mpcaHydro 2.0.1__tar.gz → 2.0.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/.gitignore +3 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/PKG-INFO +2 -1
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/pyproject.toml +3 -2
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/data_manager.py +83 -3
- mpcahydro-2.0.2/src/mpcaHydro/etlCSG.py +80 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/etlSWD.py +10 -1
- mpcahydro-2.0.1/Ini.pypirrc +0 -7
- mpcahydro-2.0.1/mpcahydro-0.1.0-pyhbf21a9e_0.conda +0 -0
- mpcahydro-2.0.1/pixi.lock +0 -626
- mpcahydro-2.0.1/pixi.toml +0 -35
- mpcahydro-2.0.1/src/mpcaHydro/etlCSG.py +0 -88
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/.gitattributes +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/README.md +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/WISKI.py +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/__init__.py +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/data/WISKI_EQUIS_XREF.csv +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/etlWISKI.py +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/src/mpcaHydro/etlWPLMN.py +0 -0
- {mpcahydro-2.0.1 → mpcahydro-2.0.2}/tests/pixi.toml +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mpcaHydro
|
|
3
|
-
Version: 2.0.
|
|
3
|
+
Version: 2.0.2
|
|
4
4
|
Summary: Python package for downloading MPCA hydrology data
|
|
5
5
|
Project-URL: Homepage, https://github.com/mfratkin1/mpcaHydro
|
|
6
6
|
Author-email: Mulu Fratkin <michael.fratkin@state.mn.us>
|
|
@@ -10,6 +10,7 @@ Keywords: Hydrology,MPCA
|
|
|
10
10
|
Classifier: Development Status :: 3 - Alpha
|
|
11
11
|
Classifier: Programming Language :: Python
|
|
12
12
|
Requires-Python: >=3.8
|
|
13
|
+
Requires-Dist: duckdb
|
|
13
14
|
Requires-Dist: pandas
|
|
14
15
|
Requires-Dist: pathlib
|
|
15
16
|
Requires-Dist: requests
|
|
@@ -5,11 +5,12 @@ build-backend = "hatchling.build"
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "mpcaHydro"
|
|
7
7
|
urls = { "Homepage" = "https://github.com/mfratkin1/mpcaHydro" } # ? Add this!
|
|
8
|
-
version = "2.0.
|
|
8
|
+
version = "2.0.2"
|
|
9
9
|
dependencies = [
|
|
10
10
|
"pandas",
|
|
11
11
|
"requests",
|
|
12
|
-
"pathlib"
|
|
12
|
+
"pathlib",
|
|
13
|
+
"duckdb"
|
|
13
14
|
]
|
|
14
15
|
requires-python = ">=3.8"
|
|
15
16
|
authors = [
|
|
@@ -9,7 +9,7 @@ import pandas as pd
|
|
|
9
9
|
#from abc import abstractmethod
|
|
10
10
|
from pathlib import Path
|
|
11
11
|
from mpcaHydro import etlWISKI, etlSWD#, etlEQUIS
|
|
12
|
-
|
|
12
|
+
import duckdb
|
|
13
13
|
|
|
14
14
|
#
|
|
15
15
|
'''
|
|
@@ -69,12 +69,59 @@ def are_lists_identical(nested_list):
|
|
|
69
69
|
# Compare all sublists to the first one
|
|
70
70
|
return all(sublist == sorted_sublists[0] for sublist in sorted_sublists)
|
|
71
71
|
|
|
72
|
+
def construct_database(folderpath):
|
|
73
|
+
folderpath = Path(folderpath)
|
|
74
|
+
db_path = folderpath.joinpath('observations.duckdb').as_posix()
|
|
75
|
+
with duckdb.connect(db_path) as con:
|
|
76
|
+
con.execute("DROP TABLE IF EXISTS observations")
|
|
77
|
+
datafiles = folderpath.joinpath('*.csv').as_posix()
|
|
78
|
+
query = '''
|
|
79
|
+
CREATE TABLE observations AS SELECT *
|
|
80
|
+
FROM
|
|
81
|
+
read_csv_auto(?,
|
|
82
|
+
union_by_name = true);
|
|
83
|
+
|
|
84
|
+
'''
|
|
85
|
+
con.execute(query,[datafiles])
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
|
|
72
89
|
class dataManager():
|
|
73
90
|
|
|
74
91
|
def __init__(self,folderpath):
|
|
75
92
|
|
|
76
93
|
self.data = {}
|
|
77
94
|
self.folderpath = Path(folderpath)
|
|
95
|
+
self.db_path = self.folderpath.joinpath('observations.duckdb')
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def constituent_summary(self,constituents = None):
|
|
99
|
+
with duckdb.connect(self.db_path) as con:
|
|
100
|
+
if constituents is None:
|
|
101
|
+
constituents = con.query('''
|
|
102
|
+
SELECT DISTINCT
|
|
103
|
+
constituent
|
|
104
|
+
FROM observations''').to_df()['constituent'].to_list()
|
|
105
|
+
|
|
106
|
+
query = '''
|
|
107
|
+
SELECT
|
|
108
|
+
station_id,
|
|
109
|
+
source,
|
|
110
|
+
constituent,
|
|
111
|
+
COUNT(*) AS sample_count,
|
|
112
|
+
year(MIN(datetime)) AS start_date,
|
|
113
|
+
year(MAX(datetime)) AS end_date
|
|
114
|
+
FROM
|
|
115
|
+
observations
|
|
116
|
+
WHERE
|
|
117
|
+
constituent in (SELECT UNNEST(?))
|
|
118
|
+
GROUP BY
|
|
119
|
+
constituent,station_id,source
|
|
120
|
+
ORDER BY
|
|
121
|
+
constituent,sample_count;'''
|
|
122
|
+
|
|
123
|
+
df = con.execute(query,[constituents]).fetch_df()
|
|
124
|
+
return df
|
|
78
125
|
|
|
79
126
|
def get_wiski_stations(self):
|
|
80
127
|
return list(WISKI_EQUIS_XREF['WISKI_STATION_NO'].unique())
|
|
@@ -108,6 +155,17 @@ class dataManager():
|
|
|
108
155
|
return []
|
|
109
156
|
else:
|
|
110
157
|
return wiski_ids
|
|
158
|
+
|
|
159
|
+
def equis_wiski_alias(self,equis_station_id):
|
|
160
|
+
wiski_ids = list(set(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['WISKI_EQUIS_ID'] == equis_station_id,'WISKI_STATION_NO'].to_list()))
|
|
161
|
+
wiski_ids = [wiski_id for wiski_id in wiski_ids if not pd.isna(wiski_id)]
|
|
162
|
+
if len(wiski_ids) == 0:
|
|
163
|
+
return []
|
|
164
|
+
elif len(wiski_ids) > 1:
|
|
165
|
+
print(f'Too Many WISKI Stations for {equis_station_id}')
|
|
166
|
+
raise
|
|
167
|
+
else:
|
|
168
|
+
return wiski_ids[0]
|
|
111
169
|
|
|
112
170
|
def _equis_wiski_associations(self,equis_station_ids):
|
|
113
171
|
wiski_stations = [self.equis_wiski_associations(equis_station_id) for equis_station_id in equis_station_ids]
|
|
@@ -115,6 +173,25 @@ class dataManager():
|
|
|
115
173
|
return wiski_stations[0]
|
|
116
174
|
else:
|
|
117
175
|
return []
|
|
176
|
+
|
|
177
|
+
def _stations_by_wid(self,wid_no,station_origin):
|
|
178
|
+
if station_origin in ['wiski','wplmn']:
|
|
179
|
+
station_col = 'WISKI_STATION_NO'
|
|
180
|
+
elif station_origin in ['equis','swd']:
|
|
181
|
+
station_col = 'EQUIS_STATION_ID'
|
|
182
|
+
else:
|
|
183
|
+
raise
|
|
184
|
+
|
|
185
|
+
return list(WISKI_EQUIS_XREF.loc[WISKI_EQUIS_XREF['WID'] == wid_no,station_col].unique())
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def download_stations_by_wid(self, wid_no,station_origin, folderpath = None, overwrite = False):
|
|
189
|
+
|
|
190
|
+
station_ids = self._station_by_wid(wid_no,station_origin)
|
|
191
|
+
|
|
192
|
+
if not station_ids.empty:
|
|
193
|
+
for _, row in station_ids.iterrows():
|
|
194
|
+
self.download_station_data(row['station_id'],station_origin, folderpath, overwrite)
|
|
118
195
|
|
|
119
196
|
def _download_station_data(self,station_id,station_origin,overwrite=False):
|
|
120
197
|
assert(station_origin in ['wiski','equis','swd','wplmn'])
|
|
@@ -232,7 +309,7 @@ class dataManager():
|
|
|
232
309
|
def get_data(self,station_id,constituent,agg_period = 'D'):
|
|
233
310
|
return self._get_data([station_id],constituent,agg_period)
|
|
234
311
|
|
|
235
|
-
def _get_data(self,station_ids,constituent,agg_period = 'D'):
|
|
312
|
+
def _get_data(self,station_ids,constituent,agg_period = 'D',tz_offset = '-6'):
|
|
236
313
|
'''
|
|
237
314
|
|
|
238
315
|
Returns the processed observational data associated with the calibration specific id.
