mlwheels 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,84 @@
1
+ Metadata-Version: 2.4
2
+ Name: mlwheels
3
+ Version: 0.1.0
4
+ Summary: Auto-detect and install pre-built wheels for Flash Attention & vLLM
5
+ License: MIT
6
+ Project-URL: Homepage, https://rs545837.github.io/Flash-Attn-wheels/
7
+ Project-URL: Repository, https://github.com/rs545837/Flash-Attn-wheels
8
+ Keywords: flash-attention,vllm,cuda,pytorch,wheels
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Requires-Python: >=3.8
20
+ Description-Content-Type: text/markdown
21
+
22
+ # Pre-Built Wheels
23
+
24
+ Pre-built wheels for Flash Attention & vLLM. Skip the compilation.
25
+
26
+ ## Quick Install
27
+
28
+ Auto-detect your environment and install the right wheel:
29
+
30
+ ```bash
31
+ pip install mlwheels
32
+
33
+ # Install Flash Attention
34
+ mlwheels flash-attn
35
+
36
+ # Install vLLM
37
+ mlwheels vllm
38
+
39
+ # Just detect environment (no install)
40
+ mlwheels --detect
41
+ ```
42
+
43
+ ## Features
44
+
45
+ - Search and filter by CUDA, Python, PyTorch, and Platform
46
+ - One-click copy for `pip` and `uv` install commands
47
+ - Direct download links
48
+ - Flash Attention 2 & 3 support
49
+ - vLLM wheels for multiple CUDA versions
50
+
51
+ ## Supported Configurations
52
+
53
+ ### Flash Attention 2
54
+ - CUDA: 11.8, 12.1, 12.2, 12.3, 12.4, 12.6
55
+ - PyTorch: 2.0 - 2.10
56
+ - Python: 3.8 - 3.12
57
+ - Platforms: Linux x86_64, Linux ARM64, Windows
58
+
59
+ ### Flash Attention 3
60
+ - CUDA: 12.6, 12.8, 12.9, 13.0
61
+ - PyTorch: 2.8 - 2.10
62
+ - Python: 3.10 - 3.12
63
+ - Platforms: Linux x86_64, Linux ARM64, Windows
64
+
65
+ ### vLLM
66
+ - CUDA: 11.8, 12.1, 12.4, 12.6, 12.8, 12.9, 13.0, CPU
67
+ - Python: 3.8+
68
+ - Platforms: Linux x86_64, Linux ARM64
69
+
70
+ ## Sources
71
+
72
+ **Flash Attention**
73
+ - [flashattn.dev](https://flashattn.dev/)
74
+ - [Flash Attention 3 Wheels](https://windreamer.github.io/flash-attention3-wheels/)
75
+ - [mjun0812/flash-attention-prebuild-wheels](https://github.com/mjun0812/flash-attention-prebuild-wheels)
76
+ - [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)
77
+
78
+ **vLLM**
79
+ - [vLLM GitHub Releases](https://github.com/vllm-project/vllm/releases)
80
+ - [vLLM Documentation](https://docs.vllm.ai/)
81
+
82
+ ## License
83
+
84
+ MIT
@@ -0,0 +1,63 @@
1
+ # Pre-Built Wheels
2
+
3
+ Pre-built wheels for Flash Attention & vLLM. Skip the compilation.
