morphgen-rates 0.3.0__tar.gz → 0.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {morphgen_rates-0.3.0/src/morphgen_rates.egg-info → morphgen_rates-0.5.0}/PKG-INFO +1 -1
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/pyproject.toml +1 -1
- morphgen_rates-0.5.0/src/morphgen_rates/__init__.py +4 -0
- morphgen_rates-0.5.0/src/morphgen_rates/data.py +145 -0
- morphgen_rates-0.5.0/src/morphgen_rates/init_count.py +208 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0/src/morphgen_rates.egg-info}/PKG-INFO +1 -1
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/src/morphgen_rates.egg-info/SOURCES.txt +3 -1
- morphgen_rates-0.5.0/tests/test_primary_count.py +38 -0
- morphgen_rates-0.5.0/tests/test_rates.py +23 -0
- morphgen_rates-0.3.0/src/morphgen_rates/__init__.py +0 -3
- morphgen_rates-0.3.0/src/morphgen_rates/data.py +0 -147
- morphgen_rates-0.3.0/tests/test.py +0 -14
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/LICENSE +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/README.md +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/setup.cfg +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/src/morphgen_rates/rates.py +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/src/morphgen_rates.egg-info/dependency_links.txt +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/src/morphgen_rates.egg-info/requires.txt +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/src/morphgen_rates.egg-info/top_level.txt +0 -0
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "morphgen-rates"
|
|
7
|
-
version = "0.
|
|
7
|
+
version = "0.5.0"
|
|
8
8
|
description = "Compute bifurcation and annihilation rates from morphology data"
|
|
9
9
|
authors = [
|
|
10
10
|
{ name = "Francesco Cavarretta", email = "fcavarretta@ualr.edu" },
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def _local_data_path(filename='morph_data', ext="csv"):
|
|
6
|
+
"""
|
|
7
|
+
Build a path like: <this_file_dir>/data/<filename>.<ext>
|
|
8
|
+
|
|
9
|
+
Parameters
|
|
10
|
+
----------
|
|
11
|
+
filename : str
|
|
12
|
+
Base filename (without extension)
|
|
13
|
+
ext : str, default "csv"
|
|
14
|
+
File extension (without the dot)
|
|
15
|
+
|
|
16
|
+
Returns
|
|
17
|
+
-------
|
|
18
|
+
pathlib.Path
|
|
19
|
+
Full path to the data file
|
|
20
|
+
"""
|
|
21
|
+
work_dir = Path(__file__).resolve().parent
|
|
22
|
+
return work_dir / f"{filename}.{ext}"
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_data(area, neuron_type):
|
|
26
|
+
"""
|
|
27
|
+
Retrieve summary morphology statistics for a given brain area and neuron class.
|
|
28
|
+
|
|
29
|
+
This function loads a local CSV dataset, filters rows matching the requested
|
|
30
|
+
`area` and `neuron_type`, and aggregates statistics by `section_type`. The
|
|
31
|
+
output is a nested dictionary keyed by section type (e.g., soma, apical, basal),
|
|
32
|
+
containing:
|
|
33
|
+
|
|
34
|
+
- Summary statistics for bifurcation counts and total length
|
|
35
|
+
- Estimated number of primary neurites at the soma (Count0)
|
|
36
|
+
- Sholl plot summary statistics (bin size, mean counts, standard deviation)
|
|
37
|
+
|
|
38
|
+
Parameters
|
|
39
|
+
----------
|
|
40
|
+
area : str
|
|
41
|
+
Brain region identifier used in the dataset (must match values in the
|
|
42
|
+
'area' column of the CSV)
|
|
43
|
+
neuron_type : str
|
|
44
|
+
Neuron class identifier used in the dataset (must match values in the
|
|
45
|
+
'neuron_type' column of the CSV)
|
|
46
|
+
|
|
47
|
+
Returns
|
|
48
|
+
-------
|
|
49
|
+
dict
|
|
50
|
+
Nested dictionary structured as:
|
|
51
|
+
|
|
52
|
+
data = {
|
|
53
|
+
"<section_type>": {
|
|
54
|
+
"bifurcation_count": {"mean": ..., "std": ..., "min": ..., "max": ...},
|
|
55
|
+
"total_length": {"mean": ..., "std": ..., "min": ..., "max": ...},
|
|
56
|
+
"primary_count": {"mean": ..., "std": ..., "min": ..., "max": ...},
|
|
57
|
+
"sholl_plot": {
|
|
58
|
+
"bin_size": float,
|
|
59
|
+
"mean": list[float],
|
|
60
|
+
"std": list[float],
|
|
61
|
+
},
|
|
62
|
+
},
|
|
63
|
+
...