|
|
@@ -287,7 +364,10 @@ class dataManager():
|
|
|
287
364
|
df['data_format'] = dfsub['data_format'].iloc[0]
|
|
288
365
|
df['source'] = dfsub['source'].iloc[0]
|
|
289
366
|
|
|
290
|
-
|
|
367
|
+
|
|
368
|
+
# convert to desired timzone before stripping timezone information.
|
|
369
|
+
#df.index.tz_convert('UTC-06:00').tz_localize(None)
|
|
370
|
+
df.index = df.index.tz_localize(None)
|
|
291
371
|
return df['value'].to_frame().dropna()
|
|
292
372
|
|
|
293
373
|
|
|
@@ -0,0 +1,80 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
"""
|
|
3
|
+
Created on Tue Oct 10 14:13:23 2023
|
|
4
|
+
|
|
5
|
+
@author: mfratki
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import pandas as pd
|
|
9
|
+
import requests
|
|
10
|
+
import zipfile
|
|
11
|
+
import io
|
|
12
|
+
# import geopandas as gpd
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
CONSITUENT_MAP = {'Water Temp. (C)': 'WT',
|
|
16
|
+
'Discharge (cfs)': 'Q',
|
|
17
|
+
'DO (mg/L)': 'DO'
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
# def download(station_no):
|
|
21
|
+
# # save_path = Path(save_path)
|
|
22
|
+
# # file_path = save_path.joinpath('csg.csv')
|
|
23
|
+
|
|
24
|
+
# station = station_no[1:]
|
|
25
|
+
# df = pd.read_csv(f'https://maps2.dnr.state.mn.us/cgi-bin/csg.cgi?mode=dump_hydro_data_as_csv&site={station}&startdate=1996-1-1&enddate=2050-1-1')
|
|
26
|
+
# df = pd.read_csv(f'https://apps.dnr.state.mn.us/csg/api/v1/download?callback=json&ids=66050001&vars=262')
|
|
27
|
+
# df['station_id'] = station_no
|
|
28
|
+
|
|
29
|
+
# return df
|
|
30
|
+
|
|
31
|
+
def download(station_no):
|
|
32
|
+
station = station_no[1:]
|
|
33
|
+
url = f'https://apps.dnr.state.mn.us/csg/api/v1/download?ids={station}&vars=262'
|
|
34
|
+
response = requests.get(url)
|
|
35
|
+
with zipfile.ZipFile(io.BytesIO(response.content)) as zip_ref:
|
|
36
|
+
df = pd.read_csv(zip_ref.open(zip_ref.namelist()[0]))
|
|
37
|
+
df['station_id'] = station_no
|
|
38
|
+
|
|
39
|
+
return df
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# def process(df):
|
|
43
|
+
#
|
|
44
|
+
# df.set_index('Timestamp',inplace=True)
|
|
45
|
+
# value_variables = [column for column in df.columns if (column not in ['Site','Timestamp','station_no']) & ~(column.endswith('Quality'))]
|
|
46
|
+
|
|
47
|
+
# test = df[value_variables].resample(rule='1H', kind='interval').mean().dropna()
|
|
48
|
+
# df = df['Value'].resample(rule='1H', kind='interval').mean().to_frame()
|
|
49
|
+
|
|
50
|
+
def transform(data):
|
|
51
|
+
data.rename(columns = {'tstamp': 'datetime',
|
|
52
|
+
'var_name': 'variable',
|
|
53
|
+
'station_no': 'station_id'}, inplace = True)
|
|
54
|
+
|
|
55
|
+
data['unit'] = data['variable'].map({'Water Temp. (C)' : 'C',
|
|
56
|
+
'Discharge (cfs)' : 'cfs',
|
|
57
|
+
'DO (mg/L)' : 'mg/L'})
|
|
58
|
+
|
|
59
|
+
data['constituent'] = data['variable'].map({'Water Temp. (C)' : 'WT',
|
|
60
|
+
'Discharge (cfs)' : 'Q',
|
|
61
|
+
'DO (mg/L)' : 'DO'})
|
|
62
|
+
|
|
63
|
+
data['datetime'] = pd.to_datetime(data['datetime'])
|
|
64
|
+
data.set_index('datetime',drop=True,inplace=True)
|
|
65
|
+
data.index = data.index.tz_localize('UTC-06:00')
|
|
66
|
+
data.dropna(subset = 'value',inplace=True)
|
|
67
|
+
data['source'] = 'csg'
|
|
68
|
+
return data
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def load(data,file_path):
|
|
75
|
+
|
|
76
|
+
data.to_csv(file_path)
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
|
|
@@ -14,16 +14,25 @@ import pandas as pd
|
|
|
14
14
|
|
|
15
15
|
|
|
16
16
|
CONSTITUENT_MAP = {'Total suspended solids':'TSS',
|
|
17
|
+
'Total solids': 'TSS',
|
|
18
|
+
'Solids, Suspended' : 'TSS',
|
|
19
|
+
'Solids, Total Suspended' : 'TSS',
|
|
17
20
|
'Residue - nonfilterable (TSS)': 'TSS',
|
|
18
21
|
'Kjeldahl nitrogen as N': 'TKN',
|
|
22
|
+
'Inorganic nitrogen (nitrate and nitrate) as N': 'N',
|
|
19
23
|
'Nitrogen, Total Kjeldahl (TKN) as N': 'TKN',
|
|
20
24
|
'Nitrate + Nitrite Nitrogen, Total as N': 'N',
|
|
21
25
|
'Nitrate/Nitrite as N (N+N) as N': 'N',
|
|
22
26
|
'Nutrient-nitrogen as N': 'N',
|
|
27
|
+
'Nitrate/Nitrite as N': 'N',
|
|
23
28
|
'Phosphorus, Total as P as P':'TP',
|
|
29
|
+
'Phosphorus, Total as P' : 'TP',
|
|
24
30
|
'Phosphorus as P': 'TP',
|
|
31
|
+
'Total Phosphorus as P': 'TP',
|
|
32
|
+
'Orthophosphate as P': 'OP',
|
|
25
33
|
'Carbonaceous biochemical oxygen demand, standard conditions': 'BOD',
|
|
26
34
|
'Chemical oxygen demand':'BOD',
|
|
35
|
+
'Biochemical oxygen demand, standard conditions': 'BOD',
|
|
27
36
|
'Chlorophyll a, corrected for pheophytin':'CHLA',
|
|
28
37
|
'Chlorophyll-A':'CHLA',
|
|
29
38
|
'Chlorophyll-a, Pheophytin Corrected':'CHLA',
|
|
@@ -145,7 +154,7 @@ def transform(df):
|
|
|
145
154
|
df.set_index('datetime',drop=True,inplace=True)
|
|
146
155
|
df.index = df.index.tz_localize('UTC-06:00')
|
|
147
156
|
|
|
148
|
-
df.index = df.index.round('
|
|
157
|
+
df.index = df.index.round('h').round('h')
|
|
149
158
|
df = df.reset_index()
|
|
150
159
|
df = df.groupby(['datetime','variable','unit','station_id','station_name','constituent','data_format','data_type','source']).mean()
|
|
151
160
|
df = df.reset_index()
|
mpcahydro-2.0.1/Ini.pypirrc
DELETED
|
Binary file
|
mpcahydro-2.0.1/pixi.lock
DELETED
|
@@ -1,626 +0,0 @@
|
|
|
1
|
-
version: 6
|
|
2
|
-
environments:
