mmgp 1.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mmgp might be problematic. Click here for more details.
- mmgp-1.0.0/LICENSE.md +201 -0
- mmgp-1.0.0/PKG-INFO +249 -0
- mmgp-1.0.0/README.md +36 -0
- mmgp-1.0.0/pyproject.toml +74 -0
- mmgp-1.0.0/setup.cfg +4 -0
- mmgp-1.0.0/src/mmgp/__init__.py +13 -0
- mmgp-1.0.0/src/mmgp/_version.py +16 -0
- mmgp-1.0.0/src/mmgp/mmgp.py +405 -0
- mmgp-1.0.0/src/mmgp.egg-info/PKG-INFO +249 -0
- mmgp-1.0.0/src/mmgp.egg-info/SOURCES.txt +11 -0
- mmgp-1.0.0/src/mmgp.egg-info/dependency_links.txt +1 -0
- mmgp-1.0.0/src/mmgp.egg-info/requires.txt +2 -0
- mmgp-1.0.0/src/mmgp.egg-info/top_level.txt +1 -0
mmgp-1.0.0/LICENSE.md
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
Apache License
|
|
2
|
+
Version 2.0, January 2004
|
|
3
|
+
http://www.apache.org/licenses/
|
|
4
|
+
|
|
5
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
6
|
+
|
|
7
|
+
1. Definitions.
|
|
8
|
+
|
|
9
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
10
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
11
|
+
|
|
12
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
13
|
+
the copyright owner that is granting the License.
|
|
14
|
+
|
|
15
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
16
|
+
other entities that control, are controlled by, or are under common
|
|
17
|
+
control with that entity. For the purposes of this definition,
|
|
18
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
19
|
+
direction or management of such entity, whether by contract or
|
|
20
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
21
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
22
|
+
|
|
23
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
24
|
+
exercising permissions granted by this License.
|
|
25
|
+
|
|
26
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
27
|
+
including but not limited to software source code, documentation
|
|
28
|
+
source, and configuration files.
|
|
29
|
+
|
|
30
|
+
"Object" form shall mean any form resulting from mechanical
|
|
31
|
+
transformation or translation of a Source form, including but
|
|
32
|
+
not limited to compiled object code, generated documentation,
|
|
33
|
+
and conversions to other media types.
|
|
34
|
+
|
|
35
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
36
|
+
Object form, made available under the License, as indicated by a
|
|
37
|
+
copyright notice that is included in or attached to the work
|
|
38
|
+
(an example is provided in the Appendix below).
|
|
39
|
+
|
|
40
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
41
|
+
form, that is based on (or derived from) the Work and for which the
|
|
42
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
43
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
44
|
+
of this License, Derivative Works shall not include works that remain
|
|
45
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
46
|
+
the Work and Derivative Works thereof.
|
|
47
|
+
|
|
48
|
+
"Contribution" shall mean any work of authorship, including
|
|
49
|
+
the original version of the Work and any modifications or additions
|
|
50
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
51
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
52
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
53
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
54
|
+
means any form of electronic, verbal, or written communication sent
|
|
55
|
+
to the Licensor or its representatives, including but not limited to
|
|
56
|
+
communication on electronic mailing lists, source code control systems,
|
|
57
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
58
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
59
|
+
excluding communication that is conspicuously marked or otherwise
|
|
60
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
61
|
+
|
|
62
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
63
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
64
|
+
subsequently incorporated within the Work.
|
|
65
|
+
|
|
66
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
67
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
68
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
69
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
70
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
71
|
+
Work and such Derivative Works in Source or Object form.
|
|
72
|
+
|
|
73
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
74
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
75
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
76
|
+
(except as stated in this section) patent license to make, have made,
|
|
77
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
78
|
+
where such license applies only to those patent claims licensable
|
|
79
|
+
by such Contributor that are necessarily infringed by their
|
|
80
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
81
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
82
|
+
institute patent litigation against any entity (including a
|
|
83
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
84
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
85
|
+
or contributory patent infringement, then any patent licenses
|
|
86
|
+
granted to You under this License for that Work shall terminate
|
|
87
|
+
as of the date such litigation is filed.
|
|
88
|
+
|
|
89
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
90
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
91
|
+
modifications, and in Source or Object form, provided that You
|
|
92
|
+
meet the following conditions:
|
|
93
|
+
|
|
94
|
+
(a) You must give any other recipients of the Work or
|
|
95
|
+
Derivative Works a copy of this License; and
|
|
96
|
+
|
|
97
|
+
(b) You must cause any modified files to carry prominent notices
|
|
98
|
+
stating that You changed the files; and
|
|
99
|
+
|
|
100
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
101
|
+
that You distribute, all copyright, patent, trademark, and
|
|
102
|
+
attribution notices from the Source form of the Work,
|
|
103
|
+
excluding those notices that do not pertain to any part of
|
|
104
|
+
the Derivative Works; and
|
|
105
|
+
|
|
106
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
107
|
+
distribution, then any Derivative Works that You distribute must
|
|
108
|
+
include a readable copy of the attribution notices contained
|
|
109
|
+
within such NOTICE file, excluding those notices that do not
|
|
110
|
+
pertain to any part of the Derivative Works, in at least one
|
|
111
|
+
of the following places: within a NOTICE text file distributed
|
|
112
|
+
as part of the Derivative Works; within the Source form or
|
|
113
|
+
documentation, if provided along with the Derivative Works; or,
|
|
114
|
+
within a display generated by the Derivative Works, if and
|
|
115
|
+
wherever such third-party notices normally appear. The contents
|
|
116
|
+
of the NOTICE file are for informational purposes only and
|
|
117
|
+
do not modify the License. You may add Your own attribution
|
|
118
|
+
notices within Derivative Works that You distribute, alongside
|
|
119
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
120
|
+
that such additional attribution notices cannot be construed
|
|
121
|
+
as modifying the License.
|
|
122
|
+
|
|
123
|
+
You may add Your own copyright statement to Your modifications and
|
|
124
|
+
may provide additional or different license terms and conditions
|
|
125
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
126
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
127
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
128
|
+
the conditions stated in this License.
|
|
129
|
+
|
|
130
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
131
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
132
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
133
|
+
this License, without any additional terms or conditions.
|
|
134
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
135
|
+
the terms of any separate license agreement you may have executed
|
|
136
|
+
with Licensor regarding such Contributions.
|
|
137
|
+
|
|
138
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
139
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
140
|
+
except as required for reasonable and customary use in describing the
|
|
141
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
142
|
+
|
|
143
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
144
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
145
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
146
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
147
|
+
implied, including, without limitation, any warranties or conditions
|
|
148
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
149
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
150
|
+
appropriateness of using or redistributing the Work and assume any
|
|
151
|
+
risks associated with Your exercise of permissions under this License.
|
|
152
|
+
|
|
153
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
154
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
155
|
+
unless required by applicable law (such as deliberate and grossly
|
|
156
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
157
|
+
liable to You for damages, including any direct, indirect, special,
|
|
158
|
+
incidental, or consequential damages of any character arising as a
|
|
159
|
+
result of this License or out of the use or inability to use the
|
|
160
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
161
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
162
|
+
other commercial damages or losses), even if such Contributor
|
|
163
|
+
has been advised of the possibility of such damages.
