moospread 0.1.3__tar.gz → 0.1.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. {moospread-0.1.3/moospread.egg-info → moospread-0.1.4}/PKG-INFO +17 -4
  2. {moospread-0.1.3 → moospread-0.1.4}/README_PYPI.md +16 -3
  3. {moospread-0.1.3 → moospread-0.1.4}/moospread/core.py +4 -4
  4. {moospread-0.1.3 → moospread-0.1.4/moospread.egg-info}/PKG-INFO +17 -4
  5. {moospread-0.1.3 → moospread-0.1.4}/pyproject.toml +1 -1
  6. {moospread-0.1.3 → moospread-0.1.4}/LICENSE +0 -0
  7. {moospread-0.1.3 → moospread-0.1.4}/README.md +0 -0
  8. {moospread-0.1.3 → moospread-0.1.4}/moospread/__init__.py +0 -0
  9. {moospread-0.1.3 → moospread-0.1.4}/moospread/problem.py +0 -0
  10. {moospread-0.1.3 → moospread-0.1.4}/moospread/tasks/__init__.py +0 -0
  11. {moospread-0.1.3 → moospread-0.1.4}/moospread/tasks/bo_torch.py +0 -0
  12. {moospread-0.1.3 → moospread-0.1.4}/moospread/tasks/dtlz_torch.py +0 -0
  13. {moospread-0.1.3 → moospread-0.1.4}/moospread/tasks/mw_torch.py +0 -0
  14. {moospread-0.1.3 → moospread-0.1.4}/moospread/tasks/re_torch.py +0 -0
  15. {moospread-0.1.3 → moospread-0.1.4}/moospread/tasks/zdt_torch.py +0 -0
  16. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/__init__.py +0 -0
  17. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/constraint_utils/__init__.py +0 -0
  18. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/constraint_utils/gradient.py +0 -0
  19. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/constraint_utils/mgda_core.py +0 -0
  20. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/constraint_utils/pmgda_solver.py +0 -0
  21. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/constraint_utils/prefs.py +0 -0
  22. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/ditmoo.py +0 -0
  23. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/lhs.py +0 -0
  24. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/misc.py +0 -0
  25. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/__init__.py +0 -0
  26. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/evolution/__init__.py +0 -0
  27. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/evolution/dom.py +0 -0
  28. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/evolution/norm.py +0 -0
  29. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/evolution/utils.py +0 -0
  30. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/learning/__init__.py +0 -0
  31. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/learning/model.py +0 -0
  32. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/learning/model_init.py +0 -0
  33. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/learning/model_update.py +0 -0
  34. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/learning/prediction.py +0 -0
  35. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/learning/utils.py +0 -0
  36. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/lhs_for_mobo.py +0 -0
  37. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/__init__.py +0 -0
  38. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/acquisition.py +0 -0
  39. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/algorithms.py +0 -0
  40. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/factory.py +0 -0
  41. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/mobo.py +0 -0
  42. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/selection.py +0 -0
  43. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/__init__.py +0 -0
  44. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/moead.py +0 -0
  45. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/nsga2.py +0 -0
  46. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/parego/__init__.py +0 -0
  47. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/parego/parego.py +0 -0
  48. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/parego/utils.py +0 -0
  49. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/pareto_discovery/__init__.py +0 -0
  50. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/pareto_discovery/buffer.py +0 -0
  51. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/pareto_discovery/pareto_discovery.py +0 -0
  52. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/pareto_discovery/utils.py +0 -0
  53. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/solver/solver.py +0 -0
  54. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/surrogate_model/__init__.py +0 -0
  55. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/surrogate_model/base.py +0 -0
  56. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/surrogate_model/gaussian_process.py +0 -0
  57. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/surrogate_model/thompson_sampling.py +0 -0
  58. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/surrogate_problem.py +0 -0
  59. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/transformation.py +0 -0
  60. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/mobo/utils.py +0 -0
  61. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/mobo_utils/spread_mobo_utils.py +0 -0
  62. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/offline_utils/__init__.py +0 -0
  63. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/offline_utils/handle_task.py +0 -0
  64. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/offline_utils/proxies.py +0 -0
  65. {moospread-0.1.3 → moospread-0.1.4}/moospread/utils/spread_utils.py +0 -0
  66. {moospread-0.1.3 → moospread-0.1.4}/moospread.egg-info/SOURCES.txt +0 -0
  67. {moospread-0.1.3 → moospread-0.1.4}/moospread.egg-info/dependency_links.txt +0 -0
  68. {moospread-0.1.3 → moospread-0.1.4}/moospread.egg-info/requires.txt +0 -0
  69. {moospread-0.1.3 → moospread-0.1.4}/moospread.egg-info/top_level.txt +0 -0
  70. {moospread-0.1.3 → moospread-0.1.4}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: moospread
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Summary: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
5
5
  Author-email: Sedjro Salomon Hotegni <salomon.hotegni@aims.ac.rw>
6
6
  Maintainer-email: Sedjro Salomon Hotegni <salomon.hotegni@tu-dortmund.de>
@@ -63,6 +63,20 @@ Dynamic: license-file
63
63
  </p>
64
64
  -->
65
65
 