|
|
3
|
-
default:
|
|
4
|
-
channels:
|
|
5
|
-
- url: https://conda.anaconda.org/conda-forge/
|
|
6
|
-
packages:
|
|
7
|
-
win-64:
|
|
8
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py313h5813708_3.conda
|
|
9
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda
|
|
10
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.6.15-h4c7d964_0.conda
|
|
11
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.6.15-pyhd8ed1ab_0.conda
|
|
12
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py313ha7868ed_0.conda
|
|
13
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda
|
|
14
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda
|
|
15
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda
|
|
16
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda
|
|
17
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda
|
|
18
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2024.2.1-h57928b3_1083.conda
|
|
19
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-32_h641d27c_mkl.conda
|
|
20
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-32_h5e41251_mkl.conda
|
|
21
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.0-he0c23c2_0.conda
|
|
22
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda
|
|
23
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.11.2-default_ha69328c_1001.conda
|
|
24
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.18-h135ad9c_1.conda
|
|
25
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-32_h1aa476e_mkl.conda
|
|
26
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda
|
|
27
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libmpdec-4.0.0-h2466b09_0.conda
|
|
28
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.2-hf5d6505_0.conda
|
|
29
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libwinpthread-12.0.0.r4.gg4f2fc60ca-h57928b3_9.conda
|
|
30
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.8-h442d1da_0.conda
|
|
31
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda
|
|
32
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_15.conda
|
|
33
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/numpy-2.3.1-py313ha14762d_0.conda
|
|
34
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda
|
|
35
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.3.0-py313hf91d08e_0.conda
|
|
36
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pathlib-1.0.1-py_1.tar.bz2
|
|
37
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda
|
|
38
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh09c184e_7.conda
|
|
39
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/python-3.13.5-h7de537c_102_cp313.conda
|
|
40
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda
|
|
41
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda
|
|
42
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.13-7_cp313.conda
|
|
43
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda
|
|
44
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda
|
|
45
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda
|
|
46
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-h62715c5_1.conda
|
|
47
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda
|
|
48
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda
|
|
49
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_1.conda
|
|
50
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda
|
|
51
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h41ae7f8_26.conda
|
|
52
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.44.35208-h818238b_26.conda
|
|
53
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyh7428d3b_8.conda
|
|
54
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.23.0-py313ha7868ed_2.conda
|
|
55
|
-
packages:
|
|
56
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/brotli-python-1.1.0-py313h5813708_3.conda
|
|
57
|
-
sha256: 152e1f4bb8076b4f37a70e80dcd457a50e14e0bd5501351cd0fc602c5ef782a5
|
|
58
|
-
md5: a25f98cfd4eb1ac26325c1869f11edf5
|
|
59
|
-
depends:
|
|
60
|
-
- python >=3.13,<3.14.0a0
|
|
61
|
-
- python_abi 3.13.* *_cp313
|
|
62
|
-
- ucrt >=10.0.20348.0
|
|
63
|
-
- vc >=14.2,<15
|
|
64
|
-
- vc14_runtime >=14.29.30139
|
|
65
|
-
constrains:
|
|
66
|
-
- libbrotlicommon 1.1.0 h2466b09_3
|
|
67
|
-
license: MIT
|
|
68
|
-
license_family: MIT
|
|
69
|
-
size: 321652
|
|
70
|
-
timestamp: 1749231335599
|
|
71
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/bzip2-1.0.8-h2466b09_7.conda
|
|
72
|
-
sha256: 35a5dad92e88fdd7fc405e864ec239486f4f31eec229e31686e61a140a8e573b
|
|
73
|
-
md5: 276e7ffe9ffe39688abc665ef0f45596
|
|
74
|
-
depends:
|
|
75
|
-
- ucrt >=10.0.20348.0
|
|
76
|
-
- vc >=14.2,<15
|
|
77
|
-
- vc14_runtime >=14.29.30139
|
|
78
|
-
license: bzip2-1.0.6
|
|
79
|
-
license_family: BSD
|
|
80
|
-
size: 54927
|
|
81
|
-
timestamp: 1720974860185
|
|
82
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2025.6.15-h4c7d964_0.conda
|
|
83
|
-
sha256: 065241ba03ef3ee8200084c075cbff50955a7e711765395ff34876dbc51a6bb9
|
|
84
|
-
md5: b01649832f7bc7ff94f8df8bd2ee6457
|
|
85
|
-
depends:
|
|
86
|
-
- __win
|
|
87
|
-
license: ISC
|
|
88
|
-
size: 151351
|
|
89
|
-
timestamp: 1749990170707
|
|
90
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2025.6.15-pyhd8ed1ab_0.conda
|
|
91
|
-
sha256: d71c85835813072cd6d7ce4b24be34215cd90c104785b15a5d58f4cd0cb50778
|
|
92
|
-