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
Notes on fields:
|
|
67
|
+
- `primary_count` corresponds to the row group labeled 'Count0'
|
|
68
|
+
- Sholl values are collected from rows whose metric name starts with 'Count'
|
|
69
|
+
(including 'Count0'); users may want to interpret/plot them as a function
|
|
70
|
+
of radial bin index multiplied by `bin_size`
|
|
71
|
+
|
|
72
|
+
Raises
|
|
73
|
+
------
|
|
74
|
+
AssertionError
|
|
75
|
+
If no rows match the requested `area` and `neuron_type`
|
|
76
|
+
|
|
77
|
+
Notes
|
|
78
|
+
-----
|
|
79
|
+
- The function expects the local CSV to include at least the following columns:
|
|
80
|
+
'area', 'neuron_type', 'neuron_name', 'section_type', 'bin_size'
|
|
81
|
+
plus metric columns including:
|
|
82
|
+
- 'bifurcation_count'
|
|
83
|
+
- 'total_length'
|
|
84
|
+
- 'Count0', 'Count1', ... (Sholl counts per radial bin)
|
|
85
|
+
- Statistics are computed using `pandas.DataFrame.groupby(...).describe()`.
|
|
86
|
+
Only the summary columns 'mean', 'std', 'min', 'max' are retained.
|
|
87
|
+
|
|
88
|
+
Examples
|
|
89
|
+
--------
|
|
90
|
+
>>> data = get_data("CTX", "pyr")
|
|
91
|
+
>>> data["apical"]["bifurcation_count"]["mean"]
|
|
92
|
+
42.0
|
|
93
|
+
>>> data["apical"]["sholl_plot"]["bin_size"]
|
|
94
|
+
50.0
|
|
95
|
+
>>> len(data["apical"]["sholl_plot"]["mean"])
|
|
96
|
+
20
|
|
97
|
+
"""
|
|
98
|
+
|
|
99
|
+
data = {}
|
|
100
|
+
|
|
101
|
+
area, neuron_type = parts
|
|
102
|
+
|
|
103
|
+
# load data
|
|
104
|
+
df = pd.read_csv(_local_data_path(), index_col=0)
|
|
105
|
+
|
|
106
|
+
# select specific area and neuron type
|
|
107
|
+
df = df[(df['area'] == area) & (df['neuron_type'] == neuron_type)]
|
|
108
|
+
|
|
109
|
+
# ensure that there are area and neuron_type in the df
|
|
110
|
+
assert df.shape[0] > 0, "The area {area} or neuron class {neuron_type} are not known"
|
|
111
|
+
|
|
112
|
+
# neuron name unnecessary
|
|
113
|
+
df.drop(['area', 'neuron_type', 'neuron_name'], axis=1, inplace=True)
|
|
114
|
+
|
|
115
|
+
# statistics
|
|
116
|
+
df = df.groupby('section_type').describe()
|
|
117
|
+
|
|
118
|
+
# select only a subset of columns
|
|
119
|
+
df = df.loc[:, df.columns.get_level_values(1).isin(['mean', 'std', 'min', 'max'])]
|
|
120
|
+
|
|
121
|
+
# get subsections
|
|
122
|
+
for section_type, row in df.iterrows():
|
|
123
|
+
data[section_type] = {}
|
|
124
|
+
|
|
125
|
+
# get statistics
|
|
126
|
+
for data_type in ['bifurcation_count', 'total_length']:
|
|
127
|
+
tmp = row.loc[row.index.get_level_values(0) == data_type, :]
|
|
128
|
+
tmp.index = tmp.index.droplevel(0)
|
|
129
|
+
data[section_type][data_type] = tmp.to_dict()
|
|
130
|
+
|
|
131
|
+
# count neurites at the soma
|
|
132
|
+
tmp = row.loc[row.index.get_level_values(0) == 'Count0', :]
|
|
133
|
+
tmp.index = tmp.index.droplevel(0)
|
|
134
|
+
data[section_type]['primary_count'] = tmp.to_dict()
|
|
135
|
+
|
|
136
|
+
# sholl plots
|
|
137
|
+
