molcraft 0.1.0a25__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of molcraft might be problematic. Click here for more details.
- molcraft-0.1.0a25/LICENSE +21 -0
- molcraft-0.1.0a25/PKG-INFO +118 -0
- molcraft-0.1.0a25/README.md +74 -0
- molcraft-0.1.0a25/molcraft/__init__.py +17 -0
- molcraft-0.1.0a25/molcraft/callbacks.py +100 -0
- molcraft-0.1.0a25/molcraft/chem.py +724 -0
- molcraft-0.1.0a25/molcraft/datasets.py +132 -0
- molcraft-0.1.0a25/molcraft/descriptors.py +149 -0
- molcraft-0.1.0a25/molcraft/features.py +379 -0
- molcraft-0.1.0a25/molcraft/featurizers.py +585 -0
- molcraft-0.1.0a25/molcraft/layers.py +1826 -0
- molcraft-0.1.0a25/molcraft/losses.py +37 -0
- molcraft-0.1.0a25/molcraft/models.py +573 -0
- molcraft-0.1.0a25/molcraft/ops.py +195 -0
- molcraft-0.1.0a25/molcraft/records.py +202 -0
- molcraft-0.1.0a25/molcraft/tensors.py +555 -0
- molcraft-0.1.0a25/molcraft.egg-info/PKG-INFO +118 -0
- molcraft-0.1.0a25/molcraft.egg-info/SOURCES.txt +27 -0
- molcraft-0.1.0a25/molcraft.egg-info/dependency_links.txt +1 -0
- molcraft-0.1.0a25/molcraft.egg-info/requires.txt +7 -0
- molcraft-0.1.0a25/molcraft.egg-info/top_level.txt +1 -0
- molcraft-0.1.0a25/pyproject.toml +51 -0
- molcraft-0.1.0a25/setup.cfg +4 -0
- molcraft-0.1.0a25/tests/test_chem.py +17 -0
- molcraft-0.1.0a25/tests/test_featurizers.py +207 -0
- molcraft-0.1.0a25/tests/test_layers.py +293 -0
- molcraft-0.1.0a25/tests/test_losses.py +28 -0
- molcraft-0.1.0a25/tests/test_models.py +291 -0
- molcraft-0.1.0a25/tests/test_tensors.py +226 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Alexander Kensert
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,118 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: molcraft
|
|
3
|
+
Version: 0.1.0a25
|
|
4
|
+
Summary: Graph Neural Networks for Molecular Machine Learning
|
|
5
|
+
Author-email: Alexander Kensert <alexander.kensert@gmail.com>
|
|
6
|
+
License: MIT License
|
|
7
|
+
|
|
8
|
+
Copyright (c) 2025 Alexander Kensert
|
|
9
|
+
|
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
12
|
+
in the Software without restriction, including without limitation the rights
|
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
15
|
+
furnished to do so, subject to the following conditions:
|
|
16
|
+
|
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
|
18
|
+
copies or substantial portions of the Software.
|
|
19
|
+
|
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
26
|
+
SOFTWARE.
|
|
27
|
+
|
|
28
|
+
Project-URL: Homepage, https://github.com/compomics/molcraft
|
|
29
|
+
Keywords: python,machine-learning,deep-learning,graph-neural-networks,molecular-machine-learning,molecular-graphs,computational-chemistry,computational-biology
|
|
30
|
+
Classifier: Programming Language :: Python :: 3
|
|
31
|
+
Classifier: Intended Audience :: Science/Research
|
|
32
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
33
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
34
|
+
Requires-Python: >=3.10
|
|
35
|
+
Description-Content-Type: text/markdown
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
Requires-Dist: tensorflow>=2.16
|
|
38
|
+
Requires-Dist: rdkit>=2023.9.5
|
|
39
|
+
Requires-Dist: pandas>=1.0.3
|
|
40
|
+
Requires-Dist: ipython>=8.12.0
|
|
41
|
+
Provides-Extra: gpu
|
|
42
|
+
Requires-Dist: tensorflow[and-cuda]>=2.16; extra == "gpu"
|
|
43
|
+
Dynamic: license-file
|
|
44
|
+
|
|
45
|
+
<img src="https://github.com/akensert/molcraft/blob/main/docs/_static/molcraft-logo.png" alt="molcraft-logo" width="90%">
|
|
46
|
+
|
|
47
|
+
**Deep Learning on Molecules**: A Minimalistic GNN package for Molecular ML.
|
|
48
|
+
|
|
49
|
+
> [!NOTE]
|
|
50
|
+
> In progress.