66
+ <p align="center">
67
+ <a href="https://pypi.org/project/moospread/"><img src="https://img.shields.io/pypi/v/moospread.svg" alt="PyPI version"></a>
68
+ <a href="https://moospread.readthedocs.io">
69
+ <img src="https://img.shields.io/badge/docs-online-brightgreen.svg" alt="Documentation">
70
+ </a>
71
+ </p>
72
+ <div align="center">
73
+ <h3>
74
+ <a href="https://pypi.org/project/moospread/">Installation</a> |
75
+ <a href="https://moospread.readthedocs.io/en/latest/">Documentation</a> |
76
+ <a href="https://arxiv.org/pdf/2509.21058">Paper</a>
77
+ </h3>
78
+ </div>
79
+
66
80
  # SPREAD: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
67
81
 
68
82
  > SPREAD is a novel sampling-based approach for multi-objective optimization that leverages diffusion models to efficiently refine and generate well-spread Pareto front approximations. It combines the expressiveness of diffusion models with multi-objective optimization principles to achieve both high convergence to the Pareto front and excellent diversity across the objective space. SPREAD demonstrates competitive performance against state-of-the-art methods while providing a flexible framework for different optimization contexts.
@@ -128,11 +142,10 @@ This will train a diffusion-based multi-objective solver, approximate the Pareto
128
142
 
129
143
  ---
130
144
 
131
- <!--
145
+
132
146
  ### 📚 Next steps
133
147
 
134
- For more advanced examples (offline mode, Bayesian mode, custom problems), see the full [documentation](https://moospread.readthedocs.io/en/latest/).
135
- -->
148
+ For more advanced examples (offline mode, mobo mode, tutorials), see the full [documentation](https://moospread.readthedocs.io/en/latest/).
136
149
 
137
150
  ## Citation
138
151
  If you find `moospread` useful in your research, please consider citing:
@@ -8,6 +8,20 @@
8
8
  </p>
9
9
  -->
10
10
 
11
+ <p align="center">
12
+ <a href="https://pypi.org/project/moospread/"><img src="https://img.shields.io/pypi/v/moospread.svg" alt="PyPI version"></a>
13
+ <a href="https://moospread.readthedocs.io">
14
+ <img src="https://img.shields.io/badge/docs-online-brightgreen.svg" alt="Documentation">
15
+ </a>
16
+ </p>
17
+ <div align="center">
18
+ <h3>
19
+ <a href="https://pypi.org/project/moospread/">Installation</a> |
20
+ <a href="https://moospread.readthedocs.io/en/latest/">Documentation</a> |
21
+ <a href="https://arxiv.org/pdf/2509.21058">Paper</a>
22
+ </h3>
23
+ </div>
24
+
11
25
  # SPREAD: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
12
26
 
13
27
  > SPREAD is a novel sampling-based approach for multi-objective optimization that leverages diffusion models to efficiently refine and generate well-spread Pareto front approximations. It combines the expressiveness of diffusion models with multi-objective optimization principles to achieve both high convergence to the Pareto front and excellent diversity across the objective space. SPREAD demonstrates competitive performance against state-of-the-art methods while providing a flexible framework for different optimization contexts.
@@ -73,11 +87,10 @@ This will train a diffusion-based multi-objective solver, approximate the Pareto
73
87
 