md5: 781d068df0cc2407d4db0ecfbb29225b
|
|
93
|
-
depends:
|
|
94
|
-
- python >=3.9
|
|
95
|
-
license: ISC
|
|
96
|
-
size: 155377
|
|
97
|
-
timestamp: 1749972291158
|
|
98
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/cffi-1.17.1-py313ha7868ed_0.conda
|
|
99
|
-
sha256: b19f581fe423858f1f477c52e10978be324c55ebf2e418308d30d013f4a476ff
|
|
100
|
-
md5: 519a29d7ac273f8c165efc0af099da42
|
|
101
|
-
depends:
|
|
102
|
-
- pycparser
|
|
103
|
-
- python >=3.13.0rc1,<3.14.0a0
|
|
104
|
-
- python_abi 3.13.* *_cp313
|
|
105
|
-
- ucrt >=10.0.20348.0
|
|
106
|
-
- vc >=14.2,<15
|
|
107
|
-
- vc14_runtime >=14.29.30139
|
|
108
|
-
license: MIT
|
|
109
|
-
license_family: MIT
|
|
110
|
-
size: 291828
|
|
111
|
-
timestamp: 1725561211547
|
|
112
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.2-pyhd8ed1ab_0.conda
|
|
113
|
-
sha256: 535ae5dcda8022e31c6dc063eb344c80804c537a5a04afba43a845fa6fa130f5
|
|
114
|
-
md5: 40fe4284b8b5835a9073a645139f35af
|
|
115
|
-
depends:
|
|
116
|
-
- python >=3.9
|
|
117
|
-
license: MIT
|
|
118
|
-
license_family: MIT
|
|
119
|
-
size: 50481
|
|
120
|
-
timestamp: 1746214981991
|
|
121
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.2.0-pyhd8ed1ab_0.conda
|
|
122
|
-
sha256: 0aa1cdc67a9fe75ea95b5644b734a756200d6ec9d0dff66530aec3d1c1e9df75
|
|
123
|
-
md5: b4754fb1bdcb70c8fd54f918301582c6
|
|
124
|
-
depends:
|
|
125
|
-
- hpack >=4.1,<5
|
|
126
|
-
- hyperframe >=6.1,<7
|
|
127
|
-
- python >=3.9
|
|
128
|
-
license: MIT
|
|
129
|
-
license_family: MIT
|
|
130
|
-
size: 53888
|
|
131
|
-
timestamp: 1738578623567
|
|
132
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.1.0-pyhd8ed1ab_0.conda
|
|
133
|
-
sha256: 6ad78a180576c706aabeb5b4c8ceb97c0cb25f1e112d76495bff23e3779948ba
|
|
134
|
-
md5: 0a802cb9888dd14eeefc611f05c40b6e
|
|
135
|
-
depends:
|
|
136
|
-
- python >=3.9
|
|
137
|
-
license: MIT
|
|
138
|
-
license_family: MIT
|
|
139
|
-
size: 30731
|
|
140
|
-
timestamp: 1737618390337
|
|
141
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.1.0-pyhd8ed1ab_0.conda
|
|
142
|
-
sha256: 77af6f5fe8b62ca07d09ac60127a30d9069fdc3c68d6b256754d0ffb1f7779f8
|
|
143
|
-
md5: 8e6923fc12f1fe8f8c4e5c9f343256ac
|
|
144
|
-
depends:
|
|
145
|
-
- python >=3.9
|
|
146
|
-
license: MIT
|
|
147
|
-
license_family: MIT
|
|
148
|
-
size: 17397
|
|
149
|
-
timestamp: 1737618427549
|
|
150
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda
|
|
151
|
-
sha256: d7a472c9fd479e2e8dcb83fb8d433fce971ea369d704ece380e876f9c3494e87
|
|
152
|
-
md5: 39a4f67be3286c86d696df570b1201b7
|
|
153
|
-
depends:
|
|
154
|
-
- python >=3.9
|
|
155
|
-
license: BSD-3-Clause
|
|
156
|
-
license_family: BSD
|
|
157
|
-
size: 49765
|
|
158
|
-
timestamp: 1733211921194
|
|
159
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/intel-openmp-2024.2.1-h57928b3_1083.conda
|
|
160
|
-
sha256: 0fd2b0b84c854029041b0ede8f4c2369242ee92acc0092f8407b1fe9238a8209
|
|
161
|
-
md5: 2d89243bfb53652c182a7c73182cce4f
|
|
162
|
-
license: LicenseRef-IntelSimplifiedSoftwareOct2022
|
|
163
|
-
license_family: Proprietary
|
|
164
|
-
size: 1852356
|
|
165
|
-
timestamp: 1723739573141
|
|
166
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libblas-3.9.0-32_h641d27c_mkl.conda
|
|
167
|
-
build_number: 32
|
|
168
|
-
sha256: 809d78b096e70fed7ebb17c867dd5dde2f9f4ed8564967a6e10c65b3513b0c31
|
|
169
|
-
md5: 49b36a01450e96c516bbc5486d4a0ea0
|
|
170
|
-
depends:
|
|
171
|
-
- mkl 2024.2.2 h66d3029_15
|
|
172
|
-
constrains:
|
|
173
|
-
- libcblas 3.9.0 32*_mkl
|
|
174
|
-
- liblapack 3.9.0 32*_mkl
|
|
175
|
-
- liblapacke 3.9.0 32*_mkl
|
|
176
|
-
- blas 2.132 mkl
|
|
177
|
-
license: BSD-3-Clause
|
|
178
|
-
license_family: BSD
|
|
179
|
-
size: 3735390
|
|
180
|
-
timestamp: 1750389080409
|
|
181
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libcblas-3.9.0-32_h5e41251_mkl.conda
|
|
182
|
-
build_number: 32
|
|
183
|
-
sha256: d0f81145ae795592f3f3b5d7ff641c1019a99d6b308bfaf2a4cc5ba24b067bb0
|
|
184
|
-
md5: 054b9b4b48296e4413cf93e6ece7b27d
|
|
185
|
-
depends:
|
|
186
|
-
- libblas 3.9.0 32_h641d27c_mkl
|
|
187
|
-
constrains:
|
|
188
|
-
- liblapack 3.9.0 32*_mkl
|
|
189
|
-
- liblapacke 3.9.0 32*_mkl
|
|
190
|
-
- blas 2.132 mkl
|
|
191
|
-
license: BSD-3-Clause
|
|
192
|
-
license_family: BSD
|
|
193
|
-
size: 3735392
|
|
194
|
-
timestamp: 1750389122586
|
|
195
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libexpat-2.7.0-he0c23c2_0.conda
|
|
196
|
-
sha256: 1a227c094a4e06bd54e8c2f3ec40c17ff99dcf3037d812294f842210aa66dbeb
|
|
197
|
-
md5: b6f5352fdb525662f4169a0431d2dd7a
|
|
198
|
-
depends:
|
|
199
|
-
- ucrt >=10.0.20348.0
|
|
200
|
-
- vc >=14.2,<15
|
|
201
|
-
- vc14_runtime >=14.29.30139
|
|
202
|
-
constrains:
|
|
203
|
-
- expat 2.7.0.*
|
|
204
|
-
license: MIT
|
|
205
|
-
license_family: MIT
|
|
206
|
-
size: 140896
|
|
207
|
-
timestamp: 1743432122520
|
|
208
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libffi-3.4.6-h537db12_1.conda
|
|
209
|
-
sha256: d3b0b8812eab553d3464bbd68204f007f1ebadf96ce30eb0cbc5159f72e353f5
|
|
210
|
-
md5: 85d8fa5e55ed8f93f874b3b23ed54ec6
|
|
211
|
-
depends:
|
|
212
|
-
- ucrt >=10.0.20348.0
|
|
213
|
-
- vc >=14.2,<15
|
|
214
|
-
- vc14_runtime >=14.29.30139
|
|
215
|
-
license: MIT
|
|
216
|
-
license_family: MIT
|
|
217
|
-
size: 44978
|
|
218
|
-
timestamp: 1743435053850
|
|
219
