morphgen-rates 0.3.0__tar.gz → 0.4.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {morphgen_rates-0.3.0/src/morphgen_rates.egg-info → morphgen_rates-0.4.0}/PKG-INFO +1 -1
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/pyproject.toml +1 -1
- morphgen_rates-0.4.0/src/morphgen_rates/__init__.py +4 -0
- morphgen_rates-0.4.0/src/morphgen_rates/init_count.py +208 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0/src/morphgen_rates.egg-info}/PKG-INFO +1 -1
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates.egg-info/SOURCES.txt +1 -0
- morphgen_rates-0.3.0/src/morphgen_rates/__init__.py +0 -3
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/LICENSE +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/README.md +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/setup.cfg +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates/data.py +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates/rates.py +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates.egg-info/dependency_links.txt +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates.egg-info/requires.txt +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates.egg-info/top_level.txt +0 -0
- {morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/tests/test.py +0 -0
|
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "morphgen-rates"
|
|
7
|
-
version = "0.
|
|
7
|
+
version = "0.4.0"
|
|
8
8
|
description = "Compute bifurcation and annihilation rates from morphology data"
|
|
9
9
|
authors = [
|
|
10
10
|
{ name = "Francesco Cavarretta", email = "fcavarretta@ualr.edu" },
|
|
@@ -0,0 +1,208 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Dict, Optional, Sequence, Union
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import pyomo.environ as pyo
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def compute_init_number_probs(
|
|
10
|
+
mean_primary_dendrites: float,
|
|
11
|
+
sd_primary_dendrites: float,
|
|
12
|
+
min_primary_dendrites: int,
|
|
13
|
+
max_primary_dendrites: int,
|
|
14
|
+
*,
|
|
15
|
+
support_values: Optional[Sequence[float]] = None,
|
|
16
|
+
epsilon: float = 1e-12,
|
|
17
|
+
slack_penalty: float = 1e-1,
|
|
18
|
+
use_variance_form: bool = True,
|
|
19
|
+
use_abs_slack: bool = False,
|
|
20
|
+
solver: str = "ipopt",
|
|
21
|
+
solver_options: Optional[Dict[str, Union[str, int, float]]] = None,
|
|
22
|
+
) -> np.ndarray:
|
|
23
|
+
"""
|
|
24
|
+
Maximum-entropy PMF for the (discrete) number of primary dendrites.
|
|
25
|
+
|
|
26
|
+
This returns a numpy array p of length n = max_primary_dendrites + 1, where:
|
|
27
|
+
- p[i] is the probability of observing i primary dendrites
|
|
28
|
+
- p[i] = 0 for i < min_primary_dendrites or i > max_primary_dendrites
|
|
29
|
+
|
|
30
|
+
The distribution is obtained by maximizing Shannon entropy:
|
|
31
|
+
H(p) = -sum_i p[i] * log(p[i])
|
|
32
|
+
|
|
33
|
+
Subject to:
|
|
34
|
+
- Normalization: sum_{i in [min,max]} p[i] = 1
|
|
35
|
+
- Soft mean constraint (with slack):
|
|
36
|
+
sum i*p[i] - mean_primary_dendrites = slack_mean
|
|
37
|
+
- Soft dispersion constraint (with slack):
|
|
38
|
+
If use_variance_form=True (recommended):
|
|
39
|
+
sum (i-mean)^2 * p[i] - (sd_primary_dendrites^2) = slack_disp
|
|
40
|
+
If use_variance_form=False:
|
|
41
|
+
sqrt( sum (i-mean)^2 * p[i] + tiny ) - sd_primary_dendrites = slack_disp
|
|
42
|
+
|
|
43
|
+
The objective is penalized to keep slacks small:
|
|
44
|
+
maximize H(p) - slack_penalty * (slack terms)
|
|
45
|
+
|
|
46
|
+
Parameters
|
|
47
|
+
----------
|
|
48
|
+
mean_primary_dendrites : float
|
|
49
|
+
Target mean number of primary dendrites
|
|
50
|
+
sd_primary_dendrites : float
|
|
51
|
+
Target standard deviation (>= 0)
|
|
52
|
+
min_primary_dendrites : int
|
|
53
|
+
Minimum allowed dendrite count (inclusive)
|
|
54
|
+
max_primary_dendrites : int
|
|
55
|
+
Maximum allowed dendrite count (inclusive). Also sets array length n=max+1
|
|
56
|
+
|
|
57
|
+
Keyword-only parameters
|
|
58
|
+
----------------------
|
|
59
|
+
support_values : Sequence[float] | None
|
|
60
|
+
Optional support for indices 0..max. If None, uses support=i (integers).
