mloda 0.4.0__tar.gz → 0.4.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (255) hide show
  1. {mloda-0.4.0/mloda.egg-info → mloda-0.4.1}/PKG-INFO +7 -10
  2. {mloda-0.4.0 → mloda-0.4.1}/README.md +6 -9
  3. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/link.py +1 -1
  4. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/compute_framework.py +0 -1
  5. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/engine.py +0 -1
  6. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/accessible_plugins.py +0 -1
  7. {mloda-0.4.0 → mloda-0.4.1/mloda.egg-info}/PKG-INFO +7 -10
  8. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pyarrow/table.py +1 -2
  9. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/spark/spark_merge_engine.py +0 -1
  10. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/aggregated_feature_group/base.py +1 -3
  11. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/clustering/base.py +0 -2
  12. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/data_quality/missing_value/base.py +1 -4
  13. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/dimensionality_reduction/base.py +1 -2
  14. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/forecasting/base.py +2 -2
  15. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/geo_distance/base.py +1 -1
  16. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/geo_distance/pandas.py +0 -1
  17. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/node_centrality/base.py +1 -3
  18. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/encoding/base.py +1 -1
  19. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/pipeline/pandas.py +1 -2
  20. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/scaling/base.py +1 -3
  21. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/sklearn_artifact.py +0 -1
  22. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/text_cleaning/base.py +1 -3
  23. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/time_window/base.py +1 -1
  24. {mloda-0.4.0 → mloda-0.4.1}/pyproject.toml +1 -1
  25. {mloda-0.4.0 → mloda-0.4.1}/LICENSE.TXT +0 -0
  26. {mloda-0.4.0 → mloda-0.4.1}/MANIFEST.in +0 -0
  27. {mloda-0.4.0 → mloda-0.4.1}/NOTICE.md +0 -0
  28. {mloda-0.4.0 → mloda-0.4.1}/mloda/__init__.py +0 -0
  29. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/__init__.py +0 -0
  30. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/__init__.py +0 -0
  31. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/__init__.py +0 -0
  32. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/base_artifact.py +0 -0
  33. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/base_validator.py +0 -0
  34. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/data_access_collection.py +0 -0
  35. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/data_types.py +0 -0
  36. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/domain.py +0 -0
  37. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature.py +0 -0
  38. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_chainer/__init__.py +0 -0
  39. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_chainer/feature_chain_parser.py +0 -0
  40. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_chainer/feature_chain_parser_mixin.py +0 -0
  41. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_collection.py +0 -0
  42. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_group_version.py +0 -0
  43. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_name.py +0 -0
  44. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/feature_set.py +0 -0
  45. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/framework_transformer/__init__.py +0 -0
  46. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/framework_transformer/base_transformer.py +0 -0
  47. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/framework_transformer/cfw_transformer.py +0 -0
  48. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/hashable_dict.py +0 -0
  49. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/index/__init__.py +0 -0
  50. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/index/add_index_feature.py +0 -0
  51. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/index/index.py +0 -0
  52. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/__init__.py +0 -0
  53. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/api/__init__.py +0 -0
  54. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/api/api_input_data.py +0 -0
  55. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/api/api_input_data_collection.py +0 -0
  56. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/api/base_api_data.py +0 -0
  57. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/base_input_data.py +0 -0
  58. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/creator/__init__.py +0 -0
  59. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/input_data/creator/data_creator.py +0 -0
  60. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/match_data/__init__.py +0 -0
  61. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/match_data/match_data.py +0 -0
  62. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/merge/__init__.py +0 -0
  63. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/merge/base_merge_engine.py +0 -0
  64. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/options.py +0 -0
  65. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/parallelization_modes.py +0 -0
  66. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/plugin_option/__init__.py +0 -0
  67. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/plugin_option/plugin_collector.py +0 -0
  68. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/utils.py +0 -0
  69. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/validators/__init__.py +0 -0
  70. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/validators/datatype_validator.py +0 -0
  71. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/validators/feature_set_validator.py +0 -0
  72. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/validators/feature_validator.py +0 -0
  73. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/validators/link_validator.py +0 -0
  74. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/components/validators/options_validator.py +0 -0
  75. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/feature_group.py +0 -0
  76. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/function_extender.py +0 -0
  77. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/plugin_loader/__init__.py +0 -0
  78. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/abstract_plugins/plugin_loader/plugin_loader.py +0 -0
  79. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/api/__init__.py +0 -0
  80. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/api/plugin_docs.py +0 -0
  81. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/api/plugin_info.py +0 -0
  82. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/api/prepare/__init__.py +0 -0
  83. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/api/prepare/setup_compute_framework.py +0 -0
  84. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/api/request.py +0 -0
  85. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/__init__.py +0 -0
  86. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/cfw_manager.py +0 -0
  87. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/step/__init__.py +0 -0
  88. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/step/abstract_step.py +0 -0
  89. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/step/feature_group_step.py +0 -0
