mmgp 1.0.5__tar.gz → 1.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mmgp-1.0.5 → mmgp-1.1.0}/PKG-INFO +39 -16
- {mmgp-1.0.5 → mmgp-1.1.0}/README.md +38 -15
- mmgp-1.1.0/pyproject.toml +15 -0
- {mmgp-1.0.5 → mmgp-1.1.0}/src/mmgp.egg-info/PKG-INFO +39 -16
- {mmgp-1.0.5 → mmgp-1.1.0}/src/mmgp.egg-info/SOURCES.txt +0 -1
- {mmgp-1.0.5 → mmgp-1.1.0}/src/mmgp.egg-info/top_level.txt +0 -1
- mmgp-1.0.5/pyproject.toml +0 -74
- mmgp-1.0.5/src/_version.py +0 -16
- {mmgp-1.0.5 → mmgp-1.1.0}/LICENSE.md +0 -0
- {mmgp-1.0.5 → mmgp-1.1.0}/setup.cfg +0 -0
- {mmgp-1.0.5 → mmgp-1.1.0}/src/__init__.py +0 -0
- {mmgp-1.0.5 → mmgp-1.1.0}/src/mmgp.egg-info/dependency_links.txt +0 -0
- {mmgp-1.0.5 → mmgp-1.1.0}/src/mmgp.egg-info/requires.txt +0 -0
- {mmgp-1.0.5 → mmgp-1.1.0}/src/mmgp.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mmgp
|
|
3
|
-
Version: 1.0
|
|
3
|
+
Version: 1.1.0
|
|
4
4
|
Summary: Memory Management for the GPU Poor
|
|
5
5
|
Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
|
|
6
6
|
License: GNU GENERAL PUBLIC LICENSE
|
|
@@ -683,7 +683,11 @@ License-File: LICENSE.md
|
|
|
683
683
|
Requires-Dist: torch>=2.1.0
|
|
684
684
|
Requires-Dist: optimum-quanto
|
|
685
685
|
|
|
686
|
-
|
|
686
|
+
|
|
687
|
+
<p align="center">
|
|
688
|
+
<H2>Memory Management for the GPU Poor by DeepBeepMeep</H2>
|
|
689
|
+
</p>
|
|
690
|
+
|
|
687
691
|
|
|
688
692
|
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
689
693
|
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
@@ -693,31 +697,50 @@ Requirements:
|
|
|
693
697
|
- GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
694
698
|
- RAM: minimum 48 GB, recommended 64 GB
|
|
695
699
|
|
|
700
|
+
First you need to install the module in your current project with:
|
|
701
|
+
```shell
|
|
702
|
+
pip install mmgp
|
|
703
|
+
```
|
|
704
|
+
|
|
696
705
|
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
697
|
-
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
698
|
-
|
|
706
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device, for instance:
|
|
707
|
+
```
|
|
708
|
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
709
|
+
```
|
|
710
|
+
|
|
699
711
|
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
700
712
|
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
713
|
+
```
|
|
714
|
+
from mmgp import offload
|
|
715
|
+
offload.me(pipe)
|
|
716
|
+
```
|
|
717
|
+
The 'transformer' model in the pipe contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
|
|
705
718
|
|
|
706
719
|
If you have more than 64GB RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
|
|
707
720
|
(this can save significant time if the same pipeline is run multiple times in a row)
|
|
708
721
|
|
|
709
|
-
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models
|
|
710
|
-
|
|
722
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.\
|
|
711
723
|
For instance :
|
|
712
|
-
|
|
713
|
-
|
|
724
|
+
|
|
725
|
+
|
|
726
|
+
- for flux derived models:
|
|
727
|
+
```
|
|
728
|
+
pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
729
|
+
```
|
|
730
|
+
- for mochi:
|
|
731
|
+
```
|
|
732
|
+
pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
733
|
+
```
|
|
734
|
+
|
|
714
735
|
|
|
715
736
|
Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
|
|
716
737
|
|
|
717
738
|
Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
718
739
|
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
719
740
|
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
720
|
-
|
|
741
|
+
```
|
|
742
|
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
