;&%JCepm!Tf
10
- DIAv;pvFo2aL)H&7B;q}
11
- ^Jaq2cfEq=;fPEz9U<))
12
- xzH|Ol_YNteO{TTau!4K
13
- n|dgn8xRAB0r38HO6o^9
14
- Q^8=FsiiX{7suX;fkaKb
15
- %rK|4LY}l{e!&a+6!@{F
16
- hrLUC!)myZWnc*-)S;uX
17
- Cz;GI@QOJYtf8(uql_CH
18
- ^1&I54cfmAzKr}T^^E0y
19
- ad+RXrd|UTZ~fpC-@;N(
20
- 1xPpf_FphX79qfp@F^8m
21
- nfM7l{&qi>v)>WWU7sQx
22
- kFT<aV2$v<VjWpv0C8UK
23
- T`W(gYeME9@q6T%N9ctb
24
- B%1RG;klT5Gka@A=9B!W
25
- ZhuK{%y+=ra`SpMh_*-*
26
- JY#OrlVSK#2upb}OP-3k
27
- DO9EwVqxrd9U|YS1;v;3
28
- IPf;x!D=ajST5UM|C_|=
29
- s0j*MT3udDR@|exgaeB@
30
- D|vd_V*7KCqbk5tgDb?T
31
- 81BsRM};ZhC1AN8<}8NK
32
- >%vCrdQ<NJ)%U}<zcI#n
33
- yo~}Py{I#K%->Tjn|ker
34
- 2fjTJMJTu%1oZqBlMiE`
35
- 76%q@rU5K;mSf{x)H1UD
36
- jQ@x1%!$6BVGN=*q6rBb
37
- DZ(7TKDUwlg1hVlo?x?U
38
- KmFKu%#b5&DWO|TB$8B4
39
- Tr8JAz971+9)4&8C!EPg
40
- +BK6lLxF;Ea7XtLv!QY>
41
- bqJ&TK!OCXqUguE_E~vv
42
- k2pW}sc=vB=T`7|a)+B!
43
- !993^qH)Lvh*><noPU7h
44
- xNo}Ah2jz~&*ij{d<V($
45
- @QV7>v}7EH2qt`cSp%u#
46
- JhAt%q3T=PR7&n+@Hj`D
47
- edNSE+GwJcmp<=m)%Flr
48
- =#%mNT_j;KDxd+i`z>Bx
49
- fR6;vd1rX~S2K_7&xiXq
50
- 5iM*2PsO%k5ALrpS*GiW
51
- Wt!*(rrsp<Q0X**q#XpM
52
- U^q_JW<)Y2Ffje&9RhWN
53
- 6%y0&lA>8YKcv(Yj7DdU
54
- SDs$d1KPE8Iw)m;nCn(e
55
- >MOaCzP@rtUy-}wDevgD
56
- DGb~bqM&BFLfy-A^!~`^
57
- GQ$zf9NYf$O6%*(1!HI0
58
- Pq40ro_|52vi6ZL{dl7S
59
- wVlLa?}>GnJF?TuhE5Wj
60
- a7c733-Q&Yl-2
1
+ ---BEGIN PYE FILE---
2
+ ?xs8yw=-%~arI6N8WsJJ
3
+ j&Hn`vPyJHQk8a?X3EQ5
4
+ ?*TsJz2(cM58Ovcu^x+j
5
+ N%H~=8sc4*N=1_DDgAJB
6
+ M3B(hFT|1vA^WQWmdr^c
7
+ f^K9E%rAIgb`1~P6SebA
8
+ ?EsgI=d&bZI6;L|5MvhI
9
+ 0j=ES&;x+;&%JCepm!Tf
10
+ DIAv;pvFo2aL)H&7B;q}
11
+ ^Jaq2ce#S+;fPEz9U<))
12
+ xzH|Ol_YNteO{TTau!4K
13
+ n|dgn8xRAB0r38HO6o^9
14
+ Q^8=FsiiX{7suX;fkaKb
15
+ %rK|4LY}l{e!&a+6!@{F
16
+ hrLUC!)myZWnc*-)S;uX
17
+ Cz;GI@QOJYtf8(uql_CH
18
+ ^1&I54cfmAzKr}T^^E0y
19
+ ad+RXrd|UTZ~fpC-@;N(
20
+ 1xPpf_FphX79qfp@F^8m
21
+ nfM7l{&qi>v)>WWU7sQx
22
+ kFT<aV2$v<VjWpv0C8UK
23
+ T`W(gYeME9@q6T%N9ctb
24
+ B%1RG;klT5Gka@A=9B!W
25
+ ZhuK{%y+=ra`SpMh_*-*
26
+ JY#OrlVSK#2upb}OP-3k
27
+ DO9EwVqxrd9U|YS1;v;3
28
+ IPf;x!D=ajST5UM|C_|=
29
+ s0j*MT3udDR@|exgaeB@
30
+ D|vd_V*7KCqbk5tgDb?T
31
+ 81BsRM};ZhC1AN8<}8NK
32
+ >%vCrdQ<NJ)%U}<zcI#n
33
+ yo~}Py{I#K%->Tjn|ker
34
+ 2fjTJMJTu%1oZqBlMiE`
35
+ 76%q@rU5K;mSf{x)H1UD
36
+ jQ@x1%!$6BVGN=*q6rBb
37
+ DZ(7TKDUwlg1hVlo?x?U
38
+ KmFKu%#b5&DWO|TB$8B4
39
+ Tr8JAz971+9)4&8C!EPg
40
+ +BK6lLxF;Ea7XtLv!QY>
41
+ bqJ&TK!OCXqUguE_E~vv
42
+ k2pW}sc=vB=T`7|a)+B!
43
+ !993^qH)Lvh*><noPU7h
44
+ xNo}Ah2jz~&*ij{d<V($
45
+ @QV7>v}7EH2qt`cSp%u#
46
+ JhAt%q3T=PR7&n+@Hj`D
47
+ edNSE+GwJcmp<=m)%Flr
48
+ =#%mNT_j;KDxd+i`z>Bx
49
+ fR6;vd1rX~S2K_7&xiXq
50
+ 5iM*2PsO%k5ALrpS*GiW
51
+ Wt!*(rrsp<Q0X**q#XpM
52
+ U^q_JW<)Y2Ffje&9RhWN
53
+ 6%y0&lA>8YKcv(Yj7DdU
54
+ SDs$d1KPE8Iw)m;nCn(e
55
+ >MOaCzP@rtUy-}wDevgD
56
+ DGb~bqM&BFLfy-A^!~`^
57
+ GQ$zf9NYf$O6%*(1!HI0
58
+ Pq40ro_|52vi6ZL{dl7S
59
+ v75ta)0RV&DzRk;j!}L
61
60
  ----END PYE FILE----
@@ -1,5 +1,5 @@
1
- import sourcedefender
2
- try:
3
- from . import activate
4
- except Exception as e:
5
- pass
1
+ import sourcedefender
2
+ try:
3
+ from . import activate
4
+ except Exception as e:
5
+ pass