  90. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/step/join_step.py +0 -0
  91. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/core/step/transform_frame_work_step.py +0 -0
  92. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/filter/__init__.py +0 -0
  93. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/filter/filter_engine.py +0 -0
  94. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/filter/filter_parameter.py +0 -0
  95. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/filter/filter_type_enum.py +0 -0
  96. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/filter/global_filter.py +0 -0
  97. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/filter/single_filter.py +0 -0
  98. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/__init__.py +0 -0
  99. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/execution_plan.py +0 -0
  100. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/graph/__init__.py +0 -0
  101. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/graph/build_graph.py +0 -0
  102. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/graph/graph.py +0 -0
  103. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/graph/properties.py +0 -0
  104. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/identify_feature_group.py +0 -0
  105. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/joinstep_collection.py +0 -0
  106. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/resolve_compute_frameworks.py +0 -0
  107. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/resolve_graph.py +0 -0
  108. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/resolve_links.py +0 -0
  109. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/validators/__init__.py +0 -0
  110. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/prepare/validators/resolve_link_validator.py +0 -0
  111. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/__init__.py +0 -0
  112. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/compute_framework_executor.py +0 -0
  113. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/data_lifecycle_manager.py +0 -0
  114. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/flight/__init__.py +0 -0
  115. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/flight/flight_server.py +0 -0
  116. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/flight/runner_flight_server.py +0 -0
  117. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/run.py +0 -0
  118. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/worker/__init__.py +0 -0
  119. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/worker/multiprocessing_worker.py +0 -0
  120. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/worker/thread_worker.py +0 -0
  121. {mloda-0.4.0 → mloda-0.4.1}/mloda/core/runtime/worker_manager.py +0 -0
  122. {mloda-0.4.0 → mloda-0.4.1}/mloda/provider/__init__.py +0 -0
  123. {mloda-0.4.0 → mloda-0.4.1}/mloda/steward/__init__.py +0 -0
  124. {mloda-0.4.0 → mloda-0.4.1}/mloda/user/__init__.py +0 -0
  125. {mloda-0.4.0 → mloda-0.4.1}/mloda.egg-info/SOURCES.txt +0 -0
  126. {mloda-0.4.0 → mloda-0.4.1}/mloda.egg-info/dependency_links.txt +0 -0
  127. {mloda-0.4.0 → mloda-0.4.1}/mloda.egg-info/entry_points.txt +0 -0
  128. {mloda-0.4.0 → mloda-0.4.1}/mloda.egg-info/requires.txt +0 -0
  129. {mloda-0.4.0 → mloda-0.4.1}/mloda.egg-info/top_level.txt +0 -0
  130. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/__init__.py +0 -0
  131. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/__init__.py +0 -0
  132. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/__init__.py +0 -0
  133. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/duckdb/duckdb_filter_engine.py +0 -0
  134. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/duckdb/duckdb_framework.py +0 -0
  135. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/duckdb/duckdb_merge_engine.py +0 -0
  136. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/duckdb/duckdb_pyarrow_transformer.py +0 -0
  137. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/iceberg/iceberg_filter_engine.py +0 -0
  138. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/iceberg/iceberg_framework.py +0 -0
  139. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/iceberg/iceberg_pyarrow_transformer.py +0 -0
  140. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pandas/__init__.py +0 -0
  141. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pandas/dataframe.py +0 -0
  142. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pandas/pandas_filter_engine.py +0 -0
  143. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pandas/pandas_merge_engine.py +0 -0
  144. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pandas/pandaspyarrowtransformer.py +0 -0
  145. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/__init__.py +0 -0
  146. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/dataframe.py +0 -0
  147. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/lazy_dataframe.py +0 -0
  148. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/polars_filter_engine.py +0 -0
  149. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/polars_lazy_merge_engine.py +0 -0
  150. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/polars_lazy_pyarrow_transformer.py +0 -0
  151. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/polars_merge_engine.py +0 -0
  152. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/polars/polars_pyarrow_transformer.py +0 -0
  153. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pyarrow/__init__.py +0 -0
  154. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pyarrow/pyarrow_filter_engine.py +0 -0
  155. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/pyarrow/pyarrow_merge_engine.py +0 -0
  156. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/python_dict/python_dict_filter_engine.py +0 -0
  157. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/python_dict/python_dict_framework.py +0 -0
  158. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/python_dict/python_dict_merge_engine.py +0 -0
  159. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/python_dict/python_dict_pyarrow_transformer.py +0 -0
  160. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/spark/spark_filter_engine.py +0 -0
  161. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/spark/spark_framework.py +0 -0
  162. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/compute_framework/base_implementations/spark/spark_pyarrow_transformer.py +0 -0
  163. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/config/__init__.py +0 -0
  164. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/config/feature/__init__.py +0 -0
  165. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/config/feature/loader.py +0 -0
  166. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/config/feature/models.py +0 -0
  167. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/config/feature/parser.py +0 -0
  168. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/__init__.py +0 -0
  169. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/__init__.py +0 -0
  170. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/aggregated_feature_group/__init__.py +0 -0
  171. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/aggregated_feature_group/pandas.py +0 -0
  172. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/aggregated_feature_group/polars_lazy.py +0 -0
  173. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/aggregated_feature_group/pyarrow.py +0 -0
  174. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/clustering/__init__.py +0 -0