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libhwloc-2.11.2-default_ha69328c_1001.conda
|
|
220
|
-
sha256: 850e255997f538d5fb6ed651321141155a33bb781d43d326fc4ff62114dd2842
|
|
221
|
-
md5: b87a0ac5ab6495d8225db5dc72dd21cd
|
|
222
|
-
depends:
|
|
223
|
-
- libwinpthread >=12.0.0.r4.gg4f2fc60ca
|
|
224
|
-
- libxml2 >=2.13.4,<2.14.0a0
|
|
225
|
-
- ucrt >=10.0.20348.0
|
|
226
|
-
- vc >=14.2,<15
|
|
227
|
-
- vc14_runtime >=14.29.30139
|
|
228
|
-
license: BSD-3-Clause
|
|
229
|
-
license_family: BSD
|
|
230
|
-
size: 2390021
|
|
231
|
-
timestamp: 1731375651179
|
|
232
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libiconv-1.18-h135ad9c_1.conda
|
|
233
|
-
sha256: ea5ed2b362b6dbc4ba7188eb4eaf576146e3dfc6f4395e9f0db76ad77465f786
|
|
234
|
-
md5: 21fc5dba2cbcd8e5e26ff976a312122c
|
|
235
|
-
depends:
|
|
236
|
-
- ucrt >=10.0.20348.0
|
|
237
|
-
- vc >=14.2,<15
|
|
238
|
-
- vc14_runtime >=14.29.30139
|
|
239
|
-
license: LGPL-2.1-only
|
|
240
|
-
size: 638142
|
|
241
|
-
timestamp: 1740128665984
|
|
242
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/liblapack-3.9.0-32_h1aa476e_mkl.conda
|
|
243
|
-
build_number: 32
|
|
244
|
-
sha256: 5629e592137114b24bfdea71e1c4b6bee11379631409ed91dfe2f83b32a8b298
|
|
245
|
-
md5: 1652285573db93afc3ba9b3b9356e3d3
|
|
246
|
-
depends:
|
|
247
|
-
- libblas 3.9.0 32_h641d27c_mkl
|
|
248
|
-
constrains:
|
|
249
|
-
- libcblas 3.9.0 32*_mkl
|
|
250
|
-
- liblapacke 3.9.0 32*_mkl
|
|
251
|
-
- blas 2.132 mkl
|
|
252
|
-
license: BSD-3-Clause
|
|
253
|
-
license_family: BSD
|
|
254
|
-
size: 3735534
|
|
255
|
-
timestamp: 1750389164366
|
|
256
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/liblzma-5.8.1-h2466b09_2.conda
|
|
257
|
-
sha256: 55764956eb9179b98de7cc0e55696f2eff8f7b83fc3ebff5e696ca358bca28cc
|
|
258
|
-
md5: c15148b2e18da456f5108ccb5e411446
|
|
259
|
-
depends:
|
|
260
|
-
- ucrt >=10.0.20348.0
|
|
261
|
-
- vc >=14.2,<15
|
|
262
|
-
- vc14_runtime >=14.29.30139
|
|
263
|
-
constrains:
|
|
264
|
-
- xz 5.8.1.*
|
|
265
|
-
license: 0BSD
|
|
266
|
-
size: 104935
|
|
267
|
-
timestamp: 1749230611612
|
|
268
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libmpdec-4.0.0-h2466b09_0.conda
|
|
269
|
-
sha256: fc529fc82c7caf51202cc5cec5bb1c2e8d90edbac6d0a4602c966366efe3c7bf
|
|
270
|
-
md5: 74860100b2029e2523cf480804c76b9b
|
|
271
|
-
depends:
|
|
272
|
-
- ucrt >=10.0.20348.0
|
|
273
|
-
- vc >=14.2,<15
|
|
274
|
-
- vc14_runtime >=14.29.30139
|
|
275
|
-
license: BSD-2-Clause
|
|
276
|
-
license_family: BSD
|
|
277
|
-
size: 88657
|
|
278
|
-
timestamp: 1723861474602
|
|
279
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libsqlite-3.50.2-hf5d6505_0.conda
|
|
280
|
-
sha256: d136ecf423f83208156daa6a8c1de461a7e9780e8e4423c23c7e136be3c2ff0a
|
|
281
|
-
md5: e1e6cac409e95538acdc3d33a0f34d6a
|
|
282
|
-
depends:
|
|
283
|
-
- ucrt >=10.0.20348.0
|
|
284
|
-
- vc >=14.3,<15
|
|
285
|
-
- vc14_runtime >=14.44.35208
|
|
286
|
-
license: Unlicense
|
|
287
|
-
size: 1285981
|
|
288
|
-
timestamp: 1751135695346
|
|
289
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libwinpthread-12.0.0.r4.gg4f2fc60ca-h57928b3_9.conda
|
|
290
|
-
sha256: 373f2973b8a358528b22be5e8d84322c165b4c5577d24d94fd67ad1bb0a0f261
|
|
291
|
-
md5: 08bfa5da6e242025304b206d152479ef
|
|
292
|
-
depends:
|
|
293
|
-
- ucrt
|
|
294
|
-
constrains:
|
|
295
|
-
- pthreads-win32 <0.0a0
|
|
296
|
-
- msys2-conda-epoch <0.0a0
|
|
297
|
-
license: MIT AND BSD-3-Clause-Clear
|
|
298
|
-
size: 35794
|
|
299
|
-
timestamp: 1737099561703
|
|
300
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libxml2-2.13.8-h442d1da_0.conda
|
|
301
|
-
sha256: 473b8a53c8df714d676ab41711551c8d250f8d799f2db5cb7cb2b177a0ce13f6
|
|
302
|
-
md5: 833c2dbc1a5020007b520b044c713ed3
|
|
303
|
-
depends:
|
|
304
|
-
- libiconv >=1.18,<2.0a0
|
|
305
|
-
- libzlib >=1.3.1,<2.0a0
|
|
306
|
-
- ucrt >=10.0.20348.0
|
|
307
|
-
- vc >=14.2,<15
|
|
308
|
-
- vc14_runtime >=14.29.30139
|
|
309
|
-
license: MIT
|
|
310
|
-
license_family: MIT
|
|
311
|
-
size: 1513627
|
|
312
|
-
timestamp: 1746634633560
|
|
313
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/libzlib-1.3.1-h2466b09_2.conda
|
|
314
|
-
sha256: ba945c6493449bed0e6e29883c4943817f7c79cbff52b83360f7b341277c6402
|
|
315
|
-
md5: 41fbfac52c601159df6c01f875de31b9
|
|
316
|
-
depends:
|
|
317
|
-
- ucrt >=10.0.20348.0
|
|
318
|
-
- vc >=14.2,<15
|
|
319
|
-
- vc14_runtime >=14.29.30139
|
|
320
|
-
constrains:
|
|
321
|
-
- zlib 1.3.1 *_2
|
|
322
|
-
license: Zlib
|
|
323
|
-
license_family: Other
|
|
324
|
-
size: 55476
|
|
325
|
-
timestamp: 1727963768015
|
|
326
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/mkl-2024.2.2-h66d3029_15.conda
|
|
327
|
-
sha256: 20e52b0389586d0b914a49cd286c5ccc9c47949bed60ca6df004d1d295f2edbd
|
|
328
|
-
md5: 302dff2807f2927b3e9e0d19d60121de
|
|
329
|
-
depends:
|
|
330
|
-
- intel-openmp 2024.*
|
|
331
|
-
- tbb 2021.*
|
|
332
|
-
license: LicenseRef-IntelSimplifiedSoftwareOct2022
|
|
333
|
-
license_family: Proprietary
|
|
334
|
-
size: 103106385
|
|
335
|
-
timestamp: 1730232843711
|
|
336
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/numpy-2.3.1-py313ha14762d_0.conda
|
|
337
|
-
sha256: 4a07411ed54fda72f2bc800130f1f0d520591aa78eba5c5f39d092810a6e908e
|
|
338
|
-
md5: 7d719836eecd25d2cf2bfb44c3c1be2c
|
|
339
|
-
depends:
|