tmp = row.loc[row.index.get_level_values(0).str.startswith('Count'), :]
|
|
138
|
+
data[section_type]['sholl_plot'] = {
|
|
139
|
+
'bin_size':row[('bin_size', 'mean')].tolist(),
|
|
140
|
+
'mean':tmp.loc[tmp.index.get_level_values(1) == 'mean', :].tolist(),
|
|
141
|
+
'std':tmp.loc[tmp.index.get_level_values(1) == 'std', :].tolist()
|
|
142
|
+
}
|
|
143
|
+
|
|
144
|
+
return data
|
|
145
|
+
|
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Dict, Optional, Sequence, Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pyomo.environ as pyo
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def compute_init_number_probs(
|
|
10
|
+
mean_primary_dendrites: float,
|
|
11
|
+
sd_primary_dendrites: float,
|
|
12
|
+
min_primary_dendrites: int,
|
|
13
|
+
max_primary_dendrites: int,
|
|
14
|
+
*,
|
|
15
|
+
support_values: Optional[Sequence[float]] = None,
|
|
16
|
+
epsilon: float = 1e-12,
|
|
17
|
+
slack_penalty: float = 1e-1,
|
|
18
|
+
use_variance_form: bool = True,
|
|
19
|
+
use_abs_slack: bool = False,
|
|
20
|
+
solver: str = "ipopt",
|
|
21
|
+
solver_options: Optional[Dict[str, Union[str, int, float]]] = None,
|
|
22
|
+
) -> np.ndarray:
|
|
23
|
+
"""
|
|
24
|
+
Maximum-entropy PMF for the (discrete) number of primary dendrites.
|
|
25
|
+
|
|
26
|
+
This returns a numpy array p of length n = max_primary_dendrites + 1, where:
|
|
27
|
+
- p[i] is the probability of observing i primary dendrites
|
|
28
|
+
- p[i] = 0 for i < min_primary_dendrites or i > max_primary_dendrites
|
|
29
|
+
|
|
30
|
+
The distribution is obtained by maximizing Shannon entropy:
|
|
31
|
+
H(p) = -sum_i p[i] * log(p[i])
|
|
32
|
+
|
|
33
|
+
Subject to:
|
|
34
|
+
- Normalization: sum_{i in [min,max]} p[i] = 1
|
|
35
|
+
- Soft mean constraint (with slack):
|
|
36
|
+
sum i*p[i] - mean_primary_dendrites = slack_mean
|
|
37
|
+
- Soft dispersion constraint (with slack):
|
|
38
|
+
If use_variance_form=True (recommended):
|
|
39
|
+
sum (i-mean)^2 * p[i] - (sd_primary_dendrites^2) = slack_disp
|
|
40
|
+
If use_variance_form=False:
|
|
41
|
+
sqrt( sum (i-mean)^2 * p[i] + tiny ) - sd_primary_dendrites = slack_disp
|
|
42
|
+
|
|
43
|
+
The objective is penalized to keep slacks small:
|
|
44
|
+
maximize H(p) - slack_penalty * (slack terms)
|
|
45
|
+
|
|
46
|
+
Parameters
|
|
47
|
+
----------
|
|
48
|
+
mean_primary_dendrites : float
|
|
49
|
+
Target mean number of primary dendrites
|
|
50
|
+
sd_primary_dendrites : float
|
|
51
|
+
Target standard deviation (>= 0)
|
|
52
|
+
min_primary_dendrites : int
|
|
53
|
+
Minimum allowed dendrite count (inclusive)
|
|
54
|
+
max_primary_dendrites : int
|
|
55
|
+
Maximum allowed dendrite count (inclusive). Also sets array length n=max+1
|
|
56
|
+
|
|
57
|
+
Keyword-only parameters
|
|
58
|
+
----------------------
|
|
59
|
+
support_values : Sequence[float] | None
|
|
60
|
+
Optional support for indices 0..max. If None, uses support=i (integers).
|
|
61
|
+
Keep this None if you truly mean "i is the dendrite count".