  175. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/clustering/pandas.py +0 -0
  176. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/data_quality/__init__.py +0 -0
  177. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/data_quality/missing_value/__init__.py +0 -0
  178. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/data_quality/missing_value/pandas.py +0 -0
  179. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/data_quality/missing_value/pyarrow.py +0 -0
  180. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/data_quality/missing_value/python_dict.py +0 -0
  181. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/default_options_key.py +0 -0
  182. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/dimensionality_reduction/pandas.py +0 -0
  183. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/dynamic_feature_group_factory/__init__.py +0 -0
  184. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/dynamic_feature_group_factory/dynamic_feature_group_factory.py +0 -0
  185. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/forecasting/__init__.py +0 -0
  186. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/forecasting/forecasting_artifact.py +0 -0
  187. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/forecasting/pandas.py +0 -0
  188. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/geo_distance/__init__.py +0 -0
  189. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/__init__.py +0 -0
  190. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/cli.py +0 -0
  191. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/cli_features/__init__.py +0 -0
  192. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/cli_features/refactor_git_cached.py +0 -0
  193. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/installed_packages_feature_group.py +0 -0
  194. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/list_directory_feature_group.py +0 -0
  195. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_api/__init__.py +0 -0
  196. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_api/claude.py +0 -0
  197. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_api/gemini.py +0 -0
  198. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_api/llm_base_request.py +0 -0
  199. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_api/openai.py +0 -0
  200. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_api/request_loop.py +0 -0
  201. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/llm_file_selector.py +0 -0
  202. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/__init__.py +0 -0
  203. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/__init__.py +0 -0
  204. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/adjust_and_run_all_tests_tool.py +0 -0
  205. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/adjust_file_tool.py +0 -0
  206. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/create_folder_tool.py +0 -0
  207. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/create_new_file.py +0 -0
  208. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/git_diff.py +0 -0
  209. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/git_diff_cached.py +0 -0
  210. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/multiply.py +0 -0
  211. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/read_file_tool.py +0 -0
  212. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/replace_file_tool.py +0 -0
  213. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/replace_file_tool_which_runs_tox.py +0 -0
  214. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/run_single_pytest.py +0 -0
  215. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/available/run_tox.py +0 -0
  216. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/base_tool.py +0 -0
  217. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/tool_collection.py +0 -0
  218. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/llm/tools/tool_data_classes.py +0 -0
  219. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/node_centrality/pandas.py +0 -0
  220. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/__init__.py +0 -0
  221. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/encoding/__init__.py +0 -0
  222. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/encoding/pandas.py +0 -0
  223. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/pipeline/__init__.py +0 -0
  224. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/pipeline/base.py +0 -0
  225. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/scaling/__init__.py +0 -0
  226. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/sklearn/scaling/pandas.py +0 -0
  227. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/source_input_feature.py +0 -0
  228. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/text_cleaning/pandas.py +0 -0
  229. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/text_cleaning/python_dict.py +0 -0
  230. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/time_window/__init__.py +0 -0
  231. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/time_window/pandas.py +0 -0
  232. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/experimental/time_window/pyarrow.py +0 -0
  233. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/__init__.py +0 -0
  234. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/api_data/__init__.py +0 -0
  235. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/api_data/api_data.py +0 -0
  236. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_context_files.py +0 -0
  237. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_db.py +0 -0
  238. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_db_feature.py +0 -0
  239. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_dbs/__init__.py +0 -0
  240. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_dbs/sqlite.py +0 -0
  241. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_file.py +0 -0
  242. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_file_feature.py +0 -0
  243. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/__init__.py +0 -0
  244. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/csv.py +0 -0
  245. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/feather.py +0 -0
  246. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/json.py +0 -0
  247. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/orc.py +0 -0
  248. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/parquet.py +0 -0
  249. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/feature_group/input_data/read_files/text_file_reader.py +0 -0
  250. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/function_extender/__init__.py +0 -0
  251. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/function_extender/base_implementations/__init__.py +0 -0
  252. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/function_extender/base_implementations/otel/__init__.py +0 -0
  253. {mloda-0.4.0 → mloda-0.4.1}/mloda_plugins/function_extender/base_implementations/otel/otel_extender.py +0 -0
  254. {mloda-0.4.0 → mloda-0.4.1}/setup.cfg +0 -0
  255. {mloda-0.4.0 → mloda-0.4.1}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mloda
3
- Version: 0.4.0
3
+ Version: 0.4.1
4
4
  Summary: Make data, feature and context engineering shareable
5
5
  Author-email: Tom Kaltofen <info@mloda.ai>
6
6
  License: Apache-2.0
@@ -76,7 +76,6 @@ class SampleData(FeatureGroup):
76
76
  # Step 2: Load mloda plugins and run pipeline
77
77
  from mloda.user import PluginLoader
78
78
  import mloda
79
- from mloda_plugins.compute_framework.base_implementations.pandas.dataframe import PandasDataFrame
80
79
 
