morphgen-rates 0.3.0__tar.gz → 0.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: morphgen-rates
3
- Version: 0.3.0
3
+ Version: 0.4.0
4
4
  Summary: Compute bifurcation and annihilation rates from morphology data
5
5
  Author-email: Francesco Cavarretta <fcavarretta@ualr.edu>
6
6
  Requires-Python: >=3.9
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "morphgen-rates"
7
- version = "0.3.0"
7
+ version = "0.4.0"
8
8
  description = "Compute bifurcation and annihilation rates from morphology data"
9
9
  authors = [
10
10
  { name = "Francesco Cavarretta", email = "fcavarretta@ualr.edu" },
@@ -0,0 +1,4 @@
1
+ from .rates import compute_rates
2
+ from .data import get_data
3
+ from .init_count import compute_init_number_probs
4
+ __all__ = ["compute_rates", "get_data", "compute_init_number_probs"]
@@ -0,0 +1,208 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import Dict, Optional, Sequence, Union
4
+
5
+ import numpy as np
6
+ import pyomo.environ as pyo
7
+
8
+
9
+ def compute_init_number_probs(
10
+ mean_primary_dendrites: float,
11
+ sd_primary_dendrites: float,
12
+ min_primary_dendrites: int,
13
+ max_primary_dendrites: int,
14
+ *,
15
+ support_values: Optional[Sequence[float]] = None,
16
+ epsilon: float = 1e-12,
17
+ slack_penalty: float = 1e-1,
18
+ use_variance_form: bool = True,
19
+ use_abs_slack: bool = False,
20
+ solver: str = "ipopt",
21
+ solver_options: Optional[Dict[str, Union[str, int, float]]] = None,
22
+ ) -> np.ndarray:
23
+ """
24
+ Maximum-entropy PMF for the (discrete) number of primary dendrites.
25
+
26
+ This returns a numpy array p of length n = max_primary_dendrites + 1, where:
27
+ - p[i] is the probability of observing i primary dendrites
28
+ - p[i] = 0 for i < min_primary_dendrites or i > max_primary_dendrites
29
+
30
+ The distribution is obtained by maximizing Shannon entropy:
31
+ H(p) = -sum_i p[i] * log(p[i])
32
+
33
+ Subject to:
34
+ - Normalization: sum_{i in [min,max]} p[i] = 1
35
+ - Soft mean constraint (with slack):
36
+ sum i*p[i] - mean_primary_dendrites = slack_mean
37
+ - Soft dispersion constraint (with slack):
38
+ If use_variance_form=True (recommended):
39
+ sum (i-mean)^2 * p[i] - (sd_primary_dendrites^2) = slack_disp
40
+ If use_variance_form=False:
41
+ sqrt( sum (i-mean)^2 * p[i] + tiny ) - sd_primary_dendrites = slack_disp
42
+
43
+ The objective is penalized to keep slacks small:
44
+ maximize H(p) - slack_penalty * (slack terms)
45
+
46
+ Parameters
47
+ ----------
48
+ mean_primary_dendrites : float
49
+ Target mean number of primary dendrites
50
+ sd_primary_dendrites : float
51
+ Target standard deviation (>= 0)
52
+ min_primary_dendrites : int
53
+ Minimum allowed dendrite count (inclusive)
54
+ max_primary_dendrites : int
55
+ Maximum allowed dendrite count (inclusive). Also sets array length n=max+1
56
+
57
+ Keyword-only parameters
58
+ ----------------------
59
+ support_values : Sequence[float] | None
60
+ Optional support for indices 0..max. If None, uses support=i (integers).
61
+ Keep this None if you truly mean "i is the dendrite count".
62
+ epsilon : float
63
+ Lower bound on active probabilities to avoid log(0)
64
+ slack_penalty : float
65
+ Larger values enforce closer moment matching
66
+ use_variance_form : bool
67
+ Recommended True: match variance to sd^2 (smoother than sqrt constraint)
68
+ use_abs_slack : bool
69
+ If True, use L1-like slack penalty via +/- variables; otherwise squared (smooth)
70
+ solver : str
71
+ Nonlinear solver name (typically "ipopt")
72
+ solver_options : dict | None
73
+ Passed to the solver (e.g., {"max_iter": 5000})
74
+
75
+ Returns
76
+ -------
77
+ np.ndarray
78
+ Probability vector p with length max_primary_dendrites + 1
79
+
80
+ Raises
81
+ ------
82
+ ValueError
83
+ For invalid inputs
84
+ RuntimeError
85
+ If the requested solver is not available
86
+ """
87
+ if max_primary_dendrites < 0:
88
+ raise ValueError("max_primary_dendrites must be >= 0")
89
+ if sd_primary_dendrites < 0:
90
+ raise ValueError("sd_primary_dendrites must be nonnegative")
91
+ if not (0 <= min_primary_dendrites <= max_primary_dendrites):
92
+ raise ValueError("Require 0 <= min_primary_dendrites <= max_primary_dendrites")
93
+ if slack_penalty <= 0:
94
+ raise ValueError("slack_penalty must be positive")
95
+ if epsilon <= 0:
96
+ raise ValueError("epsilon must be positive")
97
+
98
+ n = max_primary_dendrites + 1
99
+ active = list(range(min_primary_dendrites, max_primary_dendrites + 1))