4
+
5
+ ## Quick Install
6
+
7
+ Auto-detect your environment and install the right wheel:
8
+
9
+ ```bash
10
+ pip install mlwheels
11
+
12
+ # Install Flash Attention
13
+ mlwheels flash-attn
14
+
15
+ # Install vLLM
16
+ mlwheels vllm
17
+
18
+ # Just detect environment (no install)
19
+ mlwheels --detect
20
+ ```
21
+
22
+ ## Features
23
+
24
+ - Search and filter by CUDA, Python, PyTorch, and Platform
25
+ - One-click copy for `pip` and `uv` install commands
26
+ - Direct download links
27
+ - Flash Attention 2 & 3 support
28
+ - vLLM wheels for multiple CUDA versions
29
+
30
+ ## Supported Configurations
31
+
32
+ ### Flash Attention 2
33
+ - CUDA: 11.8, 12.1, 12.2, 12.3, 12.4, 12.6
34
+ - PyTorch: 2.0 - 2.10
35
+ - Python: 3.8 - 3.12
36
+ - Platforms: Linux x86_64, Linux ARM64, Windows
37
+
38
+ ### Flash Attention 3
39
+ - CUDA: 12.6, 12.8, 12.9, 13.0
40
+ - PyTorch: 2.8 - 2.10
41
+ - Python: 3.10 - 3.12
42
+ - Platforms: Linux x86_64, Linux ARM64, Windows
43
+
44
+ ### vLLM
45
+ - CUDA: 11.8, 12.1, 12.4, 12.6, 12.8, 12.9, 13.0, CPU
46
+ - Python: 3.8+
47
+ - Platforms: Linux x86_64, Linux ARM64
48
+
49
+ ## Sources
50
+
51
+ **Flash Attention**
52
+ - [flashattn.dev](https://flashattn.dev/)
53
+ - [Flash Attention 3 Wheels](https://windreamer.github.io/flash-attention3-wheels/)
54
+ - [mjun0812/flash-attention-prebuild-wheels](https://github.com/mjun0812/flash-attention-prebuild-wheels)
55
+ - [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)
56
+
57
+ **vLLM**
58
+ - [vLLM GitHub Releases](https://github.com/vllm-project/vllm/releases)
59
+ - [vLLM Documentation](https://docs.vllm.ai/)
60
+
61
+ ## License
62
+
63
+ MIT
@@ -0,0 +1,7 @@
1
+ """ML Wheels - Auto-detect and install pre-built wheels for Flash Attention & vLLM."""
2
+
3
+ __version__ = "0.1.0"
4
+
5
+ from .detector import detect_environment, get_wheel_url, install_wheel
6
+
7
+ __all__ = ["detect_environment", "get_wheel_url", "install_wheel"]
@@ -0,0 +1,81 @@
1
+ """CLI for mlwheels."""
2
+
3
+ import argparse
4
+ import sys
5
+ from .detector import detect_environment, get_wheel_url, install_wheel, get_platform
6
+
7
+
8
+ def main():
9
+ parser = argparse.ArgumentParser(
10
+ description="Auto-detect and install pre-built wheels for Flash Attention & vLLM"
11
+ )
12
+ parser.add_argument(
13
+ "library",
14
+ nargs="?",
15
+ choices=["flash-attn", "vllm"],
16
+ help="Library to install (flash-attn or vllm)"
17
+ )
18
+ parser.add_argument(
19
+ "--detect", "-d",
20
+ action="store_true",
21
+ help="Only detect environment, don't install"
22
+ )
23
+ parser.add_argument(
24
+ "--dry-run", "-n",
25
+ action="store_true",
26
+ help="Show what would be installed without installing"
27
+ )
28
+ parser.add_argument(
29
+ "--url", "-u",
30
+ action="store_true",
31
+ help="Only print the wheel URL"
32
+ )
33
+
34
+ args = parser.parse_args()
35
+
36
+ env = detect_environment()
37
+ platform = get_platform()
38
+
39
+ if args.detect or not args.library:
40
+ print("Detected environment:")
41
+ print(f" Python: {env['python']}")
42
+ print(f" PyTorch: {env['torch'] or 'not installed'}")
43
+ print(f" CUDA: {env['cuda'] or 'not detected'}")
44
+ print(f" Platform: {platform or 'unknown'}")
45
+
46
+ if not args.library:
47
+ print("\nRecommended wheels:")
48
+ for lib in ["flash-attn", "vllm"]:
49
+ wheel = get_wheel_url(lib, env)
50
+ if wheel:
51
+ print(f"\n {lib} {wheel['version']}:")
52
+ print(f" pip install {wheel['url']}")
53
+ else:
54
+ print(f"\n {lib}: no matching wheel found")
55
+
56
+ print("\nTo install, run:")
57
+ print(" mlwheels flash-attn")
58
+ print(" mlwheels vllm")
59
+ return 0
60
+
61
+ if args.library:
62
+ wheel = get_wheel_url(args.library, env)
63
+
64
+ if args.url:
65
+ if wheel:
66
+ print(wheel["url"])
67
+ return 0
68
+ else:
69
+ print(f"No matching wheel found", file=sys.stderr)
70
+ return 1
71
+
72
+ if args.dry_run:
73
+ return 0 if install_wheel(args.library, dry_run=True) else 1
74
+
75
+ return 0 if install_wheel(args.library) else 1
76
+
77
+ return 0
78
+
79
+
80
+ if __name__ == "__main__":
81
+ sys.exit(main())
@@ -0,0 +1,207 @@
1
+ """Environment detection and wheel matching."""
2
+
3
+ import subprocess
4
+ import sys
5
+ import re
6
+
7
+
8
+ def get_python_version():
9
+ """Get Python version as string (e.g., '3.10')."""
10
+ return f"{sys.version_info.major}.{sys.version_info.minor}"
11
+
12
+
13
+ def get_torch_version():
14
+ """Get PyTorch version if installed."""
15
+ try:
16
+ import torch
17
+ # Extract major.minor (e.g., "2.5" from "2.5.1+cu124")
18
+ version = torch.__version__
19
+ match = re.match(r"(\d+\.\d+)", version)
20
+ return match.group(1) if match else None
21
+ except ImportError:
22
+ return None
23
+
24
+
25
+ def get_cuda_version():
26
+ """Get CUDA version from PyTorch or nvidia-smi."""
27
+ # Try PyTorch first
28
+ try:
29
+ import torch
30
+ if torch.cuda.is_available():
31
+ # Get CUDA version from PyTorch build
32
+ cuda_version = torch.version.cuda
33
+ if cuda_version:
34
+ # Extract major.minor (e.g., "12.4" from "12.4")
35
+ match = re.match(r"(\d+\.\d+)", cuda_version)
36
+ return match.group(1) if match else None
37
+ except ImportError:
38
+ pass
39
+
40
+ # Fallback to nvidia-smi
41
+ try:
42
+ result = subprocess.run(
43
+ ["nvidia-smi", "--query-gpu=driver_version", "--format=csv,noheader"],
44
+ capture_output=True, text=True, timeout=5
45
+ )
46
+ if result.returncode == 0:
47
+ # nvidia-smi doesn't directly give CUDA version, try nvcc
48
+ nvcc_result = subprocess.run(
49
+ ["nvcc", "--version"],
50
+ capture_output=True, text=True, timeout=5
51
+ )
52
+ if nvcc_result.returncode == 0:
53
+ match = re.search(r"release (\d+\.\d+)", nvcc_result.stdout)
54
+ if match:
55
+ return match.group(1)
56
+ except (FileNotFoundError, subprocess.TimeoutExpired):
57
+ pass
58
+
59
+ return None
60
+
61
+
62
+ def detect_environment():
63
+ """Detect current environment."""
64
+ return {
65
+ "python": get_python_version(),
66
+ "torch": get_torch_version(),
67
+ "cuda": get_cuda_version(),
68
+ }
69
+
70
+
71
+ def get_platform():
72
+ """Get platform identifier."""
73
+ import platform
74
+ system = platform.system().lower()
75
+ machine = platform.machine().lower()
76
+
77
+ if system == "linux":
78
+ if machine in ("x86_64", "amd64"):
79
+ return "linux_x86_64"
80
+ elif machine in ("aarch64", "arm64"):
81
+ return "linux_aarch64"
82
+ elif system == "windows":
83
+ return "win_amd64"
84
+ elif system == "darwin":
85
+ return "macos"
86
+
87
+ return None
88
+
89
+
90
+ # Base URLs for wheels
91
+ WHEEL_SOURCES = {
92
+ "flash-attn": {
93
+ "base": "https://github.com/Dao-AILab/flash-attention/releases/download",
94
+ "alt": "https://github.com/mjun0812/flash-attention-prebuild-wheels/releases/download",
95
+ },
96
+ "vllm": {
97
+ "base": "https://github.com/vllm-project/vllm/releases/download",
98
+ }
99
+ }
100
+
101
+ # Known wheel configurations (subset - full list at flashattn.dev)
102
+ FLASH_ATTN_WHEELS = {
103
+ # Format: (cuda, torch, python, platform): version
104
+ ("12.4", "2.5", "3.10", "linux_x86_64"): "2.7.4",
105
+ ("12.4", "2.5", "3.11", "linux_x86_64"): "2.7.4",
106
+ ("12.4", "2.5", "3.12", "linux_x86_64"): "2.7.4",
107
+ ("12.6", "2.6", "3.10", "linux_x86_64"): "2.7.4",
108
+ ("12.6", "2.6", "3.11", "linux_x86_64"): "2.7.4",
109
+ ("12.6", "2.6", "3.12", "linux_x86_64"): "2.7.4",
110
+ ("12.1", "2.4", "3.10", "linux_x86_64"): "2.6.3",
111
+ ("12.1", "2.4", "3.11", "linux_x86_64"): "2.6.3",
112
+ ("11.8", "2.3", "3.10", "linux_x86_64"): "2.6.3",
113
+ ("11.8", "2.3", "3.11", "linux_x86_64"): "2.6.3",
114
+ }
115
+
116
+ VLLM_WHEELS = {
117
+ # Format: (cuda, python, platform): (version, url)
118
+ ("12.6", "3.10", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0-cp38-abi3-manylinux1_x86_64.whl"),
119
+ ("12.6", "3.11", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0-cp38-abi3-manylinux1_x86_64.whl"),
120
+ ("12.6", "3.12", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0-cp38-abi3-manylinux1_x86_64.whl"),
121
+ ("12.4", "3.10", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0+cu124-cp38-abi3-manylinux1_x86_64.whl"),
122
+ ("12.4", "3.11", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0+cu124-cp38-abi3-manylinux1_x86_64.whl"),
123
+ ("12.1", "3.10", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0+cu121-cp38-abi3-manylinux1_x86_64.whl"),
124
+ ("12.1", "3.11", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0+cu121-cp38-abi3-manylinux1_x86_64.whl"),
125
+ ("11.8", "3.10", "linux_x86_64"): ("0.15.0", "https://github.com/vllm-project/vllm/releases/download/v0.15.0/vllm-0.15.0+cu118-cp38-abi3-manylinux1_x86_64.whl"),
126
+ }
127
+
128
+
129
+ def find_closest_cuda(target_cuda, available_versions):
130
+ """Find the closest CUDA version that's <= target."""
131
+ if not target_cuda:
132
+ return None
133
+
134
+ target = float(target_cuda)
135
+ available = sorted([float(v) for v in available_versions], reverse=True)
136
+
137
+ for v in available:
138
+ if v <= target:
139
+ return str(v) if v == int(v) else f"{v:.1f}"
140
+
141
+ return None
142
+
143
+
144
+ def get_wheel_url(library="flash-attn", env=None):
145
+ """Get the best matching wheel URL for the current environment."""
146
+ if env is None:
147
+ env = detect_environment()
148
+
149
+ platform = get_platform()
150
+ python = env.get("python")
151
+ torch = env.get("torch")
152
+ cuda = env.get("cuda")
153
+
154
+ if library == "vllm":
155
+ # Find matching vLLM wheel
156
+ available_cuda = list(set(k[0] for k in VLLM_WHEELS.keys()))
157
+ matched_cuda = find_closest_cuda(cuda, available_cuda) or "12.6"
158
+
159
+ for py in [python, "3.11", "3.10"]:
160
+ key = (matched_cuda, py, platform)
161
+ if key in VLLM_WHEELS:
162
+ version, url = VLLM_WHEELS[key]
163
+ return {"url": url, "version": version, "cuda": matched_cuda, "python": py}
164
+
165
+ return None
166
+
167
+ else: # flash-attn
168
+ available_cuda = list(set(k[0] for k in FLASH_ATTN_WHEELS.keys()))
169
+ matched_cuda = find_closest_cuda(cuda, available_cuda)
170
+
171
+ if not matched_cuda or not torch:
172
+ return None
173
+
174
+ for py in [python, "3.11", "3.10"]:
175
+ key = (matched_cuda, torch, py, platform)
176
+ if key in FLASH_ATTN_WHEELS:
177
+ version = FLASH_ATTN_WHEELS[key]
178
+ # Construct URL
179
+ url = f"https://github.com/Dao-AILab/flash-attention/releases/download/v{version}/flash_attn-{version}+cu{matched_cuda.replace('.', '')}torch{torch}-cp{py.replace('.', '')}-cp{py.replace('.', '')}-{platform}.whl"
180
+ return {"url": url, "version": version, "cuda": matched_cuda, "torch": torch, "python": py}
181
+
182
+ return None
183
+
184
+
185
+ def install_wheel(library="flash-attn", dry_run=False):
186
+ """Install the matching wheel."""
187
+ env = detect_environment()
188
+ wheel = get_wheel_url(library, env)
189
+
190
+ if not wheel:
191
+ print(f"No matching {library} wheel found for your environment:")
192
+ print(f" Python: {env.get('python')}")
193
+ print(f" PyTorch: {env.get('torch') or 'not installed'}")
194
+ print(f" CUDA: {env.get('cuda') or 'not detected'}")
195
+ print(f"\nVisit https://rs545837.github.io/Flash-Attn-wheels/ to find a compatible wheel.")
196
+ return False
197
+
198
+ cmd = f"pip install {wheel['url']}"
199
+
200
+ if dry_run:
201
+ print(f"Would install {library} {wheel['version']}:")
202
+ print(f" {cmd}")
203
+ return True
204
+
205
+ print(f"Installing {library} {wheel['version']}...")
206
+ result = subprocess.run(cmd.split(), capture_output=False)
207
+ return result.returncode == 0
@@ -0,0 +1,84 @@
1
+ Metadata-Version: 2.4
2
+ Name: mlwheels
3
+ Version: 0.1.0
4
+ Summary: Auto-detect and install pre-built wheels for Flash Attention & vLLM
5
+ License: MIT
6
+ Project-URL: Homepage, https://rs545837.github.io/Flash-Attn-wheels/
7
+ Project-URL: Repository, https://github.com/rs545837/Flash-Attn-wheels
8
+ Keywords: flash-attention,vllm,cuda,pytorch,wheels
9
+ Classifier: Development Status :: 4 - Beta
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Requires-Python: >=3.8
20
+ Description-Content-Type: text/markdown
21
+
22
+ # Pre-Built Wheels
23
+
24
+ Pre-built wheels for Flash Attention & vLLM. Skip the compilation.
25
+
26
+ ## Quick Install
27
+
28
+ Auto-detect your environment and install the right wheel:
29
+
30
+ ```bash
31
+ pip install mlwheels
32
+
33
+ # Install Flash Attention
34
+ mlwheels flash-attn
35
+
36
+ # Install vLLM
37
+ mlwheels vllm
38
+
39
+ # Just detect environment (no install)
40
+ mlwheels --detect
41
+ ```
42
+
43
+ ## Features
44
+
45
+ - Search and filter by CUDA, Python, PyTorch, and Platform
46
+ - One-click copy for `pip` and `uv` install commands
47
+ - Direct download links
48
+ - Flash Attention 2 & 3 support
49
+ - vLLM wheels for multiple CUDA versions
50
+
51
+ ## Supported Configurations
52
+
53
+ ### Flash Attention 2
54
+ - CUDA: 11.8, 12.1, 12.2, 12.3, 12.4, 12.6
55
+ - PyTorch: 2.0 - 2.10
56
+ - Python: 3.8 - 3.12
57
+ - Platforms: Linux x86_64, Linux ARM64, Windows
58
+
59
+ ### Flash Attention 3
60
+ - CUDA: 12.6, 12.8, 12.9, 13.0
61
+ - PyTorch: 2.8 - 2.10
62
+ - Python: 3.10 - 3.12
63
+ - Platforms: Linux x86_64, Linux ARM64, Windows
64
+
65
+ ### vLLM
66
+ - CUDA: 11.8, 12.1, 12.4, 12.6, 12.8, 12.9, 13.0, CPU
67
+ - Python: 3.8+
68
+ - Platforms: Linux x86_64, Linux ARM64
69
+
70
+ ## Sources
71
+
72
+ **Flash Attention**
73
+ - [flashattn.dev](https://flashattn.dev/)
74
+ - [Flash Attention 3 Wheels](https://windreamer.github.io/flash-attention3-wheels/)
75
+ - [mjun0812/flash-attention-prebuild-wheels](https://github.com/mjun0812/flash-attention-prebuild-wheels)
76
+ - [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)
77
+
78
+ **vLLM**
79
+ - [vLLM GitHub Releases](https://github.com/vllm-project/vllm/releases)
80
+ - [vLLM Documentation](https://docs.vllm.ai/)
81
+
82
+ ## License
83
+
84
+ MIT
@@ -0,0 +1,10 @@
1
+ README.md
2
+ pyproject.toml
3
+ mlwheels/__init__.py
4
+ mlwheels/cli.py
5
+ mlwheels/detector.py
6
+ mlwheels.egg-info/PKG-INFO
7
+ mlwheels.egg-info/SOURCES.txt
8
+ mlwheels.egg-info/dependency_links.txt
9
+ mlwheels.egg-info/entry_points.txt
10
+ mlwheels.egg-info/top_level.txt
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ mlwheels = mlwheels.cli:main
@@ -0,0 +1 @@
1
+ mlwheels
@@ -0,0 +1,34 @@
1
+ [build-system]
2
+ requires = ["setuptools>=61.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "mlwheels"
7
+ version = "0.1.0"
8
+ description = "Auto-detect and install pre-built wheels for Flash Attention & vLLM"
9
+ readme = "README.md"
10
+ license = {text = "MIT"}
11
+ requires-python = ">=3.8"
12
+ classifiers = [
13
+ "Development Status :: 4 - Beta",
14
+ "Intended Audience :: Developers",
15
+ "License :: OSI Approved :: MIT License",
16
+ "Programming Language :: Python :: 3",
17
+ "Programming Language :: Python :: 3.8",
18
+ "Programming Language :: Python :: 3.9",
19
+ "Programming Language :: Python :: 3.10",
20
+ "Programming Language :: Python :: 3.11",
21
+ "Programming Language :: Python :: 3.12",
22
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
23
+ ]
24
+ keywords = ["flash-attention", "vllm", "cuda", "pytorch", "wheels"]
25
+
26
+ [project.scripts]
27
+ mlwheels = "mlwheels.cli:main"
28
+
29
+ [project.urls]
30
+ Homepage = "https://rs545837.github.io/Flash-Attn-wheels/"
31
+ Repository = "https://github.com/rs545837/Flash-Attn-wheels"
32
+
33
+ [tool.setuptools.packages.find]
34
+ include = ["mlwheels*"]
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+