81
80
  PluginLoader.all()
82
81
 
@@ -86,7 +85,7 @@ result = mloda.run_all(
86
85
  "age", # Original column
87
86
  "income__standard_scaled" # Transform: scale income to mean=0, std=1
88
87
  ],
89
- compute_frameworks={PandasDataFrame}
88
+ compute_frameworks=["PandasDataFrame"]
90
89
  )
91
90
 
92
91
  # Step 3: Get your processed data
@@ -188,7 +187,7 @@ For truly custom configurations, you can use `Feature` objects:
188
187
  #
189
188
  # result = mloda.run_all(
190
189
  # features=features,
191
- # compute_frameworks={PandasDataFrame}
190
+ # compute_frameworks=["PandasDataFrame"]
192
191
  # )
193
192
  ```
194
193
 
@@ -233,7 +232,7 @@ mloda supports multiple data access patterns depending on your use case:
233
232
  #
234
233
  # result = mloda.run_all(
235
234
  # features=["customer_id", "income__standard_scaled"],
236
- # compute_frameworks={PandasDataFrame},
235
+ # compute_frameworks=["PandasDataFrame"],
237
236
  # data_access_collection=data_access
238
237
  # )
239
238
  ```
@@ -251,7 +250,7 @@ mloda supports multiple data access patterns depending on your use case:
251
250
  #
252
251
  # result = mloda.run_all(
253
252
  # features=["customer_id", "age__standard_scaled"],
254
- # compute_frameworks={PandasDataFrame},
253
+ # compute_frameworks=["PandasDataFrame"],
255
254
  # api_input_data_collection=api_input_data_collection,
256
255
  # api_data=api_data
257
256
  # )
@@ -270,7 +269,7 @@ mloda supports multiple compute frameworks (pandas, polars, pyarrow, etc.). Most
270
269
  # Default: Everything processes with pandas
271
270
  result = mloda.run_all(
272
271
  features=["customer_id", "income__standard_scaled"],
273
- compute_frameworks={PandasDataFrame} # Use pandas for all features
272
+ compute_frameworks=["PandasDataFrame"] # Use pandas for all features
274
273
  )
275
274
 