743
|
+
```
|
|
721
744
|
|
|
722
745
|
Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
723
746
|
- For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
@@ -727,6 +750,6 @@ You are free to use my module for non commercial use as long you give me proper
|
|
|
727
750
|
|
|
728
751
|
Thanks to
|
|
729
752
|
---------
|
|
730
|
-
Huggingface / accelerate for the hooking examples
|
|
731
|
-
Huggingface / quanto for their very useful quantizer
|
|
732
|
-
gau-nernst for his Pinnig RAM samples
|
|
753
|
+
- Huggingface / accelerate for the hooking examples
|
|
754
|
+
- Huggingface / quanto for their very useful quantizer
|
|
755
|
+
- gau-nernst for his Pinnig RAM samples
|
|
@@ -1,4 +1,8 @@
|
|
|
1
|
-
|
|
1
|
+
|
|
2
|
+
<p align="center">
|
|
3
|
+
<H2>Memory Management for the GPU Poor by DeepBeepMeep</H2>
|
|
4
|
+
</p>
|
|
5
|
+
|
|
2
6
|
|
|
3
7
|
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
4
8
|
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
@@ -8,31 +12,50 @@ Requirements:
|
|
|
8
12
|
- GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
9
13
|
- RAM: minimum 48 GB, recommended 64 GB
|
|
10
14
|
|
|
15
|
+
First you need to install the module in your current project with:
|
|
16
|
+
```shell
|
|
17
|
+
pip install mmgp
|
|
18
|
+
```
|
|
19
|
+
|
|
11
20
|
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
12
|
-
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
13
|
-
|
|
21
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device, for instance:
|
|
22
|
+
```
|
|
23
|
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
24
|
+
```
|
|
25
|
+
|
|
14
26
|
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
15
27
|
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
28
|
+
```
|
|
29
|
+
from mmgp import offload
|
|
30
|
+
offload.me(pipe)
|
|
31
|
+
```
|
|
32
|
+
The 'transformer' model in the pipe contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
|
|
20
33
|
|
|
21
34
|
If you have more than 64GB RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
|
|
22
35
|
(this can save significant time if the same pipeline is run multiple times in a row)
|
|
23
36
|
|
|
24
|
-
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models
|
|
25
|
-
|
|
37
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.\
|
|
26
38
|
For instance :
|
|
27
|
-
|
|
28
|
-
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
- for flux derived models:
|
|
42
|
+
```
|
|
43
|
+
pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
44
|
+
```
|
|
45
|
+
- for mochi:
|
|
46
|
+
```
|
|
47
|
+
pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
48
|
+
```
|
|
49
|
+
|
|
29
50
|
|
|
30
51
|
Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
|
|
31
52
|
|
|
32
53
|
Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
33
54
|
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
34
55
|
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
35
|
-
|
|
56
|
+
```
|
|
57
|
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
58
|
+
```
|
|
36
59
|
|
|
37
60
|
Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
38
61
|
- For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
@@ -42,6 +65,6 @@ You are free to use my module for non commercial use as long you give me proper
|
|
|
42
65
|
|
|
43
66
|
Thanks to
|
|
44
67
|
---------
|
|
45
|
-
Huggingface / accelerate for the hooking examples
|
|
46
|
-
Huggingface / quanto for their very useful quantizer
|
|
47
|
-
gau-nernst for his Pinnig RAM samples
|
|
68
|
+
- Huggingface / accelerate for the hooking examples
|
|
69
|
+