|
|
164
|
+
|
|
165
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
166
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
167
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
168
|
+
or other liability obligations and/or rights consistent with this
|
|
169
|
+
License. However, in accepting such obligations, You may act only
|
|
170
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
171
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
172
|
+
defend, and hold each Contributor harmless for any liability
|
|
173
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
174
|
+
of your accepting any such warranty or additional liability.
|
|
175
|
+
|
|
176
|
+
END OF TERMS AND CONDITIONS
|
|
177
|
+
|
|
178
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
179
|
+
|
|
180
|
+
To apply the Apache License to your work, attach the following
|
|
181
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
182
|
+
replaced with your own identifying information. (Don't include
|
|
183
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
184
|
+
comment syntax for the file format. We also recommend that a
|
|
185
|
+
file or class name and description of purpose be included on the
|
|
186
|
+
same "printed page" as the copyright notice for easier
|
|
187
|
+
identification within third-party archives.
|
|
188
|
+
|
|
189
|
+
Copyright [yyyy] [name of copyright owner]
|
|
190
|
+
|
|
191
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
192
|
+
you may not use this file except in compliance with the License.
|
|
193
|
+
You may obtain a copy of the License at
|
|
194
|
+
|
|
195
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
196
|
+
|
|
197
|
+
Unless required by applicable law or agreed to in writing, software
|
|
198
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
199
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
200
|
+
See the License for the specific language governing permissions and
|
|
201
|
+
limitations under the License.
|
mmgp-1.0.0/PKG-INFO
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: mmgp
|
|
3
|
+
Version: 1.0.0
|
|
4
|
+
Summary: Memory Management for the GPU Poor
|
|
5
|
+
Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
|
|
6
|
+
License: Apache License
|
|
7
|
+
Version 2.0, January 2004
|
|
8
|
+
http://www.apache.org/licenses/
|
|
9
|
+
|
|
10
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
11
|
+
|
|
12
|
+
1. Definitions.
|
|
13
|
+
|
|
14
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
15
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
16
|
+
|
|
17
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
18
|
+
the copyright owner that is granting the License.
|
|
19
|
+
|
|
20
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
21
|
+
other entities that control, are controlled by, or are under common
|
|
22
|
+
control with that entity. For the purposes of this definition,
|
|
23
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
24
|
+
direction or management of such entity, whether by contract or
|
|
25
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
26
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
27
|
+
|
|
28
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
29
|
+
exercising permissions granted by this License.
|
|
30
|
+
|
|
31
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
32
|
+
including but not limited to software source code, documentation
|
|
33
|
+
source, and configuration files.
|
|
34
|
+
|
|
35
|
+
"Object" form shall mean any form resulting from mechanical
|
|
36
|
+
transformation or translation of a Source form, including but
|
|
37
|
+
not limited to compiled object code, generated documentation,
|
|
38
|
+
and conversions to other media types.
|
|
39
|
+
|
|
40
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
41
|
+
Object form, made available under the License, as indicated by a
|
|
42
|
+
copyright notice that is included in or attached to the work
|
|
43
|
+
(an example is provided in the Appendix below).
|
|
44
|
+
|
|
45
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
46
|
+
form, that is based on (or derived from) the Work and for which the
|
|
47
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
48
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
49
|
+
of this License, Derivative Works shall not include works that remain
|
|
50
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
51
|
+
the Work and Derivative Works thereof.
|
|
52
|
+
|
|
53
|
+
"Contribution" shall mean any work of authorship, including
|
|
54
|
+
the original version of the Work and any modifications or additions
|
|
55
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
56
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
57
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
58
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
59
|
+
means any form of electronic, verbal, or written communication sent
|
|
60
|
+
to the Licensor or its representatives, including but not limited to
|
|
61
|
+
communication on electronic mailing lists, source code control systems,
|
|
62
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
63
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
64
|
+
excluding communication that is conspicuously marked or otherwise
|
|
65
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
66
|
+
|
|
67
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
68
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
69
|
+
subsequently incorporated within the Work.
|
|
70
|
+
|
|
71
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
72
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
73
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
74
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
75
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
76
|
+
Work and such Derivative Works in Source or Object form.
|
|
77
|
+
|
|
78
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
79
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
80
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
81
|
+
(except as stated in this section) patent license to make, have made,
|
|
82
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
83
|
+
where such license applies only to those patent claims licensable
|
|
84
|
+
by such Contributor that are necessarily infringed by their
|
|
85
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
86
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
87
|
+
institute patent litigation against any entity (including a
|
|
88
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
89
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
90
|
+
or contributory patent infringement, then any patent licenses
|
|
91
|
+
granted to You under this License for that Work shall terminate
|
|
92
|
+
as of the date such litigation is filed.
|
|
93
|
+
|
|
94
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
95
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
96
|
+
modifications, and in Source or Object form, provided that You
|
|
97
|
+
meet the following conditions:
|
|
98
|
+
|
|
99
|
+
(a) You must give any other recipients of the Work or
|
|
100
|
+
Derivative Works a copy of this License; and
|
|
101
|
+
|
|
102
|
+
(b) You must cause any modified files to carry prominent notices
|
|
103
|
+
stating that You changed the files; and
|
|
104
|
+
|
|
105
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
106
|
+
that You distribute, all copyright, patent, trademark, and
|
|
107
|
+
attribution notices from the Source form of the Work,
|
|
108
|
+
excluding those notices that do not pertain to any part of
|
|
109
|
+
the Derivative Works; and
|
|
110
|
+
|
|
111
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
112
|
+
distribution, then any Derivative Works that You distribute must
|
|
113
|
+
include a readable copy of the attribution notices contained
|
|
114
|
+
within such NOTICE file, excluding those notices that do not
|
|
115
|
+
pertain to any part of the Derivative Works, in at least one
|
|
116
|
+
of the following places: within a NOTICE text file distributed
|
|
117
|
+
as part of the Derivative Works; within the Source form or
|
|
118
|
+
documentation, if provided along with the Derivative Works; or,
|
|
119
|
+
within a display generated by the Derivative Works, if and
|
|
120
|
+
wherever such third-party notices normally appear. The contents
|
|
121
|
+
of the NOTICE file are for informational purposes only and
|
|
122
|
+
do not modify the License. You may add Your own attribution
|
|
123
|
+
notices within Derivative Works that You distribute, alongside
|
|
124
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
125
|
+
that such additional attribution notices cannot be construed
|
|
126
|
+
as modifying the License.
|
|
127
|
+
|
|
128
|
+
You may add Your own copyright statement to Your modifications and
|
|
129
|
+
may provide additional or different license terms and conditions
|
|
130
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
131
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
132
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
133
|
+
the conditions stated in this License.
|
|
134
|
+
|
|
135
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
136
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
137
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
138
|
+
this License, without any additional terms or conditions.
|
|
139
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
140
|
+
the terms of any separate license agreement you may have executed
|
|
141
|
+
with Licensor regarding such Contributions.