276
275
  data = result[0] # Returns pandas DataFrame
@@ -283,8 +282,6 @@ print(type(data)) # <class 'pandas.core.frame.DataFrame'>
283
282
  - **PyArrow**: Memory-efficient, great for columnar data
284
283
  - **Spark**: Distributed processing for big data
285
284
 
286
- > **For most use cases**: Start with `compute_frameworks={PandasDataFrame}` and switch to others only if you need specific performance characteristics.
287
-
288
285
  ### 6. Putting It All Together - Complete ML Pipeline
289
286
 
290
287
  **Real-World Example: Customer Churn Prediction**
@@ -338,7 +335,7 @@ result = mloda.run_all(
338
335
  "customer_segment__label_encoded",
339
336
  "churned"
340
337
  ],
341
- compute_frameworks={PandasDataFrame}
338
+ compute_frameworks=["PandasDataFrame"]
342
339
  )
343
340
 
344
341
  # Step 3: Prepare for ML
@@ -57,7 +57,6 @@ class SampleData(FeatureGroup):
57
57
  # Step 2: Load mloda plugins and run pipeline
58
58
  from mloda.user import PluginLoader
59
59
  import mloda
60
- from mloda_plugins.compute_framework.base_implementations.pandas.dataframe import PandasDataFrame
61
60
 
62
61
  PluginLoader.all()
63
62
 
@@ -67,7 +66,7 @@ result = mloda.run_all(
67
66
  "age", # Original column
68
67
  "income__standard_scaled" # Transform: scale income to mean=0, std=1
69
68
  ],
70
- compute_frameworks={PandasDataFrame}
69
+ compute_frameworks=["PandasDataFrame"]
71
70
  )
72
71
 
73
72
  # Step 3: Get your processed data
@@ -169,7 +168,7 @@ For truly custom configurations, you can use `Feature` objects:
169
168
  #
170
169
  # result = mloda.run_all(
171
170
  # features=features,
172
- # compute_frameworks={PandasDataFrame}
171
+ # compute_frameworks=["PandasDataFrame"]
173
172
  # )
174
173
  ```
175
174
 
@@ -214,7 +213,7 @@ mloda supports multiple data access patterns depending on your use case:
214
213
  #
215
214
  # result = mloda.run_all(
216
215
  # features=["customer_id", "income__standard_scaled"],
217
- # compute_frameworks={PandasDataFrame},
216
+ # compute_frameworks=["PandasDataFrame"],
218
217
  # data_access_collection=data_access
219
218
  # )
220
219
  ```
@@ -232,7 +231,7 @@ mloda supports multiple data access patterns depending on your use case:
232
231
  #
233
232
  # result = mloda.run_all(
234
233
  # features=["customer_id", "age__standard_scaled"],
235
- # compute_frameworks={PandasDataFrame},
234
+ # compute_frameworks=["PandasDataFrame"],
236
235
  # api_input_data_collection=api_input_data_collection,
237
236
  # api_data=api_data
238
237
  # )
@@ -251,7 +250,7 @@ mloda supports multiple compute frameworks (pandas, polars, pyarrow, etc.). Most
251
250
  # Default: Everything processes with pandas
252
251
  result = mloda.run_all(
253
252
  features=["customer_id", "income__standard_scaled"],
254
- compute_frameworks={PandasDataFrame} # Use pandas for all features
253
+ compute_frameworks=["PandasDataFrame"] # Use pandas for all features
255
254
  )
256
255
 
257
256
  data = result[0] # Returns pandas DataFrame
@@ -264,8 +263,6 @@ print(type(data)) # <class 'pandas.core.frame.DataFrame'>
264
263
  - **PyArrow**: Memory-efficient, great for columnar data
265
264
  - **Spark**: Distributed processing for big data
266
265
 
267
- > **For most use cases**: Start with `compute_frameworks={PandasDataFrame}` and switch to others only if you need specific performance characteristics.
268
-
269
266
  ### 6. Putting It All Together - Complete ML Pipeline
270
267
 
271
268
  **Real-World Example: Customer Churn Prediction**
@@ -319,7 +316,7 @@ result = mloda.run_all(
319
316
  "customer_segment__label_encoded",
320
317
  "churned"
321
318
  ],
322
- compute_frameworks={PandasDataFrame}
319
+ compute_frameworks=["PandasDataFrame"]
323
320
  )
324
321
 
