mmgp 1.0.4__tar.gz → 1.0.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mmgp might be problematic. Click here for more details.
- {mmgp-1.0.4 → mmgp-1.0.5}/PKG-INFO +27 -17
- mmgp-1.0.5/README.md +47 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/pyproject.toml +1 -1
- {mmgp-1.0.4 → mmgp-1.0.5}/src/_version.py +2 -2
- {mmgp-1.0.4 → mmgp-1.0.5}/src/mmgp.egg-info/PKG-INFO +27 -17
- {mmgp-1.0.4 → mmgp-1.0.5}/src/mmgp.py +21 -14
- mmgp-1.0.4/README.md +0 -37
- {mmgp-1.0.4 → mmgp-1.0.5}/LICENSE.md +0 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/setup.cfg +0 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/src/__init__.py +0 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/src/mmgp.egg-info/SOURCES.txt +0 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/src/mmgp.egg-info/dependency_links.txt +0 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/src/mmgp.egg-info/requires.txt +0 -0
- {mmgp-1.0.4 → mmgp-1.0.5}/src/mmgp.egg-info/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mmgp
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.5
|
|
4
4
|
Summary: Memory Management for the GPU Poor
|
|
5
5
|
Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
|
|
6
6
|
License: GNU GENERAL PUBLIC LICENSE
|
|
@@ -685,38 +685,48 @@ Requires-Dist: optimum-quanto
|
|
|
685
685
|
|
|
686
686
|
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
687
687
|
|
|
688
|
-
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
689
|
-
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
688
|
+
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
689
|
+
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
690
|
+
times in a pipe (eg VAE).
|
|
690
691
|
|
|
691
692
|
Requirements:
|
|
692
|
-
- GPU: RTX 3090/ RTX 4090
|
|
693
|
+
- GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
693
694
|
- RAM: minimum 48 GB, recommended 64 GB
|
|
694
695
|
|
|
695
696
|
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
696
697
|
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
697
698
|
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
698
699
|
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
699
|
-
|
|
700
|
-
offload
|
|
701
|
-
|
|
702
|
-
|
|
700
|
+
|
|
701
|
+
*from mmgp import offload*
|
|
702
|
+
*offload.me(pipe)*
|
|
703
|
+
|
|
704
|
+
The 'transformer' model that contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
|
|
705
|
+
|
|
706
|
+
If you have more than 64GB RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
|
|
707
|
+
(this can save significant time if the same pipeline is run multiple times in a row)
|
|
708
|
+
|
|
709
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.
|
|
703
710
|
|
|
704
711
|
For instance :
|
|
705
|
-
for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
706
|
-
for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
712
|
+
for flux derived models: *pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }*
|
|
713
|
+
for mochi: *pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }*
|
|
707
714
|
|
|
708
|
-
Please note that there should be always one model whose Id is 'transformer'. It
|
|
715
|
+
Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
|
|
709
716
|
|
|
710
|
-
Becareful, lots of models
|
|
717
|
+
Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
711
718
|
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
712
719
|
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
713
|
-
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
720
|
+
*text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)*
|
|
714
721
|
|
|
715
|
-
|
|
722
|
+
Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
723
|
+
- For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
724
|
+
- mmpg to tries to fake the device as being "cuda" but sometimes some code won't be fooled and it will create tensors in the cpu device and this may cause some issues.
|
|
716
725
|
|
|
726
|
+
You are free to use my module for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
717
727
|
|
|
718
|
-
Thanks
|
|
719
|
-
|
|
728
|
+
Thanks to
|
|
729
|
+
---------
|
|
720
730
|
Huggingface / accelerate for the hooking examples
|
|
721
731
|
Huggingface / quanto for their very useful quantizer
|
|
722
|
-
gau-nernst for his Pinnig RAM
|
|
732
|
+
gau-nernst for his Pinnig RAM samples
|
mmgp-1.0.5/README.md
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
2
|
+
|
|
3
|
+
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
4
|
+
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
5
|
+
times in a pipe (eg VAE).
|
|
6
|
+
|
|
7
|
+
Requirements:
|
|
8
|
+
- GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
9
|
+
- RAM: minimum 48 GB, recommended 64 GB
|
|
10
|
+
|
|
11
|
+
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
12
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
13
|
+
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
14
|
+
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
15
|
+
|
|
16
|
+
*from mmgp import offload*
|
|
17
|
+
*offload.me(pipe)*
|
|
18
|
+
|
|
19
|
+
The 'transformer' model that contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
|
|
20
|
+
|
|
21
|
+
If you have more than 64GB RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
|
|
22
|
+
(this can save significant time if the same pipeline is run multiple times in a row)
|
|
23
|
+
|
|
24
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.
|
|
25
|
+
|
|
26
|
+
For instance :
|
|
27
|
+
for flux derived models: *pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }*
|
|
28
|
+
for mochi: *pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }*
|
|
29
|
+
|
|
30
|
+
Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
|
|
31
|
+
|
|
32
|
+
Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
33
|
+
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
34
|
+
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
35
|
+
*text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)*
|
|
36
|
+
|
|
37
|
+
Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
38
|
+
- For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
39
|
+
- mmpg to tries to fake the device as being "cuda" but sometimes some code won't be fooled and it will create tensors in the cpu device and this may cause some issues.
|
|
40
|
+
|
|
41
|
+
You are free to use my module for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
42
|
+
|
|
43
|
+
Thanks to
|
|
44
|
+
---------
|
|
45
|
+
Huggingface / accelerate for the hooking examples
|
|
46
|
+
Huggingface / quanto for their very useful quantizer
|
|
47
|
+
gau-nernst for his Pinnig RAM samples
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mmgp
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.5
|
|
4
4
|
Summary: Memory Management for the GPU Poor
|
|
5
5
|
Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
|
|
6
6
|
License: GNU GENERAL PUBLIC LICENSE
|
|
@@ -685,38 +685,48 @@ Requires-Dist: optimum-quanto
|
|
|
685
685
|
|
|
686
686
|
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
687
687
|
|
|
688
|
-
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
689
|
-
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
688
|
+
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
689
|
+
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
690
|
+
times in a pipe (eg VAE).
|
|
690
691
|
|
|
691
692
|
Requirements:
|
|
692
|
-
- GPU: RTX 3090/ RTX 4090
|
|
693
|
+
- GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
693
694
|
- RAM: minimum 48 GB, recommended 64 GB
|
|
694
695
|
|
|
695
696
|
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
696
697
|
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
697
698
|
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
698
699
|
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
699
|
-
|
|
700
|
-
offload
|
|
701
|
-
|
|
702
|
-
|
|
700
|
+
|
|
701
|
+
*from mmgp import offload*
|
|
702
|
+
*offload.me(pipe)*
|
|
703
|
+
|
|
704
|
+
The 'transformer' model that contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
|
|
705
|
+
|
|
706
|
+
If you have more than 64GB RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
|
|
707
|
+
(this can save significant time if the same pipeline is run multiple times in a row)
|
|
708
|
+
|
|
709
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.
|
|
703
710
|
|
|
704
711
|
For instance :
|
|
705
|
-
for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
706
|
-
for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
712
|
+
for flux derived models: *pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }*
|
|
713
|
+
for mochi: *pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }*
|
|
707
714
|
|
|
708
|
-
Please note that there should be always one model whose Id is 'transformer'. It
|
|
715
|
+
Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
|
|
709
716
|
|
|
710
|
-
Becareful, lots of models
|
|
717
|
+
Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
711
718
|
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
712
719
|
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
713
|
-
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
720
|
+
*text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)*
|
|
714
721
|
|
|
715
|
-
|
|
722
|
+
Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
723
|
+
- For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
724
|
+
- mmpg to tries to fake the device as being "cuda" but sometimes some code won't be fooled and it will create tensors in the cpu device and this may cause some issues.
|
|
716
725
|
|
|
726
|
+
You are free to use my module for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