|
|
142
|
+
|
|
143
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
144
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
145
|
+
except as required for reasonable and customary use in describing the
|
|
146
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
147
|
+
|
|
148
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
149
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
150
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
151
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
152
|
+
implied, including, without limitation, any warranties or conditions
|
|
153
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
154
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
155
|
+
appropriateness of using or redistributing the Work and assume any
|
|
156
|
+
risks associated with Your exercise of permissions under this License.
|
|
157
|
+
|
|
158
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
159
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
160
|
+
unless required by applicable law (such as deliberate and grossly
|
|
161
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
162
|
+
liable to You for damages, including any direct, indirect, special,
|
|
163
|
+
incidental, or consequential damages of any character arising as a
|
|
164
|
+
result of this License or out of the use or inability to use the
|
|
165
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
166
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
167
|
+
other commercial damages or losses), even if such Contributor
|
|
168
|
+
has been advised of the possibility of such damages.
|
|
169
|
+
|
|
170
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
171
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
172
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
173
|
+
or other liability obligations and/or rights consistent with this
|
|
174
|
+
License. However, in accepting such obligations, You may act only
|
|
175
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
176
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
177
|
+
defend, and hold each Contributor harmless for any liability
|
|
178
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
179
|
+
of your accepting any such warranty or additional liability.
|
|
180
|
+
|
|
181
|
+
END OF TERMS AND CONDITIONS
|
|
182
|
+
|
|
183
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
184
|
+
|
|
185
|
+
To apply the Apache License to your work, attach the following
|
|
186
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
187
|
+
replaced with your own identifying information. (Don't include
|
|
188
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
189
|
+
comment syntax for the file format. We also recommend that a
|
|
190
|
+
file or class name and description of purpose be included on the
|
|
191
|
+
same "printed page" as the copyright notice for easier
|
|
192
|
+
identification within third-party archives.
|
|
193
|
+
|
|
194
|
+
Copyright [yyyy] [name of copyright owner]
|
|
195
|
+
|
|
196
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
197
|
+
you may not use this file except in compliance with the License.
|
|
198
|
+
You may obtain a copy of the License at
|
|
199
|
+
|
|
200
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
201
|
+
|
|
202
|
+
Unless required by applicable law or agreed to in writing, software
|
|
203
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
204
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
205
|
+
See the License for the specific language governing permissions and
|
|
206
|
+
limitations under the License.
|
|
207
|
+
|
|
208
|
+
Requires-Python: >=3.10
|
|
209
|
+
Description-Content-Type: text/markdown
|
|
210
|
+
License-File: LICENSE.md
|
|
211
|
+
Requires-Dist: torch>=2.1.0
|
|
212
|
+
Requires-Dist: optimum-quanto
|
|
213
|
+
|
|
214
|
+
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
215
|
+
|
|
216
|
+
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
217
|
+
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
|
|
218
|
+
|
|
219
|
+
Requirements:
|
|
220
|
+
- GPU: RTX 3090/ RTX 4090
|
|
221
|
+
- RAM: minimum 48 GB, recommended 64 GB
|
|
222
|
+
|
|
223
|
+
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
224
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
225
|
+
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
226
|
+
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
227
|
+
from mmgp import offload
|
|
228
|
+
offload.me(pipe)
|
|
229
|
+
If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
|
|
230
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
|
|
231
|
+
|
|
232
|
+
For instance :
|
|
233
|
+
for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
234
|
+
for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
235
|
+
|
|
236
|
+
Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
|
|
237
|
+
|
|
238
|
+
Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
|
|
239
|
+
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
240
|
+
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
241
|
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
242
|
+
|
|
243
|
+
You are free to use my code as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
244
|
+
|
|
245
|
+
Credits
|
|
246
|
+
-------
|
|
247
|
+
Huggingface / accelerate for the hooking examples
|
|
248
|
+
Huggingface / quanto for their very useful quantizer
|
|
249
|
+
gau-nernst for his Pinnig RAM examples
|
mmgp-1.0.0/README.md
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
2
|
+
|
|
3
|
+
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
4
|
+
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
|
|
5
|
+
|
|
6
|
+
Requirements:
|
|
7
|
+
- GPU: RTX 3090/ RTX 4090
|
|
8
|
+
- RAM: minimum 48 GB, recommended 64 GB
|
|
9
|
+
|
|
10
|
+
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
11
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
12
|
+
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
13
|
+
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
14
|
+
from mmgp import offload
|
|
15
|
+
offload.me(pipe)
|
|
16
|
+
If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
|
|
17
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
|
|
18
|
+
|
|
19
|
+
For instance :
|
|
20
|
+
for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
21
|
+
for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
22
|
+
|
|
23
|
+
Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
|
|
24
|
+
|
|
25
|
+
Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
|
|
26
|
+
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
27
|
+
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
28
|
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
29
|
+
|
|
30
|
+
You are free to use my code as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
31
|
+
|
|
32
|
+
Credits
|
|
33
|
+
-------
|
|
34
|
+
Huggingface / accelerate for the hooking examples
|
|
35
|
+
Huggingface / quanto for their very useful quantizer