- Huggingface / quanto for their very useful quantizer
|
|
70
|
+
- gau-nernst for his Pinnig RAM samples
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "mmgp"
|
|
3
|
+
version = "1.1.0"
|
|
4
|
+
authors = [
|
|
5
|
+
{ name = "deepbeepmeep", email = "deepbeepmeep@yahoo.com" },
|
|
6
|
+
]
|
|
7
|
+
description = "Memory Management for the GPU Poor"
|
|
8
|
+
readme = "README.md"
|
|
9
|
+
requires-python = ">=3.10"
|
|
10
|
+
license = { file = "LICENSE.md" }
|
|
11
|
+
dependencies = [
|
|
12
|
+
"torch >= 2.1.0",
|
|
13
|
+
"optimum-quanto",
|
|
14
|
+
]
|
|
15
|
+
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mmgp
|
|
3
|
-
Version: 1.0
|
|
3
|
+
Version: 1.1.0
|
|
4
4
|
Summary: Memory Management for the GPU Poor
|
|
5
5
|
Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
|
|
6
6
|
License: GNU GENERAL PUBLIC LICENSE
|
|
@@ -683,7 +683,11 @@ License-File: LICENSE.md
|
|
|
683
683
|
Requires-Dist: torch>=2.1.0
|
|
684
684
|
Requires-Dist: optimum-quanto
|
|
685
685
|
|
|
686
|
-
|
|
686
|
+
|
|
687
|
+
<p align="center">
|
|
688
|
+
<H2>Memory Management for the GPU Poor by DeepBeepMeep</H2>
|
|
689
|
+
</p>
|
|
690
|
+
|
|
687
691
|
|
|
688
692
|
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
689
693
|
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
@@ -693,31 +697,50 @@ Requirements:
|
|
|
693
697
|
- GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
694
698
|
- RAM: minimum 48 GB, recommended 64 GB
|
|
695
699
|
|
|
700
|
+
First you need to install the module in your current project with:
|
|
701
|
+
```shell
|
|
702
|
+
pip install mmgp
|
|
703
|
+
```
|
|
704
|
+
|
|
696
705
|
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
697
|
-
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
698
|
-
|
|
706
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device, for instance:
|
|
707
|
+
```
|
|
708
|
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
709
|
+
```
|
|
710
|
+
|
|
699
711
|
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
700
712
|
|
|
701
|
-
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
713
|
+
```
|
|
714
|
+
from mmgp import offload
|
|
715
|
+
offload.me(pipe)
|
|
716
|
+
```
|
|
717
|
+
The 'transformer' model in the pipe contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
|
|
705
718
|
|
|
706
719
|
If you have more than 64GB RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
|
|
707
720
|
(this can save significant time if the same pipeline is run multiple times in a row)
|
|
708
721
|
|
|
709
|
-
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models
|
|
710
|
-
|
|
722
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.\
|
|
711
723
|
For instance :
|
|
712
|
-
|
|
713
|
-
|
|
724
|
+
|
|
725
|
+
|
|
726
|
+
- for flux derived models:
|
|
727
|
+
```
|
|
728
|
+
pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
729
|
+
```
|
|
730
|
+
- for mochi:
|
|
731
|
+
```
|
|
732
|
+
pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
733
|
+
```
|
|
734
|
+
|
|
714
735
|
|
|
715
736
|
Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
|
|
716
737
|
|
|
717
738
|
Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
718
739
|
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
719
740
|
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
720
|
-
|
|
741
|
+
```
|
|
742
|
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
743
|
+
```
|
|
721
744
|
|
|
722
745
|
Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
723
746
|
- For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