|
340
|
-
- libblas >=3.9.0,<4.0a0
|
|
341
|
-
- libcblas >=3.9.0,<4.0a0
|
|
342
|
-
- liblapack >=3.9.0,<4.0a0
|
|
343
|
-
- python >=3.13,<3.14.0a0
|
|
344
|
-
- python_abi 3.13.* *_cp313
|
|
345
|
-
- ucrt >=10.0.20348.0
|
|
346
|
-
- vc >=14.3,<15
|
|
347
|
-
- vc14_runtime >=14.44.35208
|
|
348
|
-
constrains:
|
|
349
|
-
- numpy-base <0a0
|
|
350
|
-
license: BSD-3-Clause
|
|
351
|
-
license_family: BSD
|
|
352
|
-
size: 7302895
|
|
353
|
-
timestamp: 1751342919937
|
|
354
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/openssl-3.5.1-h725018a_0.conda
|
|
355
|
-
sha256: 2b2eb73b0661ff1aed55576a3d38614852b5d857c2fa9205ac115820c523306c
|
|
356
|
-
md5: d124fc2fd7070177b5e2450627f8fc1a
|
|
357
|
-
depends:
|
|
358
|
-
- ca-certificates
|
|
359
|
-
- ucrt >=10.0.20348.0
|
|
360
|
-
- vc >=14.3,<15
|
|
361
|
-
- vc14_runtime >=14.44.35208
|
|
362
|
-
license: Apache-2.0
|
|
363
|
-
license_family: Apache
|
|
364
|
-
size: 9327033
|
|
365
|
-
timestamp: 1751392489008
|
|
366
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/pandas-2.3.0-py313hf91d08e_0.conda
|
|
367
|
-
sha256: 2dac0e788df070dfb12e7f3630386973b0bb9730d04b7f774c519e3f3f1db21f
|
|
368
|
-
md5: 06f537fc2102679d5c1567cf2d38391d
|
|
369
|
-
depends:
|
|
370
|
-
- numpy >=1.21,<3
|
|
371
|
-
- numpy >=1.22.4
|
|
372
|
-
- python >=3.13,<3.14.0a0
|
|
373
|
-
- python-dateutil >=2.8.2
|
|
374
|
-
- python-tzdata >=2022.7
|
|
375
|
-
- python_abi 3.13.* *_cp313
|
|
376
|
-
- pytz >=2020.1
|
|
377
|
-
- ucrt >=10.0.20348.0
|
|
378
|
-
- vc >=14.2,<15
|
|
379
|
-
- vc14_runtime >=14.29.30139
|
|
380
|
-
constrains:
|
|
381
|
-
- pytables >=3.8.0
|
|
382
|
-
- scipy >=1.10.0
|
|
383
|
-
- xlsxwriter >=3.0.5
|
|
384
|
-
- sqlalchemy >=2.0.0
|
|
385
|
-
- tzdata >=2022.7
|
|
386
|
-
- python-calamine >=0.1.7
|
|
387
|
-
- pyqt5 >=5.15.9
|
|
388
|
-
- s3fs >=2022.11.0
|
|
389
|
-
- zstandard >=0.19.0
|
|
390
|
-
- qtpy >=2.3.0
|
|
391
|
-
- matplotlib >=3.6.3
|
|
392
|
-
- xlrd >=2.0.1
|
|
393
|
-
- odfpy >=1.4.1
|
|
394
|
-
- pyxlsb >=1.0.10
|
|
395
|
-
- pandas-gbq >=0.19.0
|
|
396
|
-
- fastparquet >=2022.12.0
|
|
397
|
-
- openpyxl >=3.1.0
|
|
398
|
-
- tabulate >=0.9.0
|
|
399
|
-
- gcsfs >=2022.11.0
|
|
400
|
-
- bottleneck >=1.3.6
|
|
401
|
-
- numexpr >=2.8.4
|
|
402
|
-
- pyarrow >=10.0.1
|
|
403
|
-
- beautifulsoup4 >=4.11.2
|
|
404
|
-
- pyreadstat >=1.2.0
|
|
405
|
-
- lxml >=4.9.2
|
|
406
|
-
- xarray >=2022.12.0
|
|
407
|
-
- html5lib >=1.1
|
|
408
|
-
- numba >=0.56.4
|
|
409
|
-
- fsspec >=2022.11.0
|
|
410
|
-
- psycopg2 >=2.9.6
|
|
411
|
-
- blosc >=1.21.3
|
|
412
|
-
license: BSD-3-Clause
|
|
413
|
-
license_family: BSD
|
|
414
|
-
size: 13929307
|
|
415
|
-
timestamp: 1749100343118
|
|
416
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pathlib-1.0.1-py_1.tar.bz2
|
|
417
|
-
sha256: ab8c9402ef7d8e8b23b66f27a5e9eafd63d3193c6531a62b4ae9b8a949f356e7
|
|
418
|
-
md5: 930df2b5ca63ffdd1dd5f8b235f344a2
|
|
419
|
-
depends:
|
|
420
|
-
- python
|
|
421
|
-
license: MIT
|
|
422
|
-
license_family: MIT
|
|
423
|
-
size: 14998
|
|
424
|
-
timestamp: 1531194126420
|
|
425
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda
|
|
426
|
-
sha256: 79db7928d13fab2d892592223d7570f5061c192f27b9febd1a418427b719acc6
|
|
427
|
-
md5: 12c566707c80111f9799308d9e265aef
|
|
428
|
-
depends:
|
|
429
|
-
- python >=3.9
|
|
430
|
-
- python
|
|
431
|
-
license: BSD-3-Clause
|
|
432
|
-
license_family: BSD
|
|
433
|
-
size: 110100
|
|
434
|
-
timestamp: 1733195786147
|
|
435
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyh09c184e_7.conda
|
|
436
|
-
sha256: d016e04b0e12063fbee4a2d5fbb9b39a8d191b5a0042f0b8459188aedeabb0ca
|
|
437
|
-
md5: e2fd202833c4a981ce8a65974fe4abd1
|
|
438
|
-
depends:
|
|
439
|
-
- __win
|
|
440
|
-
- python >=3.9
|
|
441
|
-
- win_inet_pton
|
|
442
|
-
license: BSD-3-Clause
|
|
443
|
-
license_family: BSD
|
|
444
|
-
size: 21784
|
|
445
|
-
timestamp: 1733217448189
|
|
446
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/python-3.13.5-h7de537c_102_cp313.conda
|
|
447
|
-
build_number: 102
|
|
448
|
-
sha256: 3de2b9f89b220cb779f6947cf87b328f73d54eed4f7e75a3f9337caeb4443910
|
|
449
|
-
md5: a9a4658f751155c819d6cd4c47f0a4d2
|
|
450
|
-
depends:
|
|
451
|
-
- bzip2 >=1.0.8,<2.0a0
|
|
452
|
-
- libexpat >=2.7.0,<3.0a0
|
|
453
|
-
- libffi >=3.4.6,<3.5.0a0
|
|
454
|
-
- liblzma >=5.8.1,<6.0a0
|
|
455
|
-
- libmpdec >=4.0.0,<5.0a0
|
|
456
|
-
- libsqlite >=3.50.1,<4.0a0
|
|
457
|
-
- libzlib >=1.3.1,<2.0a0
|
|
458
|
-
- openssl >=3.5.0,<4.0a0
|
|
459
|
-
- python_abi 3.13.* *_cp313
|
|
460
|
-
- tk >=8.6.13,<8.7.0a0
|
|
461
|
-
- tzdata
|
|
462
|
-
- ucrt >=10.0.20348.0
|
|
463
|
-
- vc >=14.2,<15
|
|
464
|
-
- vc14_runtime >=14.29.30139
|
|
465
|
-
license: Python-2.0
|
|
466
|
-
size: 16825621
|
|
467
|
-
timestamp: 1750062318985
|
|
468
|
-
python_site_packages_path: Lib/site-packages
|
|
469
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhe01879c_2.conda
|
|
470
|
-
sha256: d6a17ece93bbd5139e02d2bd7dbfa80bee1a4261dced63f65f679121686bf664
|
|
471
|
-
md5: 5b8d21249ff20967101ffa321cab24e8
|
|
472
|
-
depends:
|
|
473
|
-
- python >=3.9
|
|
474
|
-
- six >=1.5
|
|
475
|
-
- python
|
|
476
|
-
license: Apache-2.0
|
|
477
|
-
license_family: APACHE
|
|
478
|
-
size: 233310
|
|
479
|
-
timestamp: 1751104122689
|
|
480