|
|
36
|
+
gau-nernst for his Pinnig RAM examples
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "mmgp"
|
|
3
|
+
authors = [
|
|
4
|
+
{ name = "deepbeepmeep", email = "deepbeepmeep@yahoo.com" },
|
|
5
|
+
]
|
|
6
|
+
description = "Memory Management for the GPU Poor"
|
|
7
|
+
readme = "README.md"
|
|
8
|
+
requires-python = ">=3.10"
|
|
9
|
+
license = { file = "LICENSE.md" }
|
|
10
|
+
dynamic = ["version"]
|
|
11
|
+
dependencies = [
|
|
12
|
+
"torch >= 2.1.0",
|
|
13
|
+
"optimum-quanto",
|
|
14
|
+
]
|
|
15
|
+
|
|
16
|
+
[project.optional-dependencies]
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
[build-system]
|
|
20
|
+
build-backend = "setuptools.build_meta"
|
|
21
|
+
requires = ["setuptools>=64", "wheel", "setuptools_scm>=8"]
|
|
22
|
+
|
|
23
|
+
[tool.ruff]
|
|
24
|
+
line-length = 110
|
|
25
|
+
target-version = "py310"
|
|
26
|
+
extend-exclude = ["/usr/lib/*"]
|
|
27
|
+
|
|
28
|
+
[tool.ruff.lint]
|
|
29
|
+
ignore = [
|
|
30
|
+
"E501", # line too long - will be fixed in format
|
|
31
|
+
]
|
|
32
|
+
|
|
33
|
+
[tool.ruff.format]
|
|
34
|
+
quote-style = "double"
|
|
35
|
+
indent-style = "space"
|
|
36
|
+
line-ending = "auto"
|
|
37
|
+
skip-magic-trailing-comma = false
|
|
38
|
+
docstring-code-format = true
|
|
39
|
+
exclude = [
|
|
40
|
+
"src/mmgp/_version.py", # generated by setuptools_scm
|
|
41
|
+
]
|
|
42
|
+
|
|
43
|
+
[tool.ruff.lint.isort]
|
|
44
|
+
combine-as-imports = true
|
|
45
|
+
force-wrap-aliases = true
|
|
46
|
+
known-local-folder = ["src"]
|
|
47
|
+
known-first-party = ["mmgp"]
|
|
48
|
+
|
|
49
|
+
[tool.pyright]
|
|
50
|
+
include = ["src"]
|
|
51
|
+
exclude = [
|
|
52
|
+
"**/__pycache__", # cache directories
|
|
53
|
+
"./typings", # generated type stubs
|
|
54
|
+
]
|
|
55
|
+
stubPath = "./typings"
|
|
56
|
+
|
|
57
|
+
[tool.tomlsort]
|
|
58
|
+
in_place = true
|
|
59
|
+
no_sort_tables = true
|
|
60
|
+
spaces_before_inline_comment = 1
|
|
61
|
+
spaces_indent_inline_array = 2
|
|
62
|
+
trailing_comma_inline_array = true
|
|
63
|
+
sort_first = [
|
|
64
|
+
"project",
|
|
65
|
+
"build-system",
|
|
66
|
+
"tool.setuptools",
|
|
67
|
+
]
|
|
68
|
+
|
|
69
|
+
# needs to be last for CI reasons
|
|
70
|
+
[tool.setuptools_scm]
|
|
71
|
+
write_to = "src/mmgp/_version.py"
|
|
72
|
+
parentdir_prefix_version = "mmgp-"
|
|
73
|
+
fallback_version = "1.0.0"
|
|
74
|
+
version_scheme = "post-release"
|
mmgp-1.0.0/setup.cfg
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
try:
|
|
2
|
+
from ._version import (
|
|
3
|
+
version as __version__, # type: ignore
|
|
4
|
+
version_tuple,
|
|
5
|
+
)
|
|
6
|
+
except ImportError:
|
|
7
|
+
__version__ = "unknown (no version information available)"
|
|
8
|
+
version_tuple = (0, 0, "unknown", "noinfo")
|
|
9
|
+
|
|
10
|
+
from pathlib import Path
|
|
11
|
+
|
|
12
|
+
PACKAGE = __package__.replace("_", "-")
|
|
13
|
+
PACKAGE_ROOT = Path(__file__).parent
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# file generated by setuptools_scm
|
|
2
|
+
# don't change, don't track in version control
|
|
3
|
+
TYPE_CHECKING = False
|
|
4
|
+
if TYPE_CHECKING:
|
|
5
|
+
from typing import Tuple, Union
|
|
6
|
+
VERSION_TUPLE = Tuple[Union[int, str], ...]
|
|
7
|
+
else:
|
|
8
|
+
VERSION_TUPLE = object
|
|
9
|
+
|
|
10
|
+
version: str
|
|
11
|
+
__version__: str
|
|
12
|
+
__version_tuple__: VERSION_TUPLE
|
|
13
|
+
version_tuple: VERSION_TUPLE
|
|
14
|
+
|
|
15
|
+
__version__ = version = '1.0.0'
|
|
16
|
+
__version_tuple__ = version_tuple = (1, 0, 0)
|
|
@@ -0,0 +1,405 @@
|
|
|
1
|
+
# ------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------
|
|
2
|
+
#
|
|
3
|
+
# This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
4
|
+
# This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
|
|
5
|
+
#
|
|
6
|
+
# Requirements:
|
|
7
|
+
# - GPU: RTX 3090/ RTX 4090
|
|
8
|
+
# - RAM: minimum 48 GB, recommended 64 GB
|
|
9
|
+
#
|
|
10
|
+
# It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
11
|
+
# 1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
12
|
+
# for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
13
|
+
# 2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
14
|
+
# from mmgp import offload
|
|
15
|
+
# offload.me(pipe)
|
|
16
|
+
# If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
|
|
17
|
+
# Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
|
|
18
|
+
#
|
|
19
|
+
# For instance :
|
|
20
|
+
# for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
21
|
+
# for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
22
|
+
#
|
|
23
|
+
# Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
|
|
24
|
+
#
|
|
25
|
+
# Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
|
|
26
|
+
# where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
27
|
+
# I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
28
|
+
# text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
29
|
+
#
|
|
30
|
+
# You are free to use my code as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
31
|
+
#
|
|
32
|
+
# Credits
|
|
33
|
+
# -------
|
|
34
|
+
# Huggingface / accelerate for the hooking examples
|
|
35
|
+
# Huggingface / quanto for their very useful quantizer
|
|
36
|
+
# gau-nernst for his Pinnig RAM examples
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
#
|
|
40
|
+
import torch
|
|
41
|
+
#
|
|
42
|
+
import gc
|
|
43
|
+
import time
|
|
44
|
+
import functools
|
|
45
|
+
from optimum.quanto import freeze, qfloat8, qint8, quantize, QModuleMixin, QTensor
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
# config Dimension X (CogVideo derived ) : Quantization False: because Lora applied later
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
cotenants_map = {
|
|
52
|
+
"text_encoder": ["vae", "text_encoder_2"],
|
|
53
|
+
"text_encoder_2": ["vae", "text_encoder"],
|
|
54
|
+
}
|
|
55
|
+
|
|
56
|
+
# useful functions to move a group of tensors (to design custom offload patches)
|
|
57
|
+
def move_tensors(obj, device):
|
|
58
|
+
if torch.is_tensor(obj):
|
|
59
|
+
return obj.to(device)
|
|
60
|
+
elif isinstance(obj, dict):
|
|
61
|
+
_dict = {}
|
|
62
|
+
for k, v in obj.items():
|
|
63
|
+
_dict[k] = move_tensors(v, device)
|
|
64
|
+
return _dict
|
|
65
|
+
elif isinstance(obj, list):
|
|
66
|
+
_list = []
|
|
67
|
+
for v in obj:
|
|
68
|
+
_list.append(move_tensors(v, device))
|
|
69
|
+
return _list
|
|
70
|
+
else:
|
|
71
|
+
raise TypeError("Tensor or list / dict of tensors expected")
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def get_model_name(model):
|
|
75
|
+
return model.name
|
|
76
|
+
|
|
77
|
+
class HfHook:
|
|
78
|
+
def __init__(self):
|
|
79
|
+
self.execution_device = "cuda"
|
|
80
|
+
|
|
81
|
+
def detach_hook(self, module):
|
|
82
|
+
pass
|
|
83
|
+
|
|
84
|
+
class offload:
|
|
85
|
+
def __init__(self):
|
|
86
|
+
self.active_models = []
|
|
87
|
+
self.active_models_ids = []
|
|
88
|
+
self.models = {}
|
|
89
|
+
self.verbose = False
|
|
90
|
+