100
+
101
+ # Support values for each index i (default: i itself)
102
+ if support_values is None:
103
+ support_values = list(range(n))
104
+ if len(support_values) != n:
105
+ raise ValueError("support_values must have length n = max_primary_dendrites + 1")
106
+
107
+ support = {i: float(support_values[i]) for i in range(n)}
108
+ mu = float(mean_primary_dendrites)
109
+ sd = float(sd_primary_dendrites)
110
+ target_var = sd * sd
111
+
112
+ # -----------------------------
113
+ # Pyomo model
114
+ # -----------------------------
115
+ m = pyo.ConcreteModel()
116
+ m.A = pyo.Set(initialize=active, ordered=True)
117
+
118
+ # Decision variables for active probabilities only
119
+ m.p = pyo.Var(m.A, domain=pyo.NonNegativeReals, bounds=(epsilon, 1.0))
120
+
121
+ # Normalization over active set
122
+ m.norm = pyo.Constraint(expr=sum(m.p[i] for i in m.A) == 1.0)
123
+
124
+ # Moment expressions
125
+ mean_expr = sum(support[i] * m.p[i] for i in m.A)
126
+ var_expr = sum((support[i] - mu) ** 2 * m.p[i] for i in m.A)
127
+
128
+ # Soft constraints with slack
129
+ if use_abs_slack:
130
+ # L1 slack via +/- decomposition
131
+ m.s_mean_pos = pyo.Var(domain=pyo.NonNegativeReals)
132
+ m.s_mean_neg = pyo.Var(domain=pyo.NonNegativeReals)
133
+ m.s_disp_pos = pyo.Var(domain=pyo.NonNegativeReals)
134
+ m.s_disp_neg = pyo.Var(domain=pyo.NonNegativeReals)
135
+
136
+ m.mean_soft = pyo.Constraint(expr=mean_expr - mu == m.s_mean_pos - m.s_mean_neg)
137
+
138
+ if use_variance_form:
139
+ m.disp_soft = pyo.Constraint(expr=var_expr - target_var == m.s_disp_pos - m.s_disp_neg)
140
+ else:
141
+ tiny = 1e-18
142
+ m.disp_soft = pyo.Constraint(
143
+ expr=pyo.sqrt(var_expr + tiny) - sd == m.s_disp_pos - m.s_disp_neg
144
+ )
145
+
146
+ slack_term = (m.s_mean_pos + m.s_mean_neg) + (m.s_disp_pos + m.s_disp_neg)
147
+
148
+ else:
149
+ # Smooth squared slacks
150
+ m.s_mean = pyo.Var(domain=pyo.Reals)
151
+ m.s_disp = pyo.Var(domain=pyo.Reals)
152
+
153
+ m.mean_soft = pyo.Constraint(expr=mean_expr - mu == m.s_mean)
154
+
155
+ if use_variance_form:
156
+ m.disp_soft = pyo.Constraint(expr=var_expr - target_var == m.s_disp)
157
+ else:
158
+ tiny = 1e-18
159
+ m.disp_soft = pyo.Constraint(expr=pyo.sqrt(var_expr + tiny) - sd == m.s_disp)
160
+
161
+ slack_term = m.s_mean**2 + m.s_disp**2
162
+
163
+ # Entropy objective (active probs only; inactive probs are exactly 0)
164
+ entropy = -sum(m.p[i] * pyo.log(m.p[i]) for i in m.A)
165
+ m.obj = pyo.Objective(expr=entropy - float(slack_penalty) * slack_term, sense=pyo.maximize)
166
+
167
+ # Solve
168
+ opt = pyo.SolverFactory(solver)
169
+ if opt is None or not opt.available():
170
+ raise RuntimeError(
171
+ f"Solver '{solver}' is not available. Install/configure it (e.g., ipopt) "
172
+ "or pass a different solver name."
173
+ )
174
+ if solver_options:
175
+ for k, v in solver_options.items():
176
+ opt.options[k] = v
177
+
178
+ res = opt.solve(m, tee=False)
179
+
180
+ # -----------------------------
181
+ # Extract solution into numpy array
182
+ # -----------------------------
183
+ p = np.zeros(n, dtype=float)
184
+ for i in active:
185
+ p[i] = float(pyo.value(m.p[i]))
186
+
187
+ # Optional: renormalize tiny numerical drift (keeps zeros outside band)
188
+ s = p.sum()
189
+ if s > 0:
190
+ p[active] /= s
191
+
192
+ return p
193
+
194
+
195
+ if __name__ == "__main__":
196
+ p = maxent_primary_dendrite_pmf(
197
+ mean_primary_dendrites=2.33,
198
+ sd_primary_dendrites=1.53,
199
+ min_primary_dendrites=1,
200
+ max_primary_dendrites=4,
201
+ slack_penalty=0.1,
202
+ use_variance_form=True,
203
+ use_abs_slack=False,
204
+ solver="ipopt",
205
+ )
206
+ print("p shape:", p.shape)
207
+ print("sum:", p.sum())
208
+ print(p)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: morphgen-rates
3
- Version: 0.3.0
3
+ Version: 0.4.0
4
4
  Summary: Compute bifurcation and annihilation rates from morphology data
5
5
  Author-email: Francesco Cavarretta <fcavarretta@ualr.edu>
6
6
  Requires-Python: >=3.9
@@ -3,6 +3,7 @@ README.md
3
3
  pyproject.toml
4
4
  src/morphgen_rates/__init__.py
5
5
  src/morphgen_rates/data.py
6
+ src/morphgen_rates/init_count.py
6
7
  src/morphgen_rates/rates.py
7
8
  src/morphgen_rates.egg-info/PKG-INFO
8
9
  src/morphgen_rates.egg-info/SOURCES.txt
@@ -1,3 +0,0 @@
1
- from .rates import compute_rates
2
- from .data import get_data
3
- __all__ = ["compute_rates", "get_data"]
File without changes
File without changes
File without changes