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2025.2-pyhd8ed1ab_0.conda
|
|
481
|
-
sha256: e8392a8044d56ad017c08fec2b0eb10ae3d1235ac967d0aab8bd7b41c4a5eaf0
|
|
482
|
-
md5: 88476ae6ebd24f39261e0854ac244f33
|
|
483
|
-
depends:
|
|
484
|
-
- python >=3.9
|
|
485
|
-
license: Apache-2.0
|
|
486
|
-
license_family: APACHE
|
|
487
|
-
size: 144160
|
|
488
|
-
timestamp: 1742745254292
|
|
489
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.13-7_cp313.conda
|
|
490
|
-
build_number: 7
|
|
491
|
-
sha256: 0595134584589064f56e67d3de1d8fcbb673a972946bce25fb593fb092fdcd97
|
|
492
|
-
md5: e84b44e6300f1703cb25d29120c5b1d8
|
|
493
|
-
constrains:
|
|
494
|
-
- python 3.13.* *_cp313
|
|
495
|
-
license: BSD-3-Clause
|
|
496
|
-
license_family: BSD
|
|
497
|
-
size: 6988
|
|
498
|
-
timestamp: 1745258852285
|
|
499
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2025.2-pyhd8ed1ab_0.conda
|
|
500
|
-
sha256: 8d2a8bf110cc1fc3df6904091dead158ba3e614d8402a83e51ed3a8aa93cdeb0
|
|
501
|
-
md5: bc8e3267d44011051f2eb14d22fb0960
|
|
502
|
-
depends:
|
|
503
|
-
- python >=3.9
|
|
504
|
-
license: MIT
|
|
505
|
-
license_family: MIT
|
|
506
|
-
size: 189015
|
|
507
|
-
timestamp: 1742920947249
|
|
508
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.4-pyhd8ed1ab_0.conda
|
|
509
|
-
sha256: 9866aaf7a13c6cfbe665ec7b330647a0fb10a81e6f9b8fee33642232a1920e18
|
|
510
|
-
md5: f6082eae112814f1447b56a5e1f6ed05
|
|
511
|
-
depends:
|
|
512
|
-
- certifi >=2017.4.17
|
|
513
|
-
- charset-normalizer >=2,<4
|
|
514
|
-
- idna >=2.5,<4
|
|
515
|
-
- python >=3.9
|
|
516
|
-
- urllib3 >=1.21.1,<3
|
|
517
|
-
constrains:
|
|
518
|
-
- chardet >=3.0.2,<6
|
|
519
|
-
license: Apache-2.0
|
|
520
|
-
license_family: APACHE
|
|
521
|
-
size: 59407
|
|
522
|
-
timestamp: 1749498221996
|
|
523
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda
|
|
524
|
-
sha256: 41db0180680cc67c3fa76544ffd48d6a5679d96f4b71d7498a759e94edc9a2db
|
|
525
|
-
md5: a451d576819089b0d672f18768be0f65
|
|
526
|
-
depends:
|
|
527
|
-
- python >=3.9
|
|
528
|
-
license: MIT
|
|
529
|
-
license_family: MIT
|
|
530
|
-
size: 16385
|
|
531
|
-
timestamp: 1733381032766
|
|
532
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/tbb-2021.13.0-h62715c5_1.conda
|
|
533
|
-
sha256: 03cc5442046485b03dd1120d0f49d35a7e522930a2ab82f275e938e17b07b302
|
|
534
|
-
md5: 9190dd0a23d925f7602f9628b3aed511
|
|
535
|
-
depends:
|
|
536
|
-
- libhwloc >=2.11.2,<2.11.3.0a0
|
|
537
|
-
- ucrt >=10.0.20348.0
|
|
538
|
-
- vc >=14.2,<15
|
|
539
|
-
- vc14_runtime >=14.29.30139
|
|
540
|
-
license: Apache-2.0
|
|
541
|
-
license_family: APACHE
|
|
542
|
-
size: 151460
|
|
543
|
-
timestamp: 1732982860332
|
|
544
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/tk-8.6.13-h2c6b04d_2.conda
|
|
545
|
-
sha256: e3614b0eb4abcc70d98eae159db59d9b4059ed743ef402081151a948dce95896
|
|
546
|
-
md5: ebd0e761de9aa879a51d22cc721bd095
|
|
547
|
-
depends:
|
|
548
|
-
- ucrt >=10.0.20348.0
|
|
549
|
-
- vc >=14.2,<15
|
|
550
|
-
- vc14_runtime >=14.29.30139
|
|
551
|
-
license: TCL
|
|
552
|
-
license_family: BSD
|
|
553
|
-
size: 3466348
|
|
554
|
-
timestamp: 1748388121356
|
|
555
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025b-h78e105d_0.conda
|
|
556
|
-
sha256: 5aaa366385d716557e365f0a4e9c3fca43ba196872abbbe3d56bb610d131e192
|
|
557
|
-
md5: 4222072737ccff51314b5ece9c7d6f5a
|
|
558
|
-
license: LicenseRef-Public-Domain
|
|
559
|
-
size: 122968
|
|
560
|
-
timestamp: 1742727099393
|
|
561
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/ucrt-10.0.22621.0-h57928b3_1.conda
|
|
562
|
-
sha256: db8dead3dd30fb1a032737554ce91e2819b43496a0db09927edf01c32b577450
|
|
563
|
-
md5: 6797b005cd0f439c4c5c9ac565783700
|
|
564
|
-
constrains:
|
|
565
|
-
- vs2015_runtime >=14.29.30037
|
|
566
|
-
license: LicenseRef-MicrosoftWindowsSDK10
|
|
567
|
-
size: 559710
|
|
568
|
-
timestamp: 1728377334097
|
|
569
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.5.0-pyhd8ed1ab_0.conda
|
|
570
|
-
sha256: 4fb9789154bd666ca74e428d973df81087a697dbb987775bc3198d2215f240f8
|
|
571
|
-
md5: 436c165519e140cb08d246a4472a9d6a
|
|
572
|
-
depends:
|
|
573
|
-
- brotli-python >=1.0.9
|
|
574
|
-
- h2 >=4,<5
|
|
575
|
-
- pysocks >=1.5.6,<2.0,!=1.5.7
|
|
576
|
-
- python >=3.9
|
|
577
|
-
- zstandard >=0.18.0
|
|
578
|
-
license: MIT
|
|
579
|
-
license_family: MIT
|
|
580
|
-
size: 101735
|
|
581
|
-
timestamp: 1750271478254
|
|
582
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/vc-14.3-h41ae7f8_26.conda
|
|
583
|
-
sha256: b388d88e04aa0257df4c1d28f8d85d985ad07c1e5645aa62335673c98704c4c6
|
|
584
|
-
md5: 18b6bf6f878501547786f7bf8052a34d
|
|
585
|
-
depends:
|
|
586
|
-
- vc14_runtime >=14.44.35208
|
|
587
|
-
track_features:
|
|
588
|
-
- vc14
|
|
589
|
-
license: BSD-3-Clause
|
|
590
|
-
license_family: BSD
|
|
591
|
-
size: 17914
|
|
592
|
-
timestamp: 1750371462857
|
|
593
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/vc14_runtime-14.44.35208-h818238b_26.conda
|
|
594
|
-
sha256: 7bad6e25a7c836d99011aee59dcf600b7f849a6fa5caa05a406255527e80a703
|
|
595
|
-
md5: 14d65350d3f5c8ff163dc4f76d6e2830
|
|
596
|
-
depends:
|
|
597
|
-
- ucrt >=10.0.20348.0
|
|
598
|
-
constrains:
|
|
599
|
-
- vs2015_runtime 14.44.35208.* *_26
|
|
600
|
-
license: LicenseRef-MicrosoftVisualCpp2015-2022Runtime
|
|
601
|
-
license_family: Proprietary