self.models_to_quantize = []
|
|
91
|
+
self.pinned_modules_data = {}
|
|
92
|
+
self.params_of_modules = {}
|
|
93
|
+
self.pinTensors = False
|
|
94
|
+
self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
|
|
95
|
+
self.last_reserved_mem_check =0
|
|
96
|
+
|
|
97
|
+
def collect_module_parameters(self, module: torch.nn.Module, module_params):
|
|
98
|
+
if isinstance(module, (torch.nn.ModuleList, torch.nn.Sequential)):
|
|
99
|
+
for i in range(len(module)):
|
|
100
|
+
current_layer = module[i]
|
|
101
|
+
module_params.extend(current_layer.parameters())
|
|
102
|
+
module_params.extend(current_layer.buffers())
|
|
103
|
+
else:
|
|
104
|
+
for p in module.parameters(recurse=False):
|
|
105
|
+
module_params.append(p)
|
|
106
|
+
for p in module.buffers(recurse=False):
|
|
107
|
+
module_params.append(p)
|
|
108
|
+
for sub_module in module.children():
|
|
109
|
+
self.collect_module_parameters(sub_module, module_params)
|
|
110
|
+
|
|
111
|
+
def can_model_be_cotenant(self, model_id):
|
|
112
|
+
potential_cotenants= cotenants_map.get(model_id, None)
|
|
113
|
+
if potential_cotenants is None:
|
|
114
|
+
return False
|
|
115
|
+
for existing_cotenant in self.active_models_ids:
|
|
116
|
+
if existing_cotenant not in potential_cotenants:
|
|
117
|
+
return False
|
|
118
|
+
return True
|
|
119
|
+
|
|
120
|
+
def gpu_load(self, model_id):
|
|
121
|
+
model = self.models[model_id]
|
|
122
|
+
self.active_models.append(model)
|
|
123
|
+
self.active_models_ids.append(model_id)
|
|
124
|
+
if self.verbose:
|
|
125
|
+
model_name = model._get_name()
|
|
126
|
+
print(f"Loading model {model_name} ({model_id}) in GPU")
|
|
127
|
+
if not self.pinInRAM:
|
|
128
|
+
model.to("cuda")
|
|
129
|
+
else:
|
|
130
|
+
module_params = self.params_of_modules[model_id]
|
|
131
|
+
for p in module_params:
|
|
132
|
+
if isinstance(p, QTensor):
|
|
133
|
+
p._data = p._data.cuda(non_blocking=True)
|
|
134
|
+
p._scale = p._scale.cuda(non_blocking=True)
|
|
135
|
+
else:
|
|
136
|
+
p.data = p.data.cuda(non_blocking=True) #
|
|
137
|
+
# torch.cuda.current_stream().synchronize()
|
|
138
|
+
|
|
139
|
+
def unload_all(self):
|
|
140
|
+
for model, model_id in zip(self.active_models, self.active_models_ids):
|
|
141
|
+
if not self.pinInRAM:
|
|
142
|
+
model.to("cpu")
|
|
143
|
+
else:
|
|
144
|
+
module_params = self.params_of_modules[model_id]
|
|
145
|
+
pinned_parameters_data = self.pinned_modules_data[model_id]
|
|
146
|
+
for p in module_params:
|
|
147
|
+
if isinstance(p, QTensor):
|
|
148
|
+
data = pinned_parameters_data[p]
|
|
149
|
+
p._data = data[0]
|
|
150
|
+
p._scale = data[1]
|
|
151
|
+
else:
|
|
152
|
+
p.data = pinned_parameters_data[p]
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
self.active_models = []
|
|
156
|
+
self.active_models_ids = []
|
|
157
|
+
torch.cuda.empty_cache()
|
|
158
|
+
gc.collect()
|
|
159
|
+
|
|
160
|
+
def move_args_to_gpu(self, *args, **kwargs):
|
|
161
|
+
new_args= []
|
|
162
|
+
new_kwargs={}
|
|
163
|
+
for arg in args:
|
|
164
|
+
if torch.is_tensor(arg):
|
|
165
|
+
if arg.dtype == torch.float32:
|
|
166
|
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True)
|
|
167
|
+
else:
|
|
168
|
+
arg = arg.cuda(non_blocking=True)
|
|
169
|
+
new_args.append(arg)
|
|
170
|
+
|
|
171
|
+
for k in kwargs:
|
|
172
|
+
arg = kwargs[k]
|
|
173
|
+
if torch.is_tensor(arg):
|
|
174
|
+
if arg.dtype == torch.float32:
|
|
175
|
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True)
|
|
176
|
+
else:
|
|
177
|
+
arg = arg.cuda(non_blocking=True)
|
|
178
|
+
new_kwargs[k]= arg
|
|
179
|
+
|
|
180
|
+
return new_args, new_kwargs
|
|
181
|
+
|
|
182
|
+
def ready_to_check_mem(self, forceMemoryCheck):
|
|
183
|
+
cur_clock = time.time()
|
|
184
|
+
# can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
|
|
185
|
+
if not forceMemoryCheck and (cur_clock - self.last_reserved_mem_check)<0.200:
|
|
186
|
+
return False
|
|
187
|
+
self.last_reserved_mem_check = cur_clock
|
|
188
|
+
return True
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def empty_cache_if_needed(self):
|
|
192
|
+
mem_reserved = torch.cuda.memory_reserved()
|
|
193
|
+
if mem_reserved >= 0.9*self.device_mem_capacity:
|
|
194
|
+
mem_allocated = torch.cuda.memory_allocated()
|
|
195
|
+
if mem_allocated <= 0.70 * mem_reserved:
|
|
196
|
+
# print(f"Cuda empty cache triggered as Allocated Memory ({mem_allocated/1024000:0f} MB) is lot less than Cached Memory ({mem_reserved/1024000:0f} MB) ")
|
|
197
|
+
torch.cuda.empty_cache()
|
|
198
|
+
# print(f"New cached memory after purge is {torch.cuda.memory_reserved()/1024000:0f} MB) ")
|
|
199
|
+
|
|
200
|
+
def hook_me_light(self, target_module, forceMemoryCheck, previous_method):
|
|
201
|
+
# @torch.compiler.disable()
|
|
202
|
+
def check_empty_cache(module, *args, **kwargs):
|
|
203
|
+
if self.ready_to_check_mem(forceMemoryCheck):
|
|
204
|
+
self.empty_cache_if_needed()
|
|
205
|
+
return previous_method(*args, **kwargs)
|
|
206
|
+
|
|
207
|
+
setattr(target_module, "forward", functools.update_wrapper(functools.partial(check_empty_cache, target_module), previous_method) )
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
def hook_me(self, target_module, model, model_id, module_id, previous_method):
|
|
211
|
+
@torch.compiler.disable()
|
|
212
|
+
def check_change_module(module, *args, **kwargs):
|
|
213
|
+
performEmptyCacheTest = False
|
|
214
|
+
if not model_id in self.active_models_ids:
|
|
215
|
+
new_model_id = getattr(module, "_mm_id")
|
|
216
|
+
# do not always unload existing models if it is more efficient to keep in them in the GPU
|
|
217
|
+
# (e.g: small modules whose calls are text encoders)
|
|
218
|
+
if not self.can_model_be_cotenant(new_model_id) :
|
|
219
|
+
self.unload_all()
|
|
220
|
+
performEmptyCacheTest = False
|
|
221
|
+
self.gpu_load(new_model_id)
|
|
222
|
+
# transfer leftovers inputs that were incorrectly created in the RAM (mostly due to some .device tests that returned incorrectly "cpu")
|
|
223
|
+
args, kwargs = self.move_args_to_gpu(*args, **kwargs)
|
|
224
|
+
if performEmptyCacheTest:
|
|
225
|
+
self.empty_cache_if_needed()
|
|
226
|
+
return previous_method(*args, **kwargs)
|
|
227
|
+
|
|
228
|
+
if hasattr(target_module, "_mm_id"):
|
|
229
|
+
return
|
|
230
|
+
setattr(target_module, "_mm_id", model_id)
|
|
231
|
+
|
|
232
|
+
# create a fake accelerate parameter so that the _execution_device property returns always "cuda"
|
|
233
|
+
# (it is queried in many pipelines even if offloading is not properly implemented)
|
|
234
|
+
if not hasattr(target_module, "_hf_hook"):
|
|
235
|
+
setattr(target_module, "_hf_hook", HfHook())
|
|
236
|
+
setattr(target_module, "forward", functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method) )
|
|
237
|
+
|
|
238
|
+
if not self.verbose:
|
|
239
|
+
return
|
|
240
|
+
|
|
241
|
+
if module_id == None or module_id =='':
|
|
242
|
+
model_name = model._get_name()
|
|
243
|
+
print(f"Hooked in model {model_name} ({model_id})")