|
|
62
|
+
epsilon : float
|
|
63
|
+
Lower bound on active probabilities to avoid log(0)
|
|
64
|
+
slack_penalty : float
|
|
65
|
+
Larger values enforce closer moment matching
|
|
66
|
+
use_variance_form : bool
|
|
67
|
+
Recommended True: match variance to sd^2 (smoother than sqrt constraint)
|
|
68
|
+
use_abs_slack : bool
|
|
69
|
+
If True, use L1-like slack penalty via +/- variables; otherwise squared (smooth)
|
|
70
|
+
solver : str
|
|
71
|
+
Nonlinear solver name (typically "ipopt")
|
|
72
|
+
solver_options : dict | None
|
|
73
|
+
Passed to the solver (e.g., {"max_iter": 5000})
|
|
74
|
+
|
|
75
|
+
Returns
|
|
76
|
+
-------
|
|
77
|
+
np.ndarray
|
|
78
|
+
Probability vector p with length max_primary_dendrites + 1
|
|
79
|
+
|
|
80
|
+
Raises
|
|
81
|
+
------
|
|
82
|
+
ValueError
|
|
83
|
+
For invalid inputs
|
|
84
|
+
RuntimeError
|
|
85
|
+
If the requested solver is not available
|
|
86
|
+
"""
|
|
87
|
+
if max_primary_dendrites < 0:
|
|
88
|
+
raise ValueError("max_primary_dendrites must be >= 0")
|
|
89
|
+
if sd_primary_dendrites < 0:
|
|
90
|
+
raise ValueError("sd_primary_dendrites must be nonnegative")
|
|
91
|
+
if not (0 <= min_primary_dendrites <= max_primary_dendrites):
|
|
92
|
+
raise ValueError("Require 0 <= min_primary_dendrites <= max_primary_dendrites")
|
|
93
|
+
if slack_penalty <= 0:
|
|
94
|
+
raise ValueError("slack_penalty must be positive")
|
|
95
|
+
if epsilon <= 0:
|
|
96
|
+
raise ValueError("epsilon must be positive")
|
|
97
|
+
|
|
98
|
+
n = max_primary_dendrites + 1
|
|
99
|
+
active = list(range(min_primary_dendrites, max_primary_dendrites + 1))
|
|
100
|
+
|
|
101
|
+
# Support values for each index i (default: i itself)
|
|
102
|
+
if support_values is None:
|
|
103
|
+
support_values = list(range(n))
|
|
104
|
+
if len(support_values) != n:
|
|
105
|
+
raise ValueError("support_values must have length n = max_primary_dendrites + 1")
|
|
106
|
+
|
|
107
|
+
support = {i: float(support_values[i]) for i in range(n)}
|
|
108
|
+
mu = float(mean_primary_dendrites)
|
|
109
|
+
sd = float(sd_primary_dendrites)
|
|
110
|
+
target_var = sd * sd
|
|
111
|
+
|
|
112
|
+
# -----------------------------
|
|
113
|
+
# Pyomo model
|
|
114
|
+
# -----------------------------
|
|
115
|
+
m = pyo.ConcreteModel()
|
|
116
|
+
m.A = pyo.Set(initialize=active, ordered=True)
|
|
117
|
+
|
|
118
|
+
# Decision variables for active probabilities only
|
|
119
|
+
m.p = pyo.Var(m.A, domain=pyo.NonNegativeReals, bounds=(epsilon, 1.0))
|
|
120
|
+
|
|
121
|
+
# Normalization over active set
|
|
122
|
+
m.norm = pyo.Constraint(expr=sum(m.p[i] for i in m.A) == 1.0)
|
|
123
|
+
|
|
124
|
+
# Moment expressions
|
|
125
|
+
mean_expr = sum(support[i] * m.p[i] for i in m.A)
|
|
126
|
+
var_expr = sum((support[i] - mu) ** 2 * m.p[i] for i in m.A)
|
|
127
|
+
|
|
128
|
+
# Soft constraints with slack
|
|
129
|
+
if use_abs_slack:
|
|
130
|
+
# L1 slack via +/- decomposition
|
|
131
|
+
m.s_mean_pos = pyo.Var(domain=pyo.NonNegativeReals)
|
|
132
|
+
m.s_mean_neg = pyo.Var(domain=pyo.NonNegativeReals)
|
|
133
|
+
m.s_disp_pos = pyo.Var(domain=pyo.NonNegativeReals)
|
|
134
|
+
m.s_disp_neg = pyo.Var(domain=pyo.NonNegativeReals)
|
|
135
|
+
|
|
136
|
+
m.mean_soft = pyo.Constraint(expr=mean_expr - mu == m.s_mean_pos - m.s_mean_neg)
|
|
137
|
+
|
|
138
|
+
if use_variance_form:
|
|
139
|
+
m.disp_soft = pyo.Constraint(expr=var_expr - target_var == m.s_disp_pos - m.s_disp_neg)
|
|
140
|
+
else:
|
|
141
|
+
tiny = 1e-18
|
|
142
|
+
m.disp_soft = pyo.Constraint(
|
|
143
|
+
expr=pyo.sqrt(var_expr + tiny) - sd == m.s_disp_pos - m.s_disp_neg
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
slack_term = (m.s_mean_pos + m.s_mean_neg) + (m.s_disp_pos + m.s_disp_neg)
|
|
147
|
+
|
|
148
|
+
else:
|
|
149
|
+
# Smooth squared slacks
|
|
150
|
+
m.s_mean = pyo.Var(domain=pyo.Reals)
|
|
151
|
+
m.s_disp = pyo.Var(domain=pyo.Reals)
|
|
152
|
+
|
|
153
|
+
m.mean_soft = pyo.Constraint(expr=mean_expr - mu == m.s_mean)
|
|
154
|
+
|
|
155
|
+
if use_variance_form:
|
|
156
|
+
m.disp_soft = pyo.Constraint(expr=var_expr - target_var == m.s_disp)
|
|
157
|
+
else:
|
|
158
|
+
tiny = 1e-18
|
|
159
|
+
m.disp_soft = pyo.Constraint(expr=pyo.sqrt(var_expr + tiny) - sd == m.s_disp)
|
|
160
|
+
|
|
161
|
+
slack_term = m.s_mean**2 + m.s_disp**2
|
|
162
|
+
|
|
163
|
+
# Entropy objective (active probs only; inactive probs are exactly 0)
|
|
164
|
+
entropy = -sum(m.p[i] * pyo.log(m.p[i]) for i in m.A)
|
|
165
|
+
m.obj = pyo.Objective(expr=entropy - float(slack_penalty) * slack_term, sense=pyo.maximize)
|
|
166
|
+
|
|
167
|
+
# Solve
|
|
168
|
+
opt = pyo.SolverFactory(solver)
|
|
169
|
+
if opt is None or not opt.available():
|
|
170
|
+
raise RuntimeError(
|
|
171
|
+
f"Solver '{solver}' is not available. Install/configure it (e.g., ipopt) "
|
|
172
|
+
"or pass a different solver name."
|
|
173
|
+
)
|
|
174
|
+
if solver_options:
|
|
175
|
+
for k, v in solver_options.items():
|
|
176
|
+
opt.options[k] = v
|
|
177
|
+
|
|
178
|
+
res = opt.solve(m, tee=False)
|
|
179
|
+
|
|
180
|
+
# -----------------------------
|
|
181
|
+
# Extract solution into numpy array
|
|
182
|
+
# -----------------------------
|
|
183
|
+
p = np.zeros(n, dtype=float)
|
|
184
|
+
for i in active:
|
|
185
|
+
p[i] = float(pyo.value(m.p[i]))
|
|
186
|
+
|
|
187
|
+
# Optional: renormalize tiny numerical drift (keeps zeros outside band)
|
|
188
|
+
s = p.sum()
|
|
189
|
+
if s > 0:
|
|
190
|
+
p[active] /= s
|
|
191
|
+
|
|
192
|
+
return p
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
if __name__ == "__main__":
|
|
196
|
+
p = maxent_primary_dendrite_pmf(
|
|
197
|
+
mean_primary_dendrites=2.33,
|
|
198
|
+
sd_primary_dendrites=1.53,
|
|
199
|
+
min_primary_dendrites=1,
|
|
200
|
+
max_primary_dendrites=4,
|
|
201
|
+
slack_penalty=0.1,
|
|
202
|
+
use_variance_form=True,
|
|
203
|
+
use_abs_slack=False,
|
|
204
|
+
solver="ipopt",
|
|
205
|
+
)
|
|
206
|
+
print("p shape:", p.shape)
|
|
207
|
+
print("sum:", p.sum())
|
|
208
|
+
print(p)
|
|
@@ -3,10 +3,12 @@ README.md
|
|
|
3
3
|
pyproject.toml
|
|
4
4
|
src/morphgen_rates/__init__.py
|
|
5
5
|
src/morphgen_rates/data.py
|
|
6
|
+
src/morphgen_rates/init_count.py
|
|
6
7
|
src/morphgen_rates/rates.py
|
|
7
8
|
src/morphgen_rates.egg-info/PKG-INFO
|
|
8
9
|
src/morphgen_rates.egg-info/SOURCES.txt
|
|
9
10
|
src/morphgen_rates.egg-info/dependency_links.txt
|
|
10
11
|
src/morphgen_rates.egg-info/requires.txt
|
|
11
12
|
src/morphgen_rates.egg-info/top_level.txt
|
|
12
|
-
tests/
|
|
13
|
+
tests/test_primary_count.py
|
|
14
|
+
tests/test_rates.py
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Minimal test example: empirical distribution of primary dendrites.