74
88
  ---
75
89
 
76
- <!--
90
+
77
91
  ### 📚 Next steps
78
92
 
79
- For more advanced examples (offline mode, Bayesian mode, custom problems), see the full [documentation](https://moospread.readthedocs.io/en/latest/).
80
- -->
93
+ For more advanced examples (offline mode, mobo mode, tutorials), see the full [documentation](https://moospread.readthedocs.io/en/latest/).
81
94
 
82
95
  ## Citation
83
96
  If you find `moospread` useful in your research, please consider citing:
@@ -1901,7 +1901,7 @@ class SPREAD:
1901
1901
  ax.set_ylabel("$f_2$", fontsize=14)
1902
1902
  ax.set_title(f"Reverse Time Step: {t}", fontsize=14)
1903
1903
  ax.text(
1904
- -0.15, 0.5,
1904
+ -0.17, 0.5,
1905
1905
  self.problem.__class__.__name__.upper() + f"({self.mode})",
1906
1906
  transform=ax.transAxes,
1907
1907
  va='center',
@@ -1944,10 +1944,10 @@ class SPREAD:
1944
1944
  ax.set_zlabel("$f_3$", fontsize=14)
1945
1945
  ax.view_init(elev=elev, azim=azim)
1946
1946
  ax.set_title(f"Reverse Time Step: {t}", fontsize=14)
1947
- ax.text(
1948
- -0.15, 0.5,
1947
+ ax.text2D(
1948
+ -0.17, 0.5,
1949
1949
  self.problem.__class__.__name__.upper() + f"({self.mode})",
1950
- transform=ax.transAxes,
1950
+ transform=ax.transAxes,
1951
1951
  va='center',
1952
1952
  ha='center',
1953
1953
  rotation='vertical',
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: moospread
3
- Version: 0.1.3
3
+ Version: 0.1.4
4
4
  Summary: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
5
5
  Author-email: Sedjro Salomon Hotegni <salomon.hotegni@aims.ac.rw>
6
6
  Maintainer-email: Sedjro Salomon Hotegni <salomon.hotegni@tu-dortmund.de>
@@ -63,6 +63,20 @@ Dynamic: license-file
63
63
  </p>
64
64
  -->
65
65
 
66
+ <p align="center">
67
+ <a href="https://pypi.org/project/moospread/"><img src="https://img.shields.io/pypi/v/moospread.svg" alt="PyPI version"></a>
68
+ <a href="https://moospread.readthedocs.io">
69
+ <img src="https://img.shields.io/badge/docs-online-brightgreen.svg" alt="Documentation">
70
+ </a>
71
+ </p>
72
+ <div align="center">
73
+ <h3>
74
+ <a href="https://pypi.org/project/moospread/">Installation</a> |
75
+ <a href="https://moospread.readthedocs.io/en/latest/">Documentation</a> |
76
+ <a href="https://arxiv.org/pdf/2509.21058">Paper</a>
77
+ </h3>
78
+ </div>
79
+
66
80
  # SPREAD: Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion
67
81
 
68
82
  > SPREAD is a novel sampling-based approach for multi-objective optimization that leverages diffusion models to efficiently refine and generate well-spread Pareto front approximations. It combines the expressiveness of diffusion models with multi-objective optimization principles to achieve both high convergence to the Pareto front and excellent diversity across the objective space. SPREAD demonstrates competitive performance against state-of-the-art methods while providing a flexible framework for different optimization contexts.
@@ -128,11 +142,10 @@ This will train a diffusion-based multi-objective solver, approximate the Pareto
128
142
 
129
143
  ---
130
144
 
131
- <!--
145
+
132
146
  ### 📚 Next steps
133
147
 
134
- For more advanced examples (offline mode, Bayesian mode, custom problems), see the full [documentation](https://moospread.readthedocs.io/en/latest/).
135
- -->
148
+ For more advanced examples (offline mode, mobo mode, tutorials), see the full [documentation](https://moospread.readthedocs.io/en/latest/).
136
149
 
137
150
  ## Citation
138
151
  If you find `moospread` useful in your research, please consider citing:
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "moospread"
7
- version = "0.1.3"
7
+ version = "0.1.4"
8
8
  description = "Sampling-based Pareto front Refinement via Efficient Adaptive Diffusion"
9
9
  readme = "README_PYPI.md"
10
10
  requires-python = ">=3.8"
File without changes
File without changes
File without changes