325
322
  # Step 3: Prepare for ML
@@ -3,7 +3,7 @@ from __future__ import annotations
3
3
  from dataclasses import FrozenInstanceError
4
4
  from enum import Enum
5
5
  from uuid import uuid4
6
- from typing import Any, Dict, Optional, Set, Tuple, Type, Union
6
+ from typing import Any, Dict, Optional, Tuple, Type, Union
7
7
 
8
8
 
9
9
  from mloda.core.abstract_plugins.components.index.index import Index
@@ -1,7 +1,6 @@
1
1
  from abc import ABC
2
2
  from typing import Any, List, Optional, Set, Type, Union, final
3
3
  from uuid import UUID, uuid4
4
- from mloda.core.abstract_plugins.components.data_access_collection import DataAccessCollection
5
4
  from mloda.core.abstract_plugins.components.framework_transformer.cfw_transformer import (
6
5
  ComputeFrameworkTransformer,
7
6
  )
@@ -28,7 +28,6 @@ from mloda.core.abstract_plugins.components.feature_collection import Features
28
28
  from mloda.core.abstract_plugins.components.options import Options
29
29
  from mloda.core.abstract_plugins.components.link import Link
30
30
  from mloda.core.abstract_plugins.components.validators.link_validator import LinkValidator
31
- from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
32
31
 
33
32
 
34
33
  class Engine:
@@ -1,6 +1,5 @@
1
1
  from copy import deepcopy
2
2
  from typing import Optional, Set, Type
3
- from mloda.core.abstract_plugins.components.data_access_collection import DataAccessCollection
4
3
  from mloda.core.abstract_plugins.components.plugin_option.plugin_collector import PluginCollector
5
4
  from mloda.core.abstract_plugins.compute_framework import ComputeFramework
6
5
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mloda
3
- Version: 0.4.0
3
+ Version: 0.4.1
4
4
  Summary: Make data, feature and context engineering shareable
5
5
  Author-email: Tom Kaltofen <info@mloda.ai>
6
6
  License: Apache-2.0
@@ -76,7 +76,6 @@ class SampleData(FeatureGroup):
76
76
  # Step 2: Load mloda plugins and run pipeline
77
77
  from mloda.user import PluginLoader
78
78
  import mloda
79
- from mloda_plugins.compute_framework.base_implementations.pandas.dataframe import PandasDataFrame
80
79
 
81
80
  PluginLoader.all()
82
81
 
@@ -86,7 +85,7 @@ result = mloda.run_all(
86
85
  "age", # Original column
87
86
  "income__standard_scaled" # Transform: scale income to mean=0, std=1
88
87
  ],
89
- compute_frameworks={PandasDataFrame}
88
+ compute_frameworks=["PandasDataFrame"]
90
89
  )
91
90
 
92
91
  # Step 3: Get your processed data
@@ -188,7 +187,7 @@ For truly custom configurations, you can use `Feature` objects:
188
187
  #
189
188
  # result = mloda.run_all(
190
189
  # features=features,
191
- # compute_frameworks={PandasDataFrame}
190
+ # compute_frameworks=["PandasDataFrame"]
192
191
  # )
193
192
  ```
194
193
 
@@ -233,7 +232,7 @@ mloda supports multiple data access patterns depending on your use case:
233
232
  #
234
233
  # result = mloda.run_all(
235
234
  # features=["customer_id", "income__standard_scaled"],
236
- # compute_frameworks={PandasDataFrame},
235
+ # compute_frameworks=["PandasDataFrame"],
237
236
  # data_access_collection=data_access
238
237
  # )
239
238
  ```
@@ -251,7 +250,7 @@ mloda supports multiple data access patterns depending on your use case:
251
250
  #
252
251
  # result = mloda.run_all(
253
252
  # features=["customer_id", "age__standard_scaled"],
254
- # compute_frameworks={PandasDataFrame},
253
+ # compute_frameworks=["PandasDataFrame"],
255
254
  # api_input_data_collection=api_input_data_collection,
256
255
  # api_data=api_data
257
256
  # )
@@ -270,7 +269,7 @@ mloda supports multiple compute frameworks (pandas, polars, pyarrow, etc.). Most
270
269
  # Default: Everything processes with pandas
271
270
  result = mloda.run_all(
272
271
  features=["customer_id", "income__standard_scaled"],
273
- compute_frameworks={PandasDataFrame} # Use pandas for all features
272
+ compute_frameworks=["PandasDataFrame"] # Use pandas for all features
274
273
  )
275
274
 