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
# Not implemented yet, but why would one want to get rid of these features ?
|
|
247
|
+
# def unhook_module(module: torch.nn.Module):
|
|
248
|
+
# if not hasattr(module,"_mm_id"):
|
|
249
|
+
# return
|
|
250
|
+
|
|
251
|
+
# delattr(module, "_mm_id")
|
|
252
|
+
|
|
253
|
+
# def unhook_all(parent_module: torch.nn.Module):
|
|
254
|
+
# for module in parent_module.components.items():
|
|
255
|
+
# self.unhook_module(module)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
@classmethod
|
|
261
|
+
def all(cls, pipe_or_dict_of_modules, quantizeTransformer = True, pinInRAM = True, compile= True, verbose = True):
|
|
262
|
+
self = cls()
|
|
263
|
+
self.verbose = verbose
|
|
264
|
+
self.pinned_modules_data = {}
|
|
265
|
+
|
|
266
|
+
self.pinInRAM = pinInRAM
|
|
267
|
+
|
|
268
|
+
preloadInRAM = True
|
|
269
|
+
torch.set_default_device('cuda')
|
|
270
|
+
if hasattr(pipe_or_dict_of_modules, "components"):
|
|
271
|
+
pipe_or_dict_of_modules.to("cpu") #XXXX
|
|
272
|
+
# create a fake Accelerate parameter so that lora loading doesn't change the device
|
|
273
|
+
pipe_or_dict_of_modules.hf_device_map = torch.device("cuda")
|
|
274
|
+
pipe_or_dict_of_modules= pipe_or_dict_of_modules.components
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
models = {k: v for k, v in pipe_or_dict_of_modules.items() if isinstance(v, torch.nn.Module)}
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
if quantizeTransformer:
|
|
282
|
+
self.models_to_quantize = ["transformer"]
|
|
283
|
+
# del models["transformer"] # to test everything but the transformer that has a much longer loading
|
|
284
|
+
# models = { 'transformer': pipe_or_dict_of_modules["transformer"]} # to test only the transformer
|
|
285
|
+
for model_id in models:
|
|
286
|
+
current_model: torch.nn.Module = models[model_id]
|
|
287
|
+
# make sure that no RAM or GPU memory is not allocated for gradiant / training
|
|
288
|
+
current_model.to("cpu").eval() #XXXXX
|
|
289
|
+
|
|
290
|
+
# Quantize model just before transferring it to the RAM to keep OS cache file
|
|
291
|
+
# open as short as possible. Indeed it seems that as long as the lazy safetensors
|
|
292
|
+
# are not fully fully loaded, the OS won't be able to release the corresponding cache file in RAM.
|
|
293
|
+
if model_id in self.models_to_quantize:
|
|
294
|
+
print(f"Quantization of model '{model_id}' started")
|
|
295
|
+
quantize(current_model, weights=qint8)
|
|
296
|
+
freeze(current_model)
|
|
297
|
+
print(f"Quantization of model '{model_id}' done")
|
|
298
|
+
torch.cuda.empty_cache()
|
|
299
|
+
gc.collect()
|
|
300
|
+
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
if preloadInRAM: #
|
|
304
|
+
# load all the remaining unread lazy safetensors in RAM to free open cache files
|
|
305
|
+
for p in current_model.parameters():
|
|
306
|
+
# Preread every tensor in RAM except tensors that have just been quantified
|
|
307
|
+
# and are no longer needed
|
|
308
|
+
if isinstance(p, QTensor):
|
|
309
|
+
# fix quanto bug (see below) now as he won't have any opportunity to do it during RAM pinning
|
|
310
|
+
if not pinInRAM and p._scale.dtype == torch.float32:
|
|
311
|
+
p._scale = p._scale.to(torch.bfloat16)
|
|
312
|
+
|
|
313
|
+
else:
|
|
314
|
+
if p.data.dtype == torch.float32:
|
|
315
|
+
# convert any left overs float32 weight to bloat16 to divide by 2 the model memory footprint
|
|
316
|
+
p.data = p.data.to(torch.bfloat16)
|
|
317
|
+
else:
|
|
318
|
+
# force reading the tensors from the disk by pretending to modify them
|
|
319
|
+
p.data = p.data + 0
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
addModelFlag = False
|
|
323
|
+
|
|
324
|
+
current_block_sequence = None
|
|
325
|
+
for submodule_name, submodule in current_model.named_modules():
|
|
326
|
+
if hasattr(submodule, "forward"):
|
|
327
|
+
submodule_method = getattr(submodule, "forward")
|
|
328
|
+
if callable(submodule_method):
|
|
329
|
+
addModelFlag = True
|
|
330
|
+
if submodule_name=='' or len(submodule_name.split("."))==1:
|
|
331
|
+
# hook only the first two levels of modules with the full suite of processing
|
|
332
|
+
self.hook_me(submodule, current_model, model_id, submodule_name, submodule_method)
|
|
333
|
+
else:
|
|
334
|
+
forceMemoryCheck = False
|
|
335
|
+
pos = submodule_name.find(".0.")