@@ -727,6 +750,6 @@ You are free to use my module for non commercial use as long you give me proper
|
|
|
727
750
|
|
|
728
751
|
Thanks to
|
|
729
752
|
---------
|
|
730
|
-
Huggingface / accelerate for the hooking examples
|
|
731
|
-
Huggingface / quanto for their very useful quantizer
|
|
732
|
-
gau-nernst for his Pinnig RAM samples
|
|
753
|
+
- Huggingface / accelerate for the hooking examples
|
|
754
|
+
- Huggingface / quanto for their very useful quantizer
|
|
755
|
+
- gau-nernst for his Pinnig RAM samples
|
mmgp-1.0.5/pyproject.toml
DELETED
|
@@ -1,74 +0,0 @@
|
|
|
1
|
-
[project]
|
|
2
|
-
name = "mmgp"
|
|
3
|
-
authors = [
|
|
4
|
-
{ name = "deepbeepmeep", email = "deepbeepmeep@yahoo.com" },
|
|
5
|
-
]
|
|
6
|
-
description = "Memory Management for the GPU Poor"
|
|
7
|
-
readme = "README.md"
|
|
8
|
-
requires-python = ">=3.10"
|
|
9
|
-
license = { file = "LICENSE.md" }
|
|
10
|
-
dynamic = ["version"]
|
|
11
|
-
dependencies = [
|
|
12
|
-
"torch >= 2.1.0",
|
|
13
|
-
"optimum-quanto",
|
|
14
|
-
]
|
|
15
|
-
|
|
16
|
-
[project.optional-dependencies]
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
[build-system]
|
|
20
|
-
build-backend = "setuptools.build_meta"
|
|
21
|
-
requires = ["setuptools>=64", "wheel", "setuptools_scm>=8"]
|
|
22
|
-
|
|
23
|
-
[tool.ruff]
|
|
24
|
-
line-length = 110
|
|
25
|
-
target-version = "py310"
|
|
26
|
-
extend-exclude = ["/usr/lib/*"]
|
|
27
|
-
|
|
28
|
-
[tool.ruff.lint]
|
|
29
|
-
ignore = [
|
|
30
|
-
"E501", # line too long - will be fixed in format
|
|
31
|
-
]
|
|
32
|
-
|
|
33
|
-
[tool.ruff.format]
|
|
34
|
-
quote-style = "double"
|
|
35
|
-
indent-style = "space"
|
|
36
|
-
line-ending = "auto"
|
|
37
|
-
skip-magic-trailing-comma = false
|
|
38
|
-
docstring-code-format = true
|
|
39
|
-
exclude = [
|
|
40
|
-
"src/_version.py", # generated by setuptools_scm
|
|
41
|
-
]
|
|
42
|
-
|
|
43
|
-
[tool.ruff.lint.isort]
|
|
44
|
-
combine-as-imports = true
|
|
45
|
-
force-wrap-aliases = true
|
|
46
|
-
known-local-folder = ["src"]
|
|
47
|
-
known-first-party = ["mmgp"]
|
|
48
|
-
|
|
49
|
-
[tool.pyright]
|
|
50
|
-
include = ["src"]
|
|
51
|
-
exclude = [
|
|
52
|
-
"**/__pycache__", # cache directories
|
|
53
|
-
"./typings", # generated type stubs
|
|
54
|
-
]
|
|
55
|
-
stubPath = "./typings"
|
|
56
|
-
|
|
57
|
-
[tool.tomlsort]
|
|
58
|
-
in_place = true
|
|
59
|
-
no_sort_tables = true
|
|
60
|
-
spaces_before_inline_comment = 1
|
|
61
|
-
spaces_indent_inline_array = 2
|
|
62
|
-
trailing_comma_inline_array = true
|
|
63
|
-
sort_first = [
|
|
64
|
-
"project",
|
|
65
|
-
"build-system",
|
|
66
|
-
"tool.setuptools",
|
|
67
|
-
]
|
|
68
|
-
|
|
69
|
-
# needs to be last for CI reasons
|
|
70
|
-
[tool.setuptools_scm]
|
|
71
|
-
write_to = "src/_version.py"
|
|
72
|
-
parentdir_prefix_version = "mmgp-"
|
|
73
|
-
fallback_version = "1.0.5"
|
|
74
|
-
version_scheme = "post-release"
|
mmgp-1.0.5/src/_version.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
|
1
|
-
# file generated by setuptools_scm
|
|
2
|
-
# don't change, don't track in version control
|
|
3
|
-
TYPE_CHECKING = False
|
|
4
|
-
if TYPE_CHECKING:
|
|
5
|
-
from typing import Tuple, Union
|
|
6
|
-
VERSION_TUPLE = Tuple[Union[int, str], ...]
|
|
7
|
-
else:
|
|
8
|
-
VERSION_TUPLE = object
|
|
9
|
-
|
|
10
|
-
version: str
|
|
11
|
-
__version__: str
|
|
12
|
-
__version_tuple__: VERSION_TUPLE
|
|
13
|
-
version_tuple: VERSION_TUPLE
|
|
14
|
-
|
|
15
|
-
__version__ = version = '1.0.5'
|
|
16
|
-
__version_tuple__ = version_tuple = (1, 0, 5)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|