276
275
  data = result[0] # Returns pandas DataFrame
@@ -283,8 +282,6 @@ print(type(data)) # <class 'pandas.core.frame.DataFrame'>
283
282
  - **PyArrow**: Memory-efficient, great for columnar data
284
283
  - **Spark**: Distributed processing for big data
285
284
 
286
- > **For most use cases**: Start with `compute_frameworks={PandasDataFrame}` and switch to others only if you need specific performance characteristics.
287
-
288
285
  ### 6. Putting It All Together - Complete ML Pipeline
289
286
 
290
287
  **Real-World Example: Customer Churn Prediction**
@@ -338,7 +335,7 @@ result = mloda.run_all(
338
335
  "customer_segment__label_encoded",
339
336
  "churned"
340
337
  ],
341
- compute_frameworks={PandasDataFrame}
338
+ compute_frameworks=["PandasDataFrame"]
342
339
  )
343
340
 
344
341
  # Step 3: Prepare for ML
@@ -1,5 +1,4 @@
1
- from typing import Any, Optional, Set, Type
2
- from mloda.user import DataAccessCollection
1
+ from typing import Any, Set, Type
3
2
  from mloda.provider import BaseMergeEngine
4
3
  from mloda.provider import BaseFilterEngine
5
4
  from mloda_plugins.compute_framework.base_implementations.pyarrow.pyarrow_merge_engine import PyArrowMergeEngine
@@ -1,7 +1,6 @@
1
1
  from typing import Any, Tuple
2
2
 
3
3
  from mloda.user import Index
4
- from mloda.user import JoinType
5
4
  from mloda.provider import BaseMergeEngine
6
5
 
7
6
  try:
@@ -5,13 +5,11 @@ Base implementation for aggregated feature groups.
5
5
  from __future__ import annotations
6
6
 
7
7
  from abc import abstractmethod
8
- from typing import Any, List, Optional, Set, Union
8
+ from typing import Any, List, Optional, Set
9
9
 
10
10
  from mloda import FeatureGroup
11
11
  from mloda import Feature
12
- from mloda.user import FeatureName
13
12
  from mloda.provider import FeatureSet
14
- from mloda import Options
15
13
  from mloda.provider import FeatureChainParser
16
14
  from mloda.provider import (
17
15
  FeatureChainParserMixin,
@@ -13,9 +13,7 @@ from mloda.provider import FeatureChainParser
13
13
  from mloda.provider import (
14
14
  FeatureChainParserMixin,
15
15
  )
16
- from mloda.user import FeatureName
17
16
  from mloda.provider import FeatureSet
18
- from mloda import Options
19
17
  from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
20
18
 
21
19
 
@@ -4,9 +4,8 @@ Base implementation for missing value imputation feature groups.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- import copy
8
7
  from abc import abstractmethod
9
- from typing import Any, List, Optional, Set, Union
8
+ from typing import Any, List, Optional, Set
10
9
 
11
10
  from mloda import FeatureGroup
12
11
  from mloda import Feature
@@ -14,9 +13,7 @@ from mloda.provider import FeatureChainParser
14
13
  from mloda.provider import (
15
14
  FeatureChainParserMixin,
16
15
  )
17
- from mloda.user import FeatureName
18
16
  from mloda.provider import FeatureSet
19
- from mloda import Options
20
17
  from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
21
18
 
22
19
 
@@ -5,7 +5,7 @@ Base implementation for dimensionality reduction feature groups.
5
5
  from __future__ import annotations
6
6
 
7
7
  from abc import abstractmethod
8
- from typing import Any, Optional, Set, Union
8
+ from typing import Any, Optional
9
9
 
10
10
  from mloda import FeatureGroup
11
11
  from mloda import Feature
@@ -13,7 +13,6 @@ from mloda.provider import FeatureChainParser
13
13
  from mloda.provider import (
14
14
  FeatureChainParserMixin,
15
15
  )
16
- from mloda.user import FeatureName
17
16
  from mloda.provider import FeatureSet
18
17
  from mloda import Options
19
18
  from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
@@ -5,12 +5,12 @@ Base implementation for forecasting feature groups.
5
5
  from __future__ import annotations
6
6
 
7
7
  from abc import abstractmethod
8
- from typing import Any, List, Optional, Set, Type, Union
8
+ from typing import Any, List, Optional, Set, Type
9
9
 