|
|
336
|
+
if pos > 0:
|
|
337
|
+
if current_block_sequence == None:
|
|
338
|
+
new_candidate = submodule_name[0:pos+3]
|
|
339
|
+
if len(new_candidate.split("."))<=4:
|
|
340
|
+
current_block_sequence = new_candidate
|
|
341
|
+
# force a memory check when initiating a new sequence of blocks as the shapes of tensor will certainly change
|
|
342
|
+
# and memory reusability is less likely
|
|
343
|
+
# we limit this check to the first level of blocks as quering the cuda cache is time consuming
|
|
344
|
+
forceMemoryCheck = True
|
|
345
|
+
else:
|
|
346
|
+
if current_block_sequence != submodule_name[0:len(current_block_sequence)]:
|
|
347
|
+
current_block_sequence = None
|
|
348
|
+
self.hook_me_light(submodule, forceMemoryCheck, submodule_method)
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
if addModelFlag:
|
|
352
|
+
if model_id not in self.models:
|
|
353
|
+
self.models[model_id] = current_model
|
|
354
|
+
|
|
355
|
+
# Pin in RAM models only once they have been fully loaded otherwise there may be some contention in the non pageable memory
|
|
356
|
+
# between partially loaded lazy safetensors and pinned tensors
|
|
357
|
+
if pinInRAM:
|
|
358
|
+
if verbose:
|
|
359
|
+
print("Pinning model tensors in RAM")
|
|
360
|
+
torch.cuda.empty_cache()
|
|
361
|
+
gc.collect()
|
|
362
|
+
for model_id in models:
|
|
363
|
+
pinned_parameters_data = {}
|
|
364
|
+
current_model: torch.nn.Module = models[model_id]
|
|
365
|
+
for p in current_model.parameters():
|
|
366
|
+
if isinstance(p, QTensor):
|
|
367
|
+
# pin in memory both quantized data and scales of quantized parameters
|
|
368
|
+
# but don't pin .data as it corresponds to the original tensor that we don't want to reload
|
|
369
|
+
p._data = p._data.pin_memory()
|
|
370
|
+
# fix quanto bug that allows _scale to be float32 if the original weight was float32
|
|
371
|
+
# (this may cause type mismatch between dequantified bfloat16 weights and float32 scales)
|
|
372
|
+
p._scale = p._scale.to(torch.bfloat16).pin_memory() if p._scale.dtype == torch.float32 else p._scale.pin_memory()
|
|
373
|
+
pinned_parameters_data[p]=[p._data, p._scale]
|
|
374
|
+
else:
|
|
375
|
+
p.data = p.data.pin_memory()
|
|
376
|
+
pinned_parameters_data[p]=p.data
|
|
377
|
+
for b in current_model.buffers():
|
|
378
|
+
b.data = b.data.pin_memory()
|
|
379
|
+
|
|
380
|
+
pinned_buffers_data = {b: b.data for b in current_model.buffers()}
|
|
381
|
+
pinned_parameters_data.update(pinned_buffers_data)
|
|
382
|
+
self.pinned_modules_data[model_id]=pinned_parameters_data
|
|
383
|
+
|
|
384
|
+
module_params = []
|
|
385
|
+
self.params_of_modules[model_id] = module_params
|
|
386
|
+
self.collect_module_parameters(current_model,module_params)
|
|
387
|
+
|
|
388
|
+
if compile:
|
|
389
|
+
if verbose:
|
|
390
|
+
print("Torch compilation started")
|
|
391
|
+
torch._dynamo.config.cache_size_limit = 10000
|
|
392
|
+
for model_id in models:
|
|
393
|
+
current_model: torch.nn.Module = models[model_id]
|
|
394
|
+
current_model.compile()
|
|
395
|
+
#models["transformer"].compile()
|
|
396
|
+
if verbose:
|
|
397
|
+
print("Torch compilation done")
|
|
398
|
+
|
|
399
|
+
torch.cuda.empty_cache()
|
|
400
|
+
gc.collect()
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
return self
|
|
404
|
+
|
|
405
|
+
|
|
@@ -0,0 +1,249 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: mmgp
|
|
3
|
+
Version: 1.0.0
|
|
4
|
+
Summary: Memory Management for the GPU Poor
|
|
5
|
+
Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
|
|
6
|
+
License: Apache License
|
|
7
|
+
Version 2.0, January 2004
|
|
8
|
+
http://www.apache.org/licenses/
|
|
9
|
+
|
|
10
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
11
|
+
|
|
12
|
+
1. Definitions.
|
|
13
|
+
|
|
14
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
15
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
16
|
+
|
|
17
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
18
|
+
the copyright owner that is granting the License.
|
|
19
|
+
|
|
20
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
21
|
+
other entities that control, are controlled by, or are under common
|
|
22
|
+
control with that entity. For the purposes of this definition,
|
|
23
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
24
|
+
direction or management of such entity, whether by contract or
|
|
25
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
26
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
27
|
+
|
|
28
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
29
|
+
exercising permissions granted by this License.
|
|
30
|
+
|
|
31
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
32
|
+
including but not limited to software source code, documentation
|
|
33
|
+
source, and configuration files.
|
|
34
|
+
|
|
35
|
+
"Object" form shall mean any form resulting from mechanical
|
|
36
|
+
transformation or translation of a Source form, including but
|
|
37
|
+
not limited to compiled object code, generated documentation,
|
|
38
|
+
and conversions to other media types.
|
|
39
|
+
|
|
40
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
41
|
+
Object form, made available under the License, as indicated by a
|
|
42
|
+
copyright notice that is included in or attached to the work
|
|
43
|
+
(an example is provided in the Appendix below).
|
|
44
|
+
|
|
45
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
46
|
+
form, that is based on (or derived from) the Work and for which the
|
|
47
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
48
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
49
|
+
of this License, Derivative Works shall not include works that remain
|
|
50
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
51
|
+
the Work and Derivative Works thereof.
|
|
52
|
+
|
|
53
|
+
"Contribution" shall mean any work of authorship, including
|
|
54
|
+
the original version of the Work and any modifications or additions
|
|
55
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
56
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
57
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
58
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
59
|
+
means any form of electronic, verbal, or written communication sent
|
|
60
|
+
to the Licensor or its representatives, including but not limited to
|
|
61
|
+
communication on electronic mailing lists, source code control systems,
|
|
62
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
63
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
64
|
+
excluding communication that is conspicuously marked or otherwise
|
|
65
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
66
|
+
|
|
67
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
68
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
69
|
+
subsequently incorporated within the Work.
|
|
70
|
+
|
|
71
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
72
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
73
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
74
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
75
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
76
|
+
Work and such Derivative Works in Source or Object form.
|
|
77
|
+
|
|
78
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
79
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
80
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
81
|
+
(except as stated in this section) patent license to make, have made,
|
|
82
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
83
|
+
where such license applies only to those patent claims licensable
|
|
84
|
+
by such Contributor that are necessarily infringed by their
|
|
85
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
86
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
87
|
+
institute patent litigation against any entity (including a
|
|
88
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
89
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
90
|
+
or contributory patent infringement, then any patent licenses
|
|
91
|
+
granted to You under this License for that Work shall terminate
|
|
92
|
+
as of the date such litigation is filed.