|
|
51
|
+
|
|
52
|
+
## Installation
|
|
53
|
+
|
|
54
|
+
For CPU users:
|
|
55
|
+
|
|
56
|
+
```bash
|
|
57
|
+
pip install --pre molcraft
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
For GPU users:
|
|
61
|
+
```bash
|
|
62
|
+
pip install --pre molcraft[gpu]
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
## Examples
|
|
66
|
+
|
|
67
|
+
```python
|
|
68
|
+
from molcraft import features
|
|
69
|
+
from molcraft import descriptors
|
|
70
|
+
from molcraft import featurizers
|
|
71
|
+
from molcraft import layers
|
|
72
|
+
from molcraft import models
|
|
73
|
+
import keras
|
|
74
|
+
|
|
75
|
+
featurizer = featurizers.MolGraphFeaturizer(
|
|
76
|
+
atom_features=[
|
|
77
|
+
features.AtomType(),
|
|
78
|
+
features.NumHydrogens(),
|
|
79
|
+
features.Degree(),
|
|
80
|
+
],
|
|
81
|
+
bond_features=[
|
|
82
|
+
features.BondType(),
|
|
83
|
+
features.IsRotatable(),
|
|
84
|
+
],
|
|
85
|
+
super_node=True,
|
|
86
|
+
self_loops=True,
|
|
87
|
+
include_hydrogens=False,
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
graph = featurizer([('N[C@@H](C)C(=O)O', 2.5), ('N[C@@H](CS)C(=O)O', 1.5)])
|
|
91
|
+
print(graph)
|
|
92
|
+
|
|
93
|
+
model = models.GraphModel.from_layers(
|
|
94
|
+
[
|
|
95
|
+
layers.Input(graph.spec),
|
|
96
|
+
layers.NodeEmbedding(dim=128),
|
|
97
|
+
layers.EdgeEmbedding(dim=128),
|
|
98
|
+
layers.GraphConv(units=128),
|
|
99
|
+
layers.GraphConv(units=128),
|
|
100
|
+
layers.GraphConv(units=128),
|
|
101
|
+
layers.GraphConv(units=128),
|
|
102
|
+
layers.Readout(),
|
|
103
|
+
keras.layers.Dense(units=1024, activation='elu'),
|
|
104
|
+
keras.layers.Dense(units=1024, activation='elu'),
|
|
105
|
+
keras.layers.Dense(1)
|
|
106
|
+
]
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
pred = model(graph)
|
|
110
|
+
print(pred)
|
|
111
|
+
|
|
112
|
+
# featurizers.save_featurizer(featurizer, '/tmp/featurizer.json')
|
|
113
|
+
# models.save_model(model, '/tmp/model.keras')
|
|
114
|
+
|
|
115
|
+
# loaded_featurizer = featurizers.load_featurizer('/tmp/featurizer.json')
|
|
116
|
+
# loaded_model = models.load_model('/tmp/model.keras')
|
|
117
|
+
```
|
|
118
|
+
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
<img src="https://github.com/akensert/molcraft/blob/main/docs/_static/molcraft-logo.png" alt="molcraft-logo" width="90%">
|
|
2
|
+
|
|
3
|
+
**Deep Learning on Molecules**: A Minimalistic GNN package for Molecular ML.
|
|
4
|
+
|
|
5
|
+
> [!NOTE]
|
|
6
|
+
> In progress.