|
|
3
|
+
|
|
4
|
+
This script loads summary statistics for aPC pyramidal neurons (apical dendrite),
|
|
5
|
+
extracts the primary dendrite stats (Count0), and converts them into a discrete
|
|
6
|
+
probability distribution using `compute_init_number_probs`.
|
|
7
|
+
|
|
8
|
+
`probs[i]` is the probability of generating i primary dendrites.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from morphgen_rates import get_data, compute_init_number_probs
|
|
12
|
+
|
|
13
|
+
if __name__ == "__main__":
|
|
14
|
+
# Load summary statistics and select the apical dendrite section
|
|
15
|
+
data = get_data("aPC", "PYR")["apical_dendrite"]
|
|
16
|
+
|
|
17
|
+
# Primary dendrite stats (derived from Count0)
|
|
18
|
+
stats = data["primary_count"]
|
|
19
|
+
|
|
20
|
+
mean_primary = float(stats["mean"])
|
|
21
|
+
sd_primary = float(stats["std"])
|
|
22
|
+
min_primary = int(stats["min"])
|
|
23
|
+
max_primary = int(stats["max"])
|
|
24
|
+
|
|
25
|
+
probs = compute_init_number_probs(
|
|
26
|
+
mean_primary_dendrites=mean_primary,
|
|
27
|
+
sd_primary_dendrites=sd_primary,
|
|
28
|
+
min_primary_dendrites=min_primary,
|
|
29
|
+
max_primary_dendrites=max_primary,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
print("Primary dendrite stats:")
|
|
33
|
+
print(f" mean={mean_primary}, std={sd_primary}, min={min_primary}, max={max_primary}")
|
|
34
|
+
|
|
35
|
+
print("\nP(# primary dendrites = i):")
|
|
36
|
+
for i, p in enumerate(probs):
|
|
37
|
+
if p > 0:
|
|
38
|
+
print(f" i={i}: {p:.6f}")
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Minimal test example: compute bifurcation and annihilation rates from packaged data.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from morphgen_rates import compute_rates, get_data
|
|
6
|
+
|
|
7
|
+
if __name__ == "__main__":
|
|
8
|
+
# Load summary statistics for aPC pyramidal neurons and select the apical dendrite section
|
|
9
|
+
data = get_data("aPC", "PYR")["apical_dendrite"]
|
|
10
|
+
|
|
11
|
+
# (Optional) inspect the input dictionary used by the estimator
|
|
12
|
+
print("Input data keys:", list(data.keys()))
|
|
13
|
+
print("Sholl bin size:", data["sholl"]["bin_size"])
|
|
14
|
+
|
|
15
|
+
# Maximum advancement (distance from soma) allowed for one elongation step
|
|
16
|
+
max_step_size = 5.0
|
|
17
|
+
|
|
18
|
+
# Estimate rates
|
|
19
|
+
rates = compute_rates(data, max_step_size=max_step_size)
|
|
20
|
+
|
|
21
|
+
print("Bifurcation rate:", rates.get("bifurcation_rate"))
|
|
22
|
+
print("Annihilation rate:", rates.get("annihilation_rate"))
|
|
23
|
+
|
|
@@ -1,147 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
from pathlib import Path
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
def _local_data_path(filename='morph_data', ext="csv"):
|
|
6
|
-
"""
|
|
7
|
-
Build a path like: <this_file_dir>/data/<filename>.<ext>
|
|
8
|
-
|
|
9
|
-
Parameters
|
|
10
|
-
----------
|
|
11
|
-
filename : str
|
|
12
|
-
Base filename (without extension)
|
|
13
|
-
ext : str, default "csv"
|
|
14
|
-
File extension (without the dot)
|
|
15
|
-
|
|
16
|
-
Returns
|
|
17
|
-
-------
|
|
18
|
-
pathlib.Path
|
|
19
|
-
Full path to the data file
|
|
20
|
-
"""
|
|
21
|
-
work_dir = Path(__file__).resolve().parent
|
|
22
|
-
return work_dir / f"{filename}.{ext}"
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
def get_data(key):
|
|
26
|
-
"""
|
|
27
|
-
Retrieve a dataset entry using a key-path of the form
|
|
28
|
-
"<brain region>/<neuron class>/<subcellular section>".