|
|
93
|
+
|
|
94
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
95
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
96
|
+
modifications, and in Source or Object form, provided that You
|
|
97
|
+
meet the following conditions:
|
|
98
|
+
|
|
99
|
+
(a) You must give any other recipients of the Work or
|
|
100
|
+
Derivative Works a copy of this License; and
|
|
101
|
+
|
|
102
|
+
(b) You must cause any modified files to carry prominent notices
|
|
103
|
+
stating that You changed the files; and
|
|
104
|
+
|
|
105
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
106
|
+
that You distribute, all copyright, patent, trademark, and
|
|
107
|
+
attribution notices from the Source form of the Work,
|
|
108
|
+
excluding those notices that do not pertain to any part of
|
|
109
|
+
the Derivative Works; and
|
|
110
|
+
|
|
111
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
112
|
+
distribution, then any Derivative Works that You distribute must
|
|
113
|
+
include a readable copy of the attribution notices contained
|
|
114
|
+
within such NOTICE file, excluding those notices that do not
|
|
115
|
+
pertain to any part of the Derivative Works, in at least one
|
|
116
|
+
of the following places: within a NOTICE text file distributed
|
|
117
|
+
as part of the Derivative Works; within the Source form or
|
|
118
|
+
documentation, if provided along with the Derivative Works; or,
|
|
119
|
+
within a display generated by the Derivative Works, if and
|
|
120
|
+
wherever such third-party notices normally appear. The contents
|
|
121
|
+
of the NOTICE file are for informational purposes only and
|
|
122
|
+
do not modify the License. You may add Your own attribution
|
|
123
|
+
notices within Derivative Works that You distribute, alongside
|
|
124
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
125
|
+
that such additional attribution notices cannot be construed
|
|
126
|
+
as modifying the License.
|
|
127
|
+
|
|
128
|
+
You may add Your own copyright statement to Your modifications and
|
|
129
|
+
may provide additional or different license terms and conditions
|
|
130
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
131
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
132
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
133
|
+
the conditions stated in this License.
|
|
134
|
+
|
|
135
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
136
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
137
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
138
|
+
this License, without any additional terms or conditions.
|
|
139
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
140
|
+
the terms of any separate license agreement you may have executed
|
|
141
|
+
with Licensor regarding such Contributions.
|
|
142
|
+
|
|
143
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
144
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
145
|
+
except as required for reasonable and customary use in describing the
|
|
146
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
147
|
+
|
|
148
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
149
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
150
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
151
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
152
|
+
implied, including, without limitation, any warranties or conditions
|
|
153
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
154
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
155
|
+
appropriateness of using or redistributing the Work and assume any
|
|
156
|
+
risks associated with Your exercise of permissions under this License.
|
|
157
|
+
|
|
158
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
159
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
160
|
+
unless required by applicable law (such as deliberate and grossly
|
|
161
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
162
|
+
liable to You for damages, including any direct, indirect, special,
|
|
163
|
+
incidental, or consequential damages of any character arising as a
|
|
164
|
+
result of this License or out of the use or inability to use the
|
|
165
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
166
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
167
|
+
other commercial damages or losses), even if such Contributor
|
|
168
|
+
has been advised of the possibility of such damages.
|
|
169
|
+
|
|
170
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
171
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
172
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
173
|
+
or other liability obligations and/or rights consistent with this
|
|
174
|
+
License. However, in accepting such obligations, You may act only
|
|
175
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
176
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
177
|
+
defend, and hold each Contributor harmless for any liability
|
|
178
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
179
|
+
of your accepting any such warranty or additional liability.
|
|
180
|
+
|
|
181
|
+
END OF TERMS AND CONDITIONS
|
|
182
|
+
|
|
183
|
+
APPENDIX: How to apply the Apache License to your work.
|
|
184
|
+
|
|
185
|
+
To apply the Apache License to your work, attach the following
|
|
186
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
|
187
|
+
replaced with your own identifying information. (Don't include
|
|
188
|
+
the brackets!) The text should be enclosed in the appropriate
|
|
189
|
+
comment syntax for the file format. We also recommend that a
|
|
190
|
+
file or class name and description of purpose be included on the
|
|
191
|
+
same "printed page" as the copyright notice for easier
|
|
192
|
+
identification within third-party archives.
|
|
193
|
+
|
|
194
|
+
Copyright [yyyy] [name of copyright owner]
|
|
195
|
+
|
|
196
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
197
|
+
you may not use this file except in compliance with the License.
|
|
198
|
+
You may obtain a copy of the License at
|
|
199
|
+
|
|
200
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
201
|
+
|
|
202
|
+
Unless required by applicable law or agreed to in writing, software
|
|
203
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
204
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
205
|
+
See the License for the specific language governing permissions and
|
|
206
|
+
limitations under the License.
|
|
207
|
+
|
|
208
|
+
Requires-Python: >=3.10
|
|
209
|
+
Description-Content-Type: text/markdown
|
|
210
|
+
License-File: LICENSE.md
|
|
211
|
+
Requires-Dist: torch>=2.1.0
|
|
212
|
+
Requires-Dist: optimum-quanto
|
|
213
|
+
|
|
214
|
+
**------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
|
|
215
|
+
|
|
216
|
+
This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
|
|
217
|
+
This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
|
|
218
|
+
|
|
219
|
+
Requirements:
|
|
220
|
+
- GPU: RTX 3090/ RTX 4090
|
|
221
|
+
- RAM: minimum 48 GB, recommended 64 GB
|
|
222
|
+
|
|
223
|
+
It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
|
|
224
|
+
1) First make sure that the pipeline explictly loads the models in the CPU device
|
|
225
|
+
for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
|
|
226
|
+
2) Once every potential Lora has been loaded and merged, add the following lines:
|
|
227
|
+
from mmgp import offload
|
|
228
|
+
offload.me(pipe)
|
|
229
|
+
If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
|
|
230
|
+
Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
|
|
231
|
+
|
|
232
|
+
For instance :
|
|
233
|
+
for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
|
|
234
|
+
for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
|
|
235
|
+
|
|
236
|
+
Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
|
|
237
|
+
|
|
238
|
+
Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
|
|
239
|
+
where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
|
|
240
|
+
I suggest you use instead one of the 16 bits encoder only version available around, for instance:
|
|
241
|
+
text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
|
|
242
|
+
|
|
243
|
+
You are free to use my code as long you give me proper credits. You may contact me on twitter @deepbeepmeep
|
|
244
|
+
|
|
245
|
+
Credits
|
|
246
|
+
-------
|
|
247
|
+
Huggingface / accelerate for the hooking examples
|
|
248
|
+
Huggingface / quanto for their very useful quantizer
|
|
249
|
+
gau-nernst for his Pinnig RAM examples
|
|
@@ -0,0 +1,11 @@
|
|
|
1
|
+
LICENSE.md
|
|
2
|
+
README.md
|
|
3
|
+
pyproject.toml
|
|
4
|
+
src/mmgp/__init__.py
|
|
5
|
+
src/mmgp/_version.py
|
|
6
|
+
src/mmgp/mmgp.py
|
|
7
|
+
src/mmgp.egg-info/PKG-INFO
|
|
8
|
+
src/mmgp.egg-info/SOURCES.txt
|
|
9
|
+
src/mmgp.egg-info/dependency_links.txt
|
|
10
|
+
src/mmgp.egg-info/requires.txt
|
|
11
|
+
src/mmgp.egg-info/top_level.txt
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
mmgp
|