717
727
|
|
|
718
|
-
Thanks
|
|
719
|
-
|
|
728
|
+
Thanks to
|
|
729
|
+
---------
|
|
720
730
|
Huggingface / accelerate for the hooking examples
|
|
721
731
|
Huggingface / quanto for their very useful quantizer
|
|
722
|
-
gau-nernst for his Pinnig RAM
|
|
732
|
+
gau-nernst for his Pinnig RAM samples
|
|
@@ -1,10 +1,11 @@
|
|
|
1
|
-
# ------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------
|
|
1
|
+
# ------------------ Memory Management for the GPU Poor by DeepBeepMeep (mmgp)------------------
|
|
2
2
|
#
|
|
3
|
-
# This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
4
|
-
# This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
3
|
+
# This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
|
|
4
|
+
# This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
|
|
5
|
+
# times in a pipe (eg VAE).
|
|
5
6
|
#
|
|
6
7
|
# Requirements:
|
|
7
|
-
# - GPU: RTX 3090/ RTX 4090
|
|
8
|
+
# - GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
|
|
8
9
|
# - RAM: minimum 48 GB, recommended 64 GB
|
|
9
10
|
#
|
|
10
11
|
# It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
@@ -13,27 +14,35 @@
|
|
|
13
14
|
# 2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
14
15
|
# from mmgp import offload
|
|
15
16
|
# offload.me(pipe)
|
|
16
|
-
# If you
|
|
17
|
-
#
|
|
17
|
+
# The 'transformer' model that contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option quantizeTransformer to False to turn off on the fly quantization.
|
|
18
|
+
#
|
|
19
|
+
# If you have more than 64GB RAM you may want to enable RAM pinning with the option pinInRAM = True. You will get in return super fast loading / unloading of models
|
|
20
|
+
# (this can save significant time if the same pipeline is run multiple times in a row)
|
|
21
|
+
#
|
|
22
|
+
# Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.
|
|
18
23
|
#
|
|
19
24
|
# For instance :
|
|
20
25
|
# for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
21
26
|
# for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
22
27
|
#
|
|
23
|
-
# Please note that there should be always one model whose Id is 'transformer'. It
|
|
28
|
+
# Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model)
|
|
24
29
|
#
|
|
25
|
-
# Becareful, lots of models
|
|
30
|
+
# Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
|
|
26
31
|
# where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
27
32
|
# I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
28
33
|
# text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
29
34
|
#
|
|
30
|
-
#
|
|
35
|
+
# Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
|
|
36
|
+
# - For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
|
|
37
|
+
# - mmpg to tries to fake the device as being "cuda" but sometimes some code won't be fooled and it will create tensors in the cpu device and this may cause some issues.
|
|
38
|
+
#
|
|
39
|
+
# You are free to use my module for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
31
40
|
#
|
|
32
|
-
# Thanks
|
|
33
|
-
#
|
|
41
|
+
# Thanks to
|
|
42
|
+
# ---------
|
|
34
43
|
# Huggingface / accelerate for the hooking examples
|
|
35
44
|
# Huggingface / quanto for their very useful quantizer
|
|
36
|
-
# gau-nernst for his Pinnig RAM
|
|
45
|
+
# gau-nernst for his Pinnig RAM samples
|
|
37
46
|
|
|
38
47
|
|
|
39
48
|
#
|
|
@@ -45,8 +54,6 @@ import functools
|
|
|
45
54
|
from optimum.quanto import freeze, qfloat8, qint8, quantize, QModuleMixin, QTensor
|
|
46
55
|
|
|
47
56
|
|
|
48
|
-
# config Dimension X (CogVideo derived ) : Quantization False: because Lora applied later
|
|
49
|
-
|
|
50
57
|
|
|
51
58
|
cotenants_map = {
|
|
52
59
|
"text_encoder": ["vae", "text_encoder_2"],
|
mmgp-1.0.4/README.md
DELETED
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
2
|
-
|
|
3
|
-
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
4
|
-
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
|
|
5
|
-
|
|
6
|
-
Requirements:
|
|
7
|
-
- GPU: RTX 3090/ RTX 4090
|
|
8
|
-
- RAM: minimum 48 GB, recommended 64 GB
|
|
9
|
-
|
|
10
|
-
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
11
|
-
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
12
|
-
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
13
|
-
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
14
|
-
from mmgp import offload
|
|
15
|
-
offload.me(pipe)
|
|
16
|
-
If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
|
|
17
|
-
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
|
|
18
|
-
|
|
19
|
-
For instance :
|
|
20
|
-
for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
21
|
-
for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
22
|
-
|
|
23
|
-
Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
|
|
24
|
-
|
|
25
|
-
Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
|
|
26
|
-
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
27
|
-
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
28
|
-
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
29
|
-
|
|
30
|
-
You are free to use my code for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
Thanks
|
|
34
|
-
-------
|
|
35
|
-
Huggingface / accelerate for the hooking examples
|
|
36
|
-
Huggingface / quanto for their very useful quantizer
|
|
37
|
-
gau-nernst for his Pinnig RAM examples
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|