|
|
602
|
-
size: 756109
|
|
603
|
-
timestamp: 1750371459116
|
|
604
|
-
- conda: https://conda.anaconda.org/conda-forge/noarch/win_inet_pton-1.1.0-pyh7428d3b_8.conda
|
|
605
|
-
sha256: 93807369ab91f230cf9e6e2a237eaa812492fe00face5b38068735858fba954f
|
|
606
|
-
md5: 46e441ba871f524e2b067929da3051c2
|
|
607
|
-
depends:
|
|
608
|
-
- __win
|
|
609
|
-
- python >=3.9
|
|
610
|
-
license: LicenseRef-Public-Domain
|
|
611
|
-
size: 9555
|
|
612
|
-
timestamp: 1733130678956
|
|
613
|
-
- conda: https://conda.anaconda.org/conda-forge/win-64/zstandard-0.23.0-py313ha7868ed_2.conda
|
|
614
|
-
sha256: b7bfe264fe3810b1abfe7f80c0f21f470d7cc730ada7ce3b3d08a90cb871999c
|
|
615
|
-
md5: b4d967b4d695a2ba8554738b3649d754
|
|
616
|
-
depends:
|
|
617
|
-
- cffi >=1.11
|
|
618
|
-
- python >=3.13,<3.14.0a0
|
|
619
|
-
- python_abi 3.13.* *_cp313
|
|
620
|
-
- ucrt >=10.0.20348.0
|
|
621
|
-
- vc >=14.2,<15
|
|
622
|
-
- vc14_runtime >=14.29.30139
|
|
623
|
-
license: BSD-3-Clause
|
|
624
|
-
license_family: BSD
|
|
625
|
-
size: 449871
|
|
626
|
-
timestamp: 1745870298072
|
mpcahydro-2.0.1/pixi.toml
DELETED
|
@@ -1,35 +0,0 @@
|
|
|
1
|
-
[workspace]
|
|
2
|
-
preview = ["pixi-build"]
|
|
3
|
-
channels = ["conda-forge"]
|
|
4
|
-
name = "mpcaHydro"
|
|
5
|
-
platforms = ["win-64"]
|
|
6
|
-
version = "0.1.0"
|
|
7
|
-
|
|
8
|
-
[tasks]
|
|
9
|
-
build-wheel = "python -m build --wheel"
|
|
10
|
-
|
|
11
|
-
[dependencies]
|
|
12
|
-
pandas = ">=2.3.0,<3"
|
|
13
|
-
requests = ">=2.32.4,<3"
|
|
14
|
-
pathlib = ">=1.0.1,<2"
|
|
15
|
-
|
|
16
|
-
[package]
|
|
17
|
-
name = "mpcaHydro"
|
|
18
|
-
version = "0.1.0"
|
|
19
|
-
|
|
20
|
-
[package.build]
|
|
21
|
-
backend = { name = "pixi-build-python", version = "0.1.*" }
|
|
22
|
-
channels = [
|
|
23
|
-
"https://prefix.dev/pixi-build-backends",
|
|
24
|
-
"https://prefix.dev/conda-forge",
|
|
25
|
-
]
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
[package.host-dependencies]
|
|
29
|
-
hatchling = "1.26.*"
|
|
30
|
-
|
|
31
|
-
[package.run-dependencies]
|
|
32
|
-
requests = "*"
|
|
33
|
-
pandas = "*"
|
|
34
|
-
pathlib = "*"
|
|
35
|
-
|
|
@@ -1,88 +0,0 @@
|
|
|
1
|
-
# -*- coding: utf-8 -*-
|
|
2
|
-
"""
|
|
3
|
-
Created on Tue Oct 10 14:13:23 2023
|
|
4
|
-
|
|
5
|
-
@author: mfratki
|
|
6
|
-
"""
|
|
7
|
-
|
|
8
|
-
import pandas as pd
|
|
9
|
-
# import geopandas as gpd
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
CONSITUENT_MAP = {'Water Temp. (C)': 'WT',
|
|
13
|
-
'Discharge (cfs)': 'Q',
|
|
14
|
-
'DO (mg/L)': 'DO'
|
|
15
|
-
}
|
|
16
|
-
|
|
17
|
-
def download(station_no):
|
|
18
|
-
# save_path = Path(save_path)
|
|
19
|
-
# file_path = save_path.joinpath('csg.csv')
|
|
20
|
-
|
|
21
|
-
station = station_no[1:]
|
|
22
|
-
df = pd.read_csv(f'https://maps2.dnr.state.mn.us/cgi-bin/csg.cgi?mode=dump_hydro_data_as_csv&site={station}&startdate=1996-1-1&enddate=2050-1-1')
|
|
23
|
-
df['station_id'] = station_no
|
|
24
|
-
|
|
25
|
-
return df
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
# def process(df):
|
|
30
|
-
# df['Timestamp'] = pd.to_datetime(df['Timestamp'])
|
|
31
|
-
# df.set_index('Timestamp',inplace=True)
|
|
32
|
-
# value_variables = [column for column in df.columns if (column not in ['Site','Timestamp','station_no']) & ~(column.endswith('Quality'))]
|
|
33
|
-
|
|
34
|
-
# test = df[value_variables].resample(rule='1H', kind='interval').mean().dropna()
|
|
35
|
-
# df = df['Value'].resample(rule='1H', kind='interval').mean().to_frame()
|
|
36
|
-
|
|
37
|
-
def transform(data):
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
data['Timestamp'] = pd.to_datetime(data['Timestamp'])
|
|
41
|
-
data['Timestamp'].dt.tz_localize('UTC')
|
|
42
|
-
|
|
43
|
-
id_columns = ['Timestamp','station_id']
|
|
44
|
-
quality_columns = ['Water Temp. (C) Quality',
|
|
45
|
-
'Discharge (cfs) Quality',
|
|
46
|
-
'DO (mg/L) Quality']
|
|
47
|
-
|
|
48
|
-
value_columns = ['Water Temp. (C)',
|
|
49
|
-
'Discharge (cfs)',
|
|
50
|
-
'DO (mg/L)']
|
|
51
|
-
|
|
52
|
-
value_columns = [column for column in data.columns if column in value_columns]
|
|
53
|
-
quality_columns = [column for column in data.columns if column in quality_columns]
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
data_melt = pd.melt(data,col_level=0,id_vars = id_columns,value_vars = value_columns)
|
|
58
|
-
data_melt['Quality'] = pd.melt(data,col_level=0,id_vars = id_columns,value_vars = quality_columns)['value']
|
|
59
|
-
|
|
60
|
-
data_melt.rename(columns = {'Timestamp': 'datetime',
|
|
61
|
-
'Value': 'value',
|
|
62
|
-
'stationparameter_name': 'variable',
|
|
63
|
-
'station_no': 'station_id',
|
|
64
|
-
'Quality' : 'quality'},inplace = True)
|
|
65
|
-
|
|
66
|
-
data_melt['unit'] = data_melt['variable'].map({'Water Temp. (C)' : 'C',
|
|
67
|
-
'Discharge (cfs)' : 'cfs',
|
|
68
|
-
'DO (mg/L)' : 'mg/L'})
|
|
69
|
-
|
|
70
|
-
data_melt['constituent'] = data_melt['variable'].map({'Water Temp. (C)' : 'WT',
|
|
71
|
-
'Discharge (cfs)' : 'Q',
|
|
72
|
-
'DO (mg/L)' : 'DO'})
|
|
73
|
-
|
|
74
|
-
data_melt.dropna(subset = 'value',inplace=True)
|
|
75
|
-
data['source'] = 'csg'
|
|
76
|
-
return data_melt
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
def load(data,file_path):
|
|
83
|
-
|
|
84
|
-
data.to_csv(file_path)
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|