|
|
29
|
-
|
|
30
|
-
The argument `data_path` is interpreted as a slash-separated path of keys used
|
|
31
|
-
to traverse a nested dataset dictionary. The selected dataset is expected to
|
|
32
|
-
contain both Sholl-plot statistics and bifurcation statistics; when both are
|
|
33
|
-
available, this function returns a standardized dictionary compatible with
|
|
34
|
-
`compute_rates`.
|
|
35
|
-
|
|
36
|
-
Parameters
|
|
37
|
-
----------
|
|
38
|
-
key : str
|
|
39
|
-
Dataset identifier expressed as a key path:
|
|
40
|
-
|
|
41
|
-
"<brain region>/<neuron class>/<subcellular section>"
|
|
42
|
-
|
|
43
|
-
Examples:
|
|
44
|
-
- "CTX/pyr/apical"
|
|
45
|
-
- "HPC/pyr/basal"
|
|
46
|
-
|
|
47
|
-
Each component is used as a successive key lookup into the nested dataset
|
|
48
|
-
container.
|
|
49
|
-
|
|
50
|
-
Returns
|
|
51
|
-
-------
|
|
52
|
-
dict
|
|
53
|
-
If both Sholl and bifurcation information are present for the selected dataset,
|
|
54
|
-
returns:
|
|
55
|
-
|
|
56
|
-
data = {
|
|
57
|
-
"sholl": {
|
|
58
|
-
"bin_size": float,
|
|
59
|
-
"mean": numpy.ndarray, # shape (K,)
|
|
60
|
-
"var": numpy.ndarray, # shape (K,)
|
|
61
|
-
},
|
|
62
|
-
"bifurcations": {
|
|
63
|
-
"mean": float,
|
|
64
|
-
"var": float,
|
|
65
|
-
},
|
|
66
|
-
}
|
|
67
|
-
|
|
68
|
-
Where:
|
|
69
|
-
- `data["sholl"]["bin_size"]` is the spatial bin size used to define Sholl shells
|
|
70
|
-
- `data["sholl"]["mean"]` is the mean Sholl intersection count per radial bin
|
|
71
|
-
- `data["sholl"]["var"]` is the variance of the Sholl intersection count per bin
|
|
72
|
-
- `data["bifurcations"]["mean"]` is the mean bifurcation count
|
|
73
|
-
- `data["bifurcations"]["var"]` is the variance of the bifurcation count
|
|
74
|
-
|
|
75
|
-
Raises
|
|
76
|
-
------
|
|
77
|
-
KeyError
|
|
78
|
-
If any key along `data_path` is missing (brain region, neuron class, or section)
|
|
79
|
-
ValueError
|
|
80
|
-
If the selected dataset does not contain both Sholl and bifurcation data, or
|
|
81
|
-
if the provided arrays have incompatible shapes
|
|
82
|
-
|
|
83
|
-
Notes
|
|
84
|
-
-----
|
|
85
|
-
- `data_path` is a *key path*, not a filesystem path
|
|
86
|
-
- The function assumes the dataset entry referenced by `data_path` includes:
|
|
87
|
-
- Sholl bin size, mean array, variance array
|
|
88
|
-
- Bifurcation mean and variance
|
|
89
|
-
|
|
90
|
-
Examples
|
|
91
|
-
--------
|
|
92
|
-
>>> data = get("CTX/pyr/apical")
|
|
93
|
-
>>> data["sholl"]["bin_size"]
|
|
94
|
-
50.0
|
|
95
|
-
>>> data["bifurcations"]["mean"]
|
|
96
|
-
12.3
|
|
97
|
-
"""
|
|
98
|
-
data = {}
|
|
99
|
-
|
|
100
|
-
# split the key
|
|
101
|
-