|
|
61
|
+
Keep this None if you truly mean "i is the dendrite count".
|
|
62
|
+
epsilon : float
|
|
63
|
+
Lower bound on active probabilities to avoid log(0)
|
|
64
|
+
slack_penalty : float
|
|
65
|
+
Larger values enforce closer moment matching
|
|
66
|
+
use_variance_form : bool
|
|
67
|
+
Recommended True: match variance to sd^2 (smoother than sqrt constraint)
|
|
68
|
+
use_abs_slack : bool
|
|
69
|
+
If True, use L1-like slack penalty via +/- variables; otherwise squared (smooth)
|
|
70
|
+
solver : str
|
|
71
|
+
Nonlinear solver name (typically "ipopt")
|
|
72
|
+
solver_options : dict | None
|
|
73
|
+
Passed to the solver (e.g., {"max_iter": 5000})
|
|
74
|
+
|
|
75
|
+
Returns
|
|
76
|
+
-------
|
|
77
|
+
np.ndarray
|
|
78
|
+
Probability vector p with length max_primary_dendrites + 1
|
|
79
|
+
|
|
80
|
+
Raises
|
|
81
|
+
------
|
|
82
|
+
ValueError
|
|
83
|
+
For invalid inputs
|
|
84
|
+
RuntimeError
|
|
85
|
+
If the requested solver is not available
|
|
86
|
+
"""
|
|
87
|
+
if max_primary_dendrites < 0:
|
|
88
|
+
raise ValueError("max_primary_dendrites must be >= 0")
|
|
89
|
+
if sd_primary_dendrites < 0:
|
|
90
|
+
raise ValueError("sd_primary_dendrites must be nonnegative")
|
|
91
|
+
if not (0 <= min_primary_dendrites <= max_primary_dendrites):
|
|
92
|
+
raise ValueError("Require 0 <= min_primary_dendrites <= max_primary_dendrites")
|
|
93
|
+
if slack_penalty <= 0:
|
|
94
|
+
raise ValueError("slack_penalty must be positive")
|
|
95
|
+
if epsilon <= 0:
|
|
96
|
+
raise ValueError("epsilon must be positive")
|
|
97
|
+
|
|
98
|
+
n = max_primary_dendrites + 1
|
|
99
|
+
active = list(range(min_primary_dendrites, max_primary_dendrites + 1))
|
|
100
|
+
|
|
101
|
+
# Support values for each index i (default: i itself)
|
|
102
|
+
if support_values is None:
|
|
103
|
+
support_values = list(range(n))
|
|
104
|
+
if len(support_values) != n:
|
|
105
|
+
raise ValueError("support_values must have length n = max_primary_dendrites + 1")
|
|
106
|
+
|
|
107
|
+
support = {i: float(support_values[i]) for i in range(n)}
|
|
108
|
+
mu = float(mean_primary_dendrites)
|
|
109
|
+
sd = float(sd_primary_dendrites)
|
|
110
|
+
target_var = sd * sd
|
|
111
|
+
|
|
112
|
+
# -----------------------------
|
|
113
|
+
# Pyomo model
|
|
114
|
+
# -----------------------------
|
|
115
|
+
m = pyo.ConcreteModel()
|
|
116
|
+
m.A = pyo.Set(initialize=active, ordered=True)
|
|
117
|
+
|
|
118
|
+
# Decision variables for active probabilities only
|
|
119
|
+
m.p = pyo.Var(m.A, domain=pyo.NonNegativeReals, bounds=(epsilon, 1.0))
|
|
120
|
+
|
|
121
|
+
# Normalization over active set
|
|
122
|
+
m.norm = pyo.Constraint(expr=sum(m.p[i] for i in m.A) == 1.0)
|
|
123
|
+
|
|
124
|
+
# Moment expressions
|
|
125
|
+
mean_expr = sum(support[i] * m.p[i] for i in m.A)
|
|
126
|
+
var_expr = sum((support[i] - mu) ** 2 * m.p[i] for i in m.A)
|
|
127
|
+
|
|
128
|
+
# Soft constraints with slack
|
|
129
|
+
if use_abs_slack:
|
|
130
|
+
# L1 slack via +/- decomposition
|
|
131
|
+
m.s_mean_pos = pyo.Var(domain=pyo.NonNegativeReals)
|
|
132
|
+
m.s_mean_neg = pyo.Var(domain=pyo.NonNegativeReals)
|
|