10
10
  from mloda import FeatureGroup
11
11
  from mloda.provider import BaseArtifact
12
12
  from mloda import Feature
13
- from mloda.provider import CHAIN_SEPARATOR, FeatureChainParser, FeatureChainParserMixin, FeatureSet
13
+ from mloda.provider import FeatureChainParser, FeatureChainParserMixin, FeatureSet
14
14
  from mloda.user import FeatureName
15
15
  from mloda import Options
16
16
  from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
@@ -4,7 +4,7 @@ Base implementation for geo distance feature groups.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- from typing import Any, Optional, Set, Union
7
+ from typing import Any, Optional, Set
8
8
 
9
9
  from mloda import FeatureGroup
10
10
  from mloda import Feature
@@ -4,7 +4,6 @@ Pandas implementation for geo distance feature groups.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- import math
8
7
  from typing import Any, Set, Type, Union
9
8
 
10
9
  import numpy as np
@@ -4,7 +4,7 @@ Base implementation for node centrality feature groups.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- from typing import Any, Optional, Set, Type, Union
7
+ from typing import Any, Optional
8
8
 
9
9
  from mloda import FeatureGroup
10
10
  from mloda import Feature
@@ -12,9 +12,7 @@ from mloda.provider import FeatureChainParser
12
12
  from mloda.provider import (
13
13
  FeatureChainParserMixin,
14
14
  )
15
- from mloda.user import FeatureName
16
15
  from mloda.provider import FeatureSet
17
- from mloda import Options
18
16
  from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
19
17
 
20
18
 
@@ -5,7 +5,7 @@ Base implementation for scikit-learn encoding feature groups.
5
5
  from __future__ import annotations
6
6
 
7
7
  import datetime
8
- from typing import Any, Dict, Optional, Set, Type, Union
8
+ from typing import Any, Dict, Optional, Set, Type
9
9
 
10
10
  from mloda import FeatureGroup
11
11
  from mloda import Feature
@@ -4,8 +4,7 @@ Pandas implementation for scikit-learn pipeline feature groups.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- import numpy as np
8
- from typing import Any, List, Set, Type, Union
7
+ from typing import Any, Set, Type, Union
9
8
 
10
9
  from mloda import ComputeFramework
11
10
 
@@ -5,13 +5,11 @@ Base implementation for scikit-learn scaling feature groups.
5
5
  from __future__ import annotations
6
6
 
7
7
  import datetime
8
- from typing import Any, Dict, Optional, Set, Type, Union
8
+ from typing import Any, Dict, Optional, Type
9
9
 
10
10
  from mloda import FeatureGroup
11
11
  from mloda import Feature
12
- from mloda.user import FeatureName
13
12
  from mloda.provider import FeatureSet
14
- from mloda import Options
15
13
  from mloda.provider import FeatureChainParser
16
14
  from mloda.provider import (
17
15
  FeatureChainParserMixin,
@@ -4,7 +4,6 @@ Artifact for storing fitted scikit-learn transformers and estimators.
4
4
 
5
5
  import json
6
6
  import base64
7
- import os
8
7
  import hashlib
9
8
  import tempfile
10
9
  from pathlib import Path
@@ -4,7 +4,7 @@ Base implementation for text cleaning feature groups.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- from typing import Any, Optional, Set, Union
7
+ from typing import Any, Optional
8
8
 
9
9
  from mloda import FeatureGroup
10
10
  from mloda import Feature
@@ -12,9 +12,7 @@ from mloda.provider import FeatureChainParser
12
12
  from mloda.provider import (
13
13
  FeatureChainParserMixin,
14
14
  )
15
- from mloda.user import FeatureName
16
15
  from mloda.provider import FeatureSet
17
- from mloda import Options
18
16
  from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
19
17
 
20
18
 
@@ -5,7 +5,7 @@ Base implementation for time window feature groups.
5
5
  from __future__ import annotations
6
6
 
7
7
  from abc import abstractmethod
8
- from typing import Any, List, Optional, Set, Type, Union
8
+ from typing import Any, List, Optional, Set
9
9
 
10
10
  from mloda import FeatureGroup
11
11
  from mloda import Feature
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "mloda"
7
- version = "0.4.0"
7
+ version = "0.4.1"
8
8
  description = "Make data, feature and context engineering shareable"
9
9
  readme = { file = "README.md", content-type = "text/markdown" }
10
10
  license = { text = "Apache-2.0" }
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes