mlgear 0.4__tar.gz → 0.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mlgear-0.5/LICENSE.txt +20 -0
- mlgear-0.5/PKG-INFO +79 -0
- {mlgear-0.4 → mlgear-0.5}/README.md +19 -1
- {mlgear-0.4 → mlgear-0.5}/mlgear/cv.py +4 -1
- {mlgear-0.4 → mlgear-0.5}/mlgear/models.py +32 -13
- {mlgear-0.4 → mlgear-0.5}/mlgear/utils.py +5 -1
- mlgear-0.5/pyproject.toml +29 -0
- mlgear-0.4/PKG-INFO +0 -48
- mlgear-0.4/mlgear.egg-info/PKG-INFO +0 -48
- mlgear-0.4/mlgear.egg-info/SOURCES.txt +0 -16
- mlgear-0.4/mlgear.egg-info/dependency_links.txt +0 -1
- mlgear-0.4/mlgear.egg-info/top_level.txt +0 -1
- mlgear-0.4/setup.cfg +0 -7
- mlgear-0.4/setup.py +0 -22
- {mlgear-0.4 → mlgear-0.5}/mlgear/__init__.py +0 -0
- {mlgear-0.4 → mlgear-0.5}/mlgear/aggregators.py +0 -0
- {mlgear-0.4 → mlgear-0.5}/mlgear/encoders.py +0 -0
- {mlgear-0.4 → mlgear-0.5}/mlgear/lr_scheduler.py +0 -0
- {mlgear-0.4 → mlgear-0.5}/mlgear/metrics.py +0 -0
- {mlgear-0.4 → mlgear-0.5}/mlgear/tracker.py +0 -0
mlgear-0.5/LICENSE.txt
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2020- Peter Hurford
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
6
|
+
this software and associated documentation files (the "Software"), to deal in
|
7
|
+
the Software without restriction, including without limitation the rights to
|
8
|
+
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
9
|
+
the Software, and to permit persons to whom the Software is furnished to do so,
|
10
|
+
subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
17
|
+
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
18
|
+
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
19
|
+
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
20
|
+
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
mlgear-0.5/PKG-INFO
ADDED
@@ -0,0 +1,79 @@
|
|
1
|
+
Metadata-Version: 2.3
|
2
|
+
Name: mlgear
|
3
|
+
Version: 0.5
|
4
|
+
Summary: Utility scripts for machine learning
|
5
|
+
License: MIT
|
6
|
+
Author: Peter Hurford
|
7
|
+
Author-email: peter@peterhurford.com
|
8
|
+
Requires-Python: >=3.7,<4.0
|
9
|
+
Classifier: Development Status :: 3 - Alpha
|
10
|
+
Classifier: License :: OSI Approved :: MIT License
|
11
|
+
Classifier: Operating System :: OS Independent
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
13
|
+
Classifier: Programming Language :: Python :: 3.7
|
14
|
+
Classifier: Programming Language :: Python :: 3.8
|
15
|
+
Classifier: Programming Language :: Python :: 3.9
|
16
|
+
Classifier: Programming Language :: Python :: 3.10
|
17
|
+
Classifier: Programming Language :: Python :: 3.11
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
19
|
+
Classifier: Programming Language :: Python :: 3.13
|
20
|
+
Requires-Dist: keras
|
21
|
+
Requires-Dist: lightgbm
|
22
|
+
Requires-Dist: numpy
|
23
|
+
Requires-Dist: pandas
|
24
|
+
Requires-Dist: scikit-learn
|
25
|
+
Project-URL: Repository, https://github.com/peterhurford/mlgear
|
26
|
+
Description-Content-Type: text/markdown
|
27
|
+
|
28
|
+
## MLGear
|
29
|
+
|
30
|
+
Some utility functions to make ML with Python / Pandas / sklearn even easier
|
31
|
+
|
32
|
+
### Example Usage
|
33
|
+
|
34
|
+
```Python
|
35
|
+
from mlgear.cv import run_cv_model
|
36
|
+
from mlgear.models import runLGB
|
37
|
+
from mlgear.metrics import rmse
|
38
|
+
|
39
|
+
lgb_params = {'application': 'regression',
|
40
|
+
'boosting': 'gbdt',
|
41
|
+
'metric': 'rmse',
|
42
|
+
'num_leaves': 15,
|
43
|
+
'learning_rate': 0.01,
|
44
|
+
'bagging_fraction': 0.9,
|
45
|
+
'feature_fraction': 0.9,
|
46
|
+
'verbosity': -1,
|
47
|
+
'seed': 1,
|
48
|
+
'lambda_l1': 1,
|
49
|
+
'lambda_l2': 1,
|
50
|
+
'early_stop': 20,
|
51
|
+
'verbose_eval': 10,
|
52
|
+
'num_rounds': 500,
|
53
|
+
'num_threads': 3}
|
54
|
+
|
55
|
+
results = run_cv_model(train, test, target, runLGB, lgb_params, rmse)
|
56
|
+
```
|
57
|
+
|
58
|
+
### Installation
|
59
|
+
|
60
|
+
```
|
61
|
+
pip install mlgear
|
62
|
+
```
|
63
|
+
|
64
|
+
For development:
|
65
|
+
|
66
|
+
```
|
67
|
+
# Install poetry if you don't have it
|
68
|
+
pip install poetry
|
69
|
+
|
70
|
+
# Install dependencies
|
71
|
+
poetry install
|
72
|
+
|
73
|
+
# Build the package
|
74
|
+
poetry build
|
75
|
+
|
76
|
+
# Publish to PyPI
|
77
|
+
poetry publish
|
78
|
+
```
|
79
|
+
|
@@ -30,4 +30,22 @@ results = run_cv_model(train, test, target, runLGB, lgb_params, rmse)
|
|
30
30
|
|
31
31
|
### Installation
|
32
32
|
|
33
|
-
|
33
|
+
```
|
34
|
+
pip install mlgear
|
35
|
+
```
|
36
|
+
|
37
|
+
For development:
|
38
|
+
|
39
|
+
```
|
40
|
+
# Install poetry if you don't have it
|
41
|
+
pip install poetry
|
42
|
+
|
43
|
+
# Install dependencies
|
44
|
+
poetry install
|
45
|
+
|
46
|
+
# Build the package
|
47
|
+
poetry build
|
48
|
+
|
49
|
+
# Publish to PyPI
|
50
|
+
poetry publish
|
51
|
+
```
|
@@ -51,7 +51,10 @@ def run_cv_model(train, test=None, target=None, model_fn=None, params={}, eval_f
|
|
51
51
|
models[i] = model
|
52
52
|
if importances is not None and isinstance(train, pd.DataFrame):
|
53
53
|
fold_importance_df = pd.DataFrame()
|
54
|
-
|
54
|
+
if params.get('group') is None:
|
55
|
+
fold_importance_df['feature'] = train.columns.values
|
56
|
+
else:
|
57
|
+
fold_importance_df['feature'] = [c for c in train.columns.values if c != params['group']]
|
55
58
|
fold_importance_df['importance'] = importances
|
56
59
|
fold_importance_df['fold'] = i
|
57
60
|
feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
|
@@ -11,16 +11,13 @@ from mlgear.utils import print_step
|
|
11
11
|
def runLGB(train_X, train_y, test_X=None, test_y=None, test_X2=None, params={}, meta=None, verbose=True):
|
12
12
|
if verbose:
|
13
13
|
print_step('Prep LGB')
|
14
|
-
|
15
|
-
if
|
16
|
-
|
17
|
-
watchlist = [d_train, d_valid]
|
14
|
+
|
15
|
+
if params.get('group'):
|
16
|
+
group = params.pop('group')
|
18
17
|
else:
|
19
|
-
|
20
|
-
|
21
|
-
print_step('Train LGB')
|
18
|
+
group = None
|
19
|
+
|
22
20
|
num_rounds = params.pop('num_rounds')
|
23
|
-
verbose_eval = params.pop('verbose_eval')
|
24
21
|
early_stop = None
|
25
22
|
if params.get('early_stop'):
|
26
23
|
early_stop = params.pop('early_stop')
|
@@ -37,6 +34,31 @@ def runLGB(train_X, train_y, test_X=None, test_y=None, test_X2=None, params={},
|
|
37
34
|
else:
|
38
35
|
feval = None
|
39
36
|
|
37
|
+
if group is None:
|
38
|
+
d_train = lgb.Dataset(train_X, label=train_y)
|
39
|
+
else:
|
40
|
+
d_train = lgb.Dataset(train_X.drop(group, axis=1),
|
41
|
+
label=train_y,
|
42
|
+
group=train_X.groupby(group).size().to_numpy())
|
43
|
+
|
44
|
+
if test_X is not None:
|
45
|
+
if group is None:
|
46
|
+
d_valid = lgb.Dataset(test_X, label=test_y)
|
47
|
+
else:
|
48
|
+
d_valid = lgb.Dataset(test_X.drop(group, axis=1),
|
49
|
+
label=test_y,
|
50
|
+
group=test_X.groupby(group).size().to_numpy())
|
51
|
+
test_X = test_X.drop(group, axis=1)
|
52
|
+
watchlist = [d_train, d_valid]
|
53
|
+
else:
|
54
|
+
watchlist = [d_train]
|
55
|
+
|
56
|
+
if test_X2 is not None and group is not None:
|
57
|
+
test_X2 = test_X2.drop(group, axis=1)
|
58
|
+
|
59
|
+
if verbose:
|
60
|
+
print_step('Train LGB')
|
61
|
+
|
40
62
|
preds_test_y = []
|
41
63
|
preds_test_y2 = []
|
42
64
|
for b in range(nbag):
|
@@ -45,9 +67,7 @@ def runLGB(train_X, train_y, test_X=None, test_y=None, test_X2=None, params={},
|
|
45
67
|
train_set=d_train,
|
46
68
|
num_boost_round=num_rounds,
|
47
69
|
valid_sets=watchlist,
|
48
|
-
|
49
|
-
early_stopping_rounds=early_stop,
|
50
|
-
categorical_feature=cat_cols,
|
70
|
+
callbacks=[lgb.early_stopping(stopping_rounds=early_stop)] if early_stop else [],
|
51
71
|
feval=feval)
|
52
72
|
if test_X is not None:
|
53
73
|
if verbose:
|
@@ -75,8 +95,7 @@ def get_lgb_feature_importance(train, target, params):
|
|
75
95
|
train_d = lgb.Dataset(train, label=target)
|
76
96
|
lgb_params2 = params.copy()
|
77
97
|
rounds = lgb_params2.pop('num_rounds', 400)
|
78
|
-
|
79
|
-
model = lgb.train(lgb_params2, train_d, rounds, valid_sets = [train_d], verbose_eval=verbose_eval)
|
98
|
+
model = lgb.train(lgb_params2, train_d, rounds, valid_sets = [train_d])
|
80
99
|
feature_df = pd.DataFrame(sorted(zip(model.feature_importance(), train.columns)),
|
81
100
|
columns=['Value', 'Feature']).sort_values('Value', ascending=False)
|
82
101
|
return feature_df
|
@@ -14,7 +14,7 @@ def show(df, max_rows=10, max_cols=None, digits=6):
|
|
14
14
|
|
15
15
|
|
16
16
|
def display_column(df, var):
|
17
|
-
if df[var].nunique() > 9 and (df[var].dtype == int or df[var].dtype == float):
|
17
|
+
if df[var].astype(str).nunique() > 9 and (df[var].dtype == int or df[var].dtype == float):
|
18
18
|
print('Mean: {} Median: {} SD: {}'.format(df[var].mean(), df[var].median(), df[var].std()))
|
19
19
|
else:
|
20
20
|
print(df[var].value_counts(normalize=True) * 100)
|
@@ -36,3 +36,7 @@ def chunk(l, n):
|
|
36
36
|
for i in range(0, len(l), n):
|
37
37
|
out.append(l[i:i + n])
|
38
38
|
return out
|
39
|
+
|
40
|
+
|
41
|
+
def min_max(dat):
|
42
|
+
return (min(dat), max(dat))
|
@@ -0,0 +1,29 @@
|
|
1
|
+
[tool.poetry]
|
2
|
+
name = "mlgear"
|
3
|
+
version = "0.5"
|
4
|
+
description = "Utility scripts for machine learning"
|
5
|
+
authors = ["Peter Hurford <peter@peterhurford.com>"]
|
6
|
+
license = "MIT"
|
7
|
+
readme = "README.md"
|
8
|
+
repository = "https://github.com/peterhurford/mlgear"
|
9
|
+
classifiers = [
|
10
|
+
"Development Status :: 3 - Alpha",
|
11
|
+
"Programming Language :: Python :: 3",
|
12
|
+
"License :: OSI Approved :: MIT License",
|
13
|
+
"Operating System :: OS Independent",
|
14
|
+
]
|
15
|
+
|
16
|
+
[tool.poetry.dependencies]
|
17
|
+
python = "^3.7"
|
18
|
+
keras = "*"
|
19
|
+
lightgbm = "*"
|
20
|
+
numpy = "*"
|
21
|
+
pandas = "*"
|
22
|
+
scikit-learn = "*"
|
23
|
+
|
24
|
+
[tool.poetry.group.dev.dependencies]
|
25
|
+
flake8 = "*"
|
26
|
+
|
27
|
+
[build-system]
|
28
|
+
requires = ["poetry-core>=1.0.0"]
|
29
|
+
build-backend = "poetry.core.masonry.api"
|
mlgear-0.4/PKG-INFO
DELETED
@@ -1,48 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: mlgear
|
3
|
-
Version: 0.4
|
4
|
-
Summary: Utility scripts for machine learning
|
5
|
-
Home-page: https://github.com/peterhurford/mlgear
|
6
|
-
Author: Peter Hurford
|
7
|
-
Author-email: peter@peterhurford.com
|
8
|
-
License: UNKNOWN
|
9
|
-
Description: ## MLGear
|
10
|
-
|
11
|
-
Some utility functions to make ML with Python / Pandas / sklearn even easier
|
12
|
-
|
13
|
-
### Example Usage
|
14
|
-
|
15
|
-
```Python
|
16
|
-
from mlgear.cv import run_cv_model
|
17
|
-
from mlgear.models import runLGB
|
18
|
-
from mlgear.metrics import rmse
|
19
|
-
|
20
|
-
lgb_params = {'application': 'regression',
|
21
|
-
'boosting': 'gbdt',
|
22
|
-
'metric': 'rmse',
|
23
|
-
'num_leaves': 15,
|
24
|
-
'learning_rate': 0.01,
|
25
|
-
'bagging_fraction': 0.9,
|
26
|
-
'feature_fraction': 0.9,
|
27
|
-
'verbosity': -1,
|
28
|
-
'seed': 1,
|
29
|
-
'lambda_l1': 1,
|
30
|
-
'lambda_l2': 1,
|
31
|
-
'early_stop': 20,
|
32
|
-
'verbose_eval': 10,
|
33
|
-
'num_rounds': 500,
|
34
|
-
'num_threads': 3}
|
35
|
-
|
36
|
-
results = run_cv_model(train, test, target, runLGB, lgb_params, rmse)
|
37
|
-
```
|
38
|
-
|
39
|
-
### Installation
|
40
|
-
|
41
|
-
`pip3 install mlgear`
|
42
|
-
|
43
|
-
Platform: UNKNOWN
|
44
|
-
Classifier: Development Status :: 3 - Alpha
|
45
|
-
Classifier: Programming Language :: Python :: 3
|
46
|
-
Classifier: License :: OSI Approved :: MIT License
|
47
|
-
Classifier: Operating System :: OS Independent
|
48
|
-
Description-Content-Type: text/markdown
|
@@ -1,48 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: mlgear
|
3
|
-
Version: 0.4
|
4
|
-
Summary: Utility scripts for machine learning
|
5
|
-
Home-page: https://github.com/peterhurford/mlgear
|
6
|
-
Author: Peter Hurford
|
7
|
-
Author-email: peter@peterhurford.com
|
8
|
-
License: UNKNOWN
|
9
|
-
Description: ## MLGear
|
10
|
-
|
11
|
-
Some utility functions to make ML with Python / Pandas / sklearn even easier
|
12
|
-
|
13
|
-
### Example Usage
|
14
|
-
|
15
|
-
```Python
|
16
|
-
from mlgear.cv import run_cv_model
|
17
|
-
from mlgear.models import runLGB
|
18
|
-
from mlgear.metrics import rmse
|
19
|
-
|
20
|
-
lgb_params = {'application': 'regression',
|
21
|
-
'boosting': 'gbdt',
|
22
|
-
'metric': 'rmse',
|
23
|
-
'num_leaves': 15,
|
24
|
-
'learning_rate': 0.01,
|
25
|
-
'bagging_fraction': 0.9,
|
26
|
-
'feature_fraction': 0.9,
|
27
|
-
'verbosity': -1,
|
28
|
-
'seed': 1,
|
29
|
-
'lambda_l1': 1,
|
30
|
-
'lambda_l2': 1,
|
31
|
-
'early_stop': 20,
|
32
|
-
'verbose_eval': 10,
|
33
|
-
'num_rounds': 500,
|
34
|
-
'num_threads': 3}
|
35
|
-
|
36
|
-
results = run_cv_model(train, test, target, runLGB, lgb_params, rmse)
|
37
|
-
```
|
38
|
-
|
39
|
-
### Installation
|
40
|
-
|
41
|
-
`pip3 install mlgear`
|
42
|
-
|
43
|
-
Platform: UNKNOWN
|
44
|
-
Classifier: Development Status :: 3 - Alpha
|
45
|
-
Classifier: Programming Language :: Python :: 3
|
46
|
-
Classifier: License :: OSI Approved :: MIT License
|
47
|
-
Classifier: Operating System :: OS Independent
|
48
|
-
Description-Content-Type: text/markdown
|
@@ -1,16 +0,0 @@
|
|
1
|
-
README.md
|
2
|
-
setup.cfg
|
3
|
-
setup.py
|
4
|
-
mlgear/__init__.py
|
5
|
-
mlgear/aggregators.py
|
6
|
-
mlgear/cv.py
|
7
|
-
mlgear/encoders.py
|
8
|
-
mlgear/lr_scheduler.py
|
9
|
-
mlgear/metrics.py
|
10
|
-
mlgear/models.py
|
11
|
-
mlgear/tracker.py
|
12
|
-
mlgear/utils.py
|
13
|
-
mlgear.egg-info/PKG-INFO
|
14
|
-
mlgear.egg-info/SOURCES.txt
|
15
|
-
mlgear.egg-info/dependency_links.txt
|
16
|
-
mlgear.egg-info/top_level.txt
|
@@ -1 +0,0 @@
|
|
1
|
-
|
@@ -1 +0,0 @@
|
|
1
|
-
mlgear
|
mlgear-0.4/setup.cfg
DELETED
mlgear-0.4/setup.py
DELETED
@@ -1,22 +0,0 @@
|
|
1
|
-
import setuptools
|
2
|
-
|
3
|
-
with open('README.md', 'r') as fh:
|
4
|
-
long_description = fh.read()
|
5
|
-
|
6
|
-
setuptools.setup(
|
7
|
-
name='mlgear',
|
8
|
-
version='0.4',
|
9
|
-
author='Peter Hurford',
|
10
|
-
author_email='peter@peterhurford.com',
|
11
|
-
description='Utility scripts for machine learning',
|
12
|
-
long_description=long_description,
|
13
|
-
long_description_content_type='text/markdown',
|
14
|
-
url='https://github.com/peterhurford/mlgear',
|
15
|
-
packages=setuptools.find_packages(),
|
16
|
-
classifiers=[
|
17
|
-
'Development Status :: 3 - Alpha',
|
18
|
-
'Programming Language :: Python :: 3',
|
19
|
-
'License :: OSI Approved :: MIT License',
|
20
|
-
'Operating System :: OS Independent',
|
21
|
-
],
|
22
|
-
)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|