133
|
+
m.s_disp_pos = pyo.Var(domain=pyo.NonNegativeReals)
|
|
134
|
+
m.s_disp_neg = pyo.Var(domain=pyo.NonNegativeReals)
|
|
135
|
+
|
|
136
|
+
m.mean_soft = pyo.Constraint(expr=mean_expr - mu == m.s_mean_pos - m.s_mean_neg)
|
|
137
|
+
|
|
138
|
+
if use_variance_form:
|
|
139
|
+
m.disp_soft = pyo.Constraint(expr=var_expr - target_var == m.s_disp_pos - m.s_disp_neg)
|
|
140
|
+
else:
|
|
141
|
+
tiny = 1e-18
|
|
142
|
+
m.disp_soft = pyo.Constraint(
|
|
143
|
+
expr=pyo.sqrt(var_expr + tiny) - sd == m.s_disp_pos - m.s_disp_neg
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
slack_term = (m.s_mean_pos + m.s_mean_neg) + (m.s_disp_pos + m.s_disp_neg)
|
|
147
|
+
|
|
148
|
+
else:
|
|
149
|
+
# Smooth squared slacks
|
|
150
|
+
m.s_mean = pyo.Var(domain=pyo.Reals)
|
|
151
|
+
m.s_disp = pyo.Var(domain=pyo.Reals)
|
|
152
|
+
|
|
153
|
+
m.mean_soft = pyo.Constraint(expr=mean_expr - mu == m.s_mean)
|
|
154
|
+
|
|
155
|
+
if use_variance_form:
|
|
156
|
+
m.disp_soft = pyo.Constraint(expr=var_expr - target_var == m.s_disp)
|
|
157
|
+
else:
|
|
158
|
+
tiny = 1e-18
|
|
159
|
+
m.disp_soft = pyo.Constraint(expr=pyo.sqrt(var_expr + tiny) - sd == m.s_disp)
|
|
160
|
+
|
|
161
|
+
slack_term = m.s_mean**2 + m.s_disp**2
|
|
162
|
+
|
|
163
|
+
# Entropy objective (active probs only; inactive probs are exactly 0)
|
|
164
|
+
entropy = -sum(m.p[i] * pyo.log(m.p[i]) for i in m.A)
|
|
165
|
+
m.obj = pyo.Objective(expr=entropy - float(slack_penalty) * slack_term, sense=pyo.maximize)
|
|
166
|
+
|
|
167
|
+
# Solve
|
|
168
|
+
opt = pyo.SolverFactory(solver)
|
|
169
|
+
if opt is None or not opt.available():
|
|
170
|
+
raise RuntimeError(
|
|
171
|
+
f"Solver '{solver}' is not available. Install/configure it (e.g., ipopt) "
|
|
172
|
+
"or pass a different solver name."
|
|
173
|
+
)
|
|
174
|
+
if solver_options:
|
|
175
|
+
for k, v in solver_options.items():
|
|
176
|
+
opt.options[k] = v
|
|
177
|
+
|
|
178
|
+
res = opt.solve(m, tee=False)
|
|
179
|
+
|
|
180
|
+
# -----------------------------
|
|
181
|
+
# Extract solution into numpy array
|
|
182
|
+
# -----------------------------
|
|
183
|
+
p = np.zeros(n, dtype=float)
|
|
184
|
+
for i in active:
|
|
185
|
+
p[i] = float(pyo.value(m.p[i]))
|
|
186
|
+
|
|
187
|
+
# Optional: renormalize tiny numerical drift (keeps zeros outside band)
|
|
188
|
+
s = p.sum()
|
|
189
|
+
if s > 0:
|
|
190
|
+
p[active] /= s
|
|
191
|
+
|
|
192
|
+
return p
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
if __name__ == "__main__":
|
|
196
|
+
p = maxent_primary_dendrite_pmf(
|
|
197
|
+
mean_primary_dendrites=2.33,
|
|
198
|
+
sd_primary_dendrites=1.53,
|
|
199
|
+
min_primary_dendrites=1,
|
|
200
|
+
max_primary_dendrites=4,
|
|
201
|
+
slack_penalty=0.1,
|
|
202
|
+
use_variance_form=True,
|
|
203
|
+
use_abs_slack=False,
|
|
204
|
+
solver="ipopt",
|
|
205
|
+
)
|
|
206
|
+
print("p shape:", p.shape)
|
|
207
|
+
print("sum:", p.sum())
|
|
208
|
+
print(p)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{morphgen_rates-0.3.0 → morphgen_rates-0.4.0}/src/morphgen_rates.egg-info/dependency_links.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|