parts = tuple(p.strip() for p in key.split("/") if p.strip())
|
|
102
|
-
if len(parts) != 2:
|
|
103
|
-
raise ValueError(f"Expected key like 'area/neuron_type', got: {key!r}")
|
|
104
|
-
area, neuron_type = parts
|
|
105
|
-
|
|
106
|
-
# load data
|
|
107
|
-
df = pd.read_csv(_local_data_path(), index_col=0)
|
|
108
|
-
|
|
109
|
-
# select specific area and neuron type
|
|
110
|
-
df = df[(df['area'] == area) & (df['neuron_type'] == neuron_type)]
|
|
111
|
-
|
|
112
|
-
# neuron name unnecessary
|
|
113
|
-
df.drop(['area', 'neuron_type', 'neuron_name'], axis=1, inplace=True)
|
|
114
|
-
|
|
115
|
-
# statistics
|
|
116
|
-
df = df.groupby('section_type').describe()
|
|
117
|
-
|
|
118
|
-
# select only a subset of columns
|
|
119
|
-
df = df.loc[:, df.columns.get_level_values(1).isin(['mean', 'std', 'min', 'max'])]
|
|
120
|
-
|
|
121
|
-
# get subsections
|
|
122
|
-
for section_type, row in df.iterrows():
|
|
123
|
-
data[section_type] = {}
|
|
124
|
-
|
|
125
|
-
print()
|
|
126
|
-
|
|
127
|
-
# get statistics
|
|
128
|
-
for data_type in ['bifurcation_count', 'total_length']:
|
|
129
|
-
tmp = row.loc[row.index.get_level_values(0) == data_type, :]
|
|
130
|
-
tmp.index = tmp.index.droplevel(0)
|
|
131
|
-
data[section_type][data_type] = tmp.to_dict()
|
|
132
|
-
|
|
133
|
-
# count neurites at the soma
|
|
134
|
-
tmp = row.loc[row.index.get_level_values(0) == 'Count0', :]
|
|
135
|
-
tmp.index = tmp.index.droplevel(0)
|
|
136
|
-
data[section_type]['primary_count'] = tmp.to_dict()
|
|
137
|
-
|
|
138
|
-
# sholl plots
|
|
139
|
-
tmp = row.loc[row.index.get_level_values(0).str.startswith('Count'), :]
|
|
140
|
-
data[section_type]['sholl_plot'] = {
|
|
141
|
-
'bin_size':row[('bin_size', 'mean')].tolist(),
|
|
142
|
-
'mean':tmp.loc[tmp.index.get_level_values(1) == 'mean', :].tolist(),
|
|
143
|
-
'std':tmp.loc[tmp.index.get_level_values(1) == 'std', :].tolist()
|
|
144
|
-
}
|
|
145
|
-
|
|
146
|
-
return data
|
|
147
|
-
|
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
import pandas as pd
|
|
2
|
-
from morphgen_rates import compute_rates, get_data
|
|
3
|
-
|
|
4
|
-
# Bundle inputs exactly as loaded (no preprocessing)
|
|
5
|
-
data = get_data('aPC/PYR')['apical_dendrite']
|
|
6
|
-
|
|
7
|
-
print(data)
|
|
8
|
-
|
|
9
|
-
max_step_size = 5.
|
|
10
|
-
|
|
11
|
-
rates = compute_rates(data, max_step_size=max_step_size)
|
|
12
|
-
|
|
13
|
-
print("Bifurcation rate:", rates.get("bifurcation_rate"))
|
|
14
|
-
print("Annihilation rate:", rates.get("annihilation_rate"))
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{morphgen_rates-0.3.0 → morphgen_rates-0.5.0}/src/morphgen_rates.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|