|
|
7
|
+
|
|
8
|
+
## Installation
|
|
9
|
+
|
|
10
|
+
For CPU users:
|
|
11
|
+
|
|
12
|
+
```bash
|
|
13
|
+
pip install --pre molcraft
|
|
14
|
+
```
|
|
15
|
+
|
|
16
|
+
For GPU users:
|
|
17
|
+
```bash
|
|
18
|
+
pip install --pre molcraft[gpu]
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
## Examples
|
|
22
|
+
|
|
23
|
+
```python
|
|
24
|
+
from molcraft import features
|
|
25
|
+
from molcraft import descriptors
|
|
26
|
+
from molcraft import featurizers
|
|
27
|
+
from molcraft import layers
|
|
28
|
+
from molcraft import models
|
|
29
|
+
import keras
|
|
30
|
+
|
|
31
|
+
featurizer = featurizers.MolGraphFeaturizer(
|
|
32
|
+
atom_features=[
|
|
33
|
+
features.AtomType(),
|
|
34
|
+
features.NumHydrogens(),
|
|
35
|
+
features.Degree(),
|
|
36
|
+
],
|
|
37
|
+
bond_features=[
|
|
38
|
+
features.BondType(),
|
|
39
|
+
features.IsRotatable(),
|
|
40
|
+
],
|
|
41
|
+
super_node=True,
|
|
42
|
+
self_loops=True,
|
|
43
|
+
include_hydrogens=False,
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
graph = featurizer([('N[C@@H](C)C(=O)O', 2.5), ('N[C@@H](CS)C(=O)O', 1.5)])
|
|
47
|
+
print(graph)
|
|
48
|
+
|
|
49
|
+
model = models.GraphModel.from_layers(
|
|
50
|
+
[
|
|
51
|
+
layers.Input(graph.spec),
|
|
52
|
+
layers.NodeEmbedding(dim=128),
|
|
53
|
+
layers.EdgeEmbedding(dim=128),
|
|
54
|
+
layers.GraphConv(units=128),
|
|
55
|
+
layers.GraphConv(units=128),
|
|
56
|
+
layers.GraphConv(units=128),
|
|
57
|
+
layers.GraphConv(units=128),
|
|
58
|
+
layers.Readout(),
|
|
59
|
+
keras.layers.Dense(units=1024, activation='elu'),
|
|
60
|
+
keras.layers.Dense(units=1024, activation='elu'),
|
|
61
|
+
keras.layers.Dense(1)
|
|
62
|
+
]
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
pred = model(graph)
|
|
66
|
+
print(pred)
|
|
67
|
+
|
|
68
|
+
# featurizers.save_featurizer(featurizer, '/tmp/featurizer.json')
|
|
69
|
+
# models.save_model(model, '/tmp/model.keras')
|
|
70
|
+
|
|
71
|
+
# loaded_featurizer = featurizers.load_featurizer('/tmp/featurizer.json')
|
|
72
|
+
# loaded_model = models.load_model('/tmp/model.keras')
|
|
73
|
+
```
|
|
74
|
+
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
__version__ = '0.1.0a25'
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
5
|
+
|
|
6
|
+
from molcraft import chem
|
|
7
|
+
from molcraft import features
|
|
8
|
+
from molcraft import descriptors
|
|
9
|
+
from molcraft import featurizers
|
|
10
|
+
from molcraft import layers
|
|
11
|
+
from molcraft import models
|
|
12
|
+
from molcraft import ops
|
|
13
|
+
from molcraft import records
|
|
14
|
+
from molcraft import tensors
|
|
15
|
+
from molcraft import callbacks
|
|
16
|
+
from molcraft import datasets
|
|
17
|
+
from molcraft import losses
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
import warnings
|
|
2
|
+
import keras
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class TensorBoard(keras.callbacks.TensorBoard):
|
|
7
|
+
|
|
8
|
+
def _log_weights(self, epoch):
|
|
9
|
+
with self._train_writer.as_default():
|
|
10
|
+
for layer in self.model.layers:
|
|
11
|
+
for weight in layer.weights:
|
|
12
|
+
# Use weight.path istead of weight.name to distinguish
|
|
13
|
+
# weights of different layers.
|
|
14
|
+
histogram_weight_name = weight.path + "/histogram"
|
|
15
|
+
self.summary.histogram(
|
|
16
|
+
histogram_weight_name, weight, step=epoch
|
|
17
|
+
)
|
|
18
|
+
if self.write_images:
|
|
19
|
+
image_weight_name = weight.path + "/image"
|
|
20
|
+
self._log_weight_as_image(
|
|
21
|
+
weight, image_weight_name, epoch
|
|
22
|
+
)
|
|
23
|
+
self._train_writer.flush()
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class LearningRateDecay(keras.callbacks.LearningRateScheduler):
|
|
27
|
+
|
|
28
|
+
def __init__(self, rate: float, delay: int = 0, **kwargs):
|
|
29
|
+
|
|
30
|
+
def lr_schedule(epoch: int, lr: float):
|
|
31
|
+
if epoch < delay:
|
|
32
|
+
return float(lr)
|
|
33
|
+
return float(lr * keras.ops.exp(-rate))
|
|
34
|
+
|
|
35
|
+
super().__init__(schedule=lr_schedule, **kwargs)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class Rollback(keras.callbacks.Callback):
|
|
39
|
+
"""Rollback callback.
|
|
40
|
+
|
|
41
|
+
Currently, this callback simply restores the model and (optionally) the optimizer
|
|
42
|
+
variables if current loss deviates too much from the best observed loss.
|
|
43
|
+
|
|
44
|
+
This callback might be useful in situations where the loss tend to spike and put
|
|
45
|
+
the model in an undesired/problematic high-loss parameter space.
|
|
46
|
+
|
|
47
|
+
Args:
|
|
48
|
+
tolerance (float):
|
|
49
|
+
The threshold for when the restoration is triggered. The devaiation is
|
|
50
|
+
calculated as follows: (current_loss - best_loss) / best_loss.
|
|
51
|
+
"""
|
|
52
|
+
|
|
53
|
+
def __init__(
|
|
54
|
+
self,
|
|
55
|
+
tolerance: float = 0.5,
|
|
56
|
+
rollback_optimizer: bool = True,
|
|
57
|
+
):
|
|
58
|
+
super().__init__()
|
|
59
|
+
self.tolerance = tolerance
|
|
60
|
+
self.rollback_optimizer = rollback_optimizer
|
|
61
|
+
|
|
62
|
+
def on_train_begin(self, logs=None):
|
|
63
|
+
self._rollback_weights = self._get_model_vars()
|
|
64
|
+
if self.rollback_optimizer:
|
|
65
|
+
self._rollback_optimizer_vars = self._get_optimizer_vars()
|
|
66
|
+
self._rollback_loss = float('inf')
|
|
67
|
+
|
|
68
|
+
def on_epoch_end(self, epoch: int, logs: dict = None):
|
|
69
|
+
current_loss = logs.get('val_loss', logs.get('loss'))
|
|
70
|
+
deviation = (current_loss - self._rollback_loss) / self._rollback_loss
|
|
71
|
+
|
|
72
|
+
if np.isnan(current_loss) or np.isinf(current_loss):
|
|
73
|
+
self._rollback()
|
|
74
|
+
# Rolling back model because of nan or inf loss
|
|
75
|
+
return
|
|
76
|
+
|
|
77
|
+
if deviation > self.tolerance:
|
|
78
|
+
self._rollback()
|
|
79
|
+
# Rolling back model because of large loss deviation.
|
|
80
|
+
return
|
|
81
|
+
|
|
82
|
+
if current_loss < self._rollback_loss:
|
|
83
|
+
self._save_state(current_loss)
|
|
84
|
+
|
|
85
|
+
def _save_state(self, current_loss: float) -> None:
|
|
86
|
+
self._rollback_loss = current_loss
|
|
87
|
+
self._rollback_weights = self._get_model_vars()
|
|
88
|
+
if self.rollback_optimizer:
|
|
89
|
+
self._rollback_optimizer_vars = self._get_optimizer_vars()
|
|
90
|
+
|
|
91
|
+
def _rollback(self) -> None:
|
|
92
|
+
self.model.set_weights(self._rollback_weights)
|
|
93
|
+
if self.rollback_optimizer:
|
|
94
|
+
self.model.optimizer.set_weights(self._rollback_optimizer_vars)
|
|
95
|
+
|
|
96
|
+
def _get_optimizer_vars(self):
|
|
97
|
+
return [v.numpy() for v in self.model.optimizer.variables]
|
|
98
|
+
|
|
99
|
+
def _get_model_vars(self):
|
|
100
|
+
return self.model.get_weights()
|