mlarray 0.0.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,67 @@
1
+ name: CI
2
+
3
+ permissions:
4
+ contents: read
5
+ id-token: write
6
+
7
+ on:
8
+ push:
9
+ branches: ["main"]
10
+ tags:
11
+ - "v*"
12
+ pull_request:
13
+ branches: ["main"]
14
+
15
+ jobs:
16
+ tests:
17
+ runs-on: ubuntu-latest
18
+ strategy:
19
+ fail-fast: false
20
+ matrix:
21
+ python-version: ["3.10"]
22
+ steps:
23
+ - name: Checkout
24
+ uses: actions/checkout@v4
25
+
26
+ - name: Setup Python
27
+ uses: actions/setup-python@v5
28
+ with:
29
+ python-version: ${{ matrix.python-version }}
30
+
31
+ - name: Install dependencies
32
+ run: |
33
+ python -m pip install --upgrade pip
34
+ pip install -e .[dev]
35
+
36
+ - name: Run tests
37
+ run: |
38
+ pytest || if [ $? -eq 5 ]; then echo "No tests collected; skipping."; exit 0; else exit $?; fi
39
+
40
+ publish:
41
+ needs: tests
42
+ if: startsWith(github.ref, 'refs/tags/v')
43
+ runs-on: ubuntu-latest
44
+ steps:
45
+ - name: Checkout
46
+ uses: actions/checkout@v4
47
+
48
+ - name: Setup Python
49
+ uses: actions/setup-python@v5
50
+ with:
51
+ python-version: "3.10"
52
+
53
+ - name: Install build tooling
54
+ run: |
55
+ python -m pip install --upgrade pip
56
+ pip install build twine setuptools_scm
57
+
58
+ - name: Build package
59
+ run: python -m build
60
+
61
+ - name: Check metadata
62
+ run: python -m twine check dist/*
63
+
64
+ - name: Publish to PyPI
65
+ uses: pypa/gh-action-pypi-publish@release/v1
66
+ with:
67
+ password: ${{ secrets.PYPI_API_TOKEN }}
@@ -0,0 +1,40 @@
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # Virtual environments
7
+ .venv/
8
+ env/
9
+ venv/
10
+ .env
11
+ .python-version
12
+
13
+ # Distribution / packaging
14
+ .Python
15
+ build/
16
+ dist/
17
+ *.egg-info/
18
+ .eggs/
19
+ wheelhouse/
20
+
21
+ # Installer logs
22
+ pip-log.txt
23
+ pip-delete-this-directory.txt
24
+
25
+ # Unit test / coverage reports
26
+ .pytest_cache/
27
+ .coverage*
28
+ coverage.xml
29
+ htmlcov/
30
+
31
+ # Editors
32
+ .DS_Store
33
+ .vscode/
34
+ .idea/
35
+ *.swp
36
+ *.swo
37
+
38
+ # Blosc2 files
39
+ *.b2nd
40
+ *.mla
mlarray-0.0.9/API.md ADDED
@@ -0,0 +1,78 @@
1
+ # MLArray Public API
2
+
3
+ This document lists the public API surface of `MLArray`.
4
+
5
+ ## Class: `MLArray`
6
+
7
+ ### Constructor
8
+
9
+ ```python
10
+ MLArray(
11
+ array: Union[np.ndarray, str, Path],
12
+ spacing: Optional[Union[List, Tuple, np.ndarray]] = None,
13
+ origin: Optional[Union[List, Tuple, np.ndarray]] = None,
14
+ direction: Optional[Union[List, Tuple, np.ndarray]] = None,
15
+ meta: Optional[Union[Dict, Meta]] = None,
16
+ mmap: bool = False,
17
+ num_threads: int = 1,
18
+ mode: str = "r",
19
+ copy: Optional["MLArray"] = None,
20
+ )
21
+ ```
22
+
23
+ | argument | type | description |
24
+ | --- | --- | --- |
25
+ | array | Union[np.ndarray, str, Path] | Input data or file path. Use a numpy ndarray for in-memory arrays. Use a string or Path to load a ".b2nd" or ".mla" file. |
26
+ | spacing | Optional[Union[List, Tuple, np.ndarray]] | Spacing per axis. Provide a list/tuple/ndarray with length equal to the number of dimensions (e.g., [sx, sy, sz]). |
27
+ | origin | Optional[Union[List, Tuple, np.ndarray]] | Origin per axis. Provide a list/tuple/ndarray with length equal to the number of dimensions. |
28
+ | direction | Optional[Union[List, Tuple, np.ndarray]] | Direction cosine matrix. Provide a 2D list/tuple/ndarray with shape (ndims, ndims). |
29
+ | meta | Optional[Union[Dict, Meta]] | Free-form metadata dictionary or Meta instance. Must be JSON-serializable when saving. If meta is passed as a Dict, it will internally be converted into a Meta object with the dict being interpreted as meta.image metadata. |
30
+ | mmap | bool | Whether to keep the loaded array memory-mapped when loading from disk. If true, MLArray.array will be an blosc2.ndarray.NDArray, else np.ndarray. |
31
+ | num_threads | int | Number of threads for Blosc2 operations. |
32
+ | mode | str | Blosc2 open mode: 'r' read-only (default), 'a' read/write create if doesn't exist (not supported), 'w' create overwrite if exists (not supported). |
33
+ | copy | Optional[MLArray] | Another MLArray instance to copy metadata fields from. |
34
+
35
+ ### Properties
36
+
37
+ | name | type | description |
38
+ | --- | --- | --- |
39
+ | spacing | Optional[List[float]] | Image spacing per axis. |
40
+ | origin | Optional[List[float]] | Image origin per axis. |
41
+ | direction | Optional[List[List[float]]] | Direction cosine matrix. |
42
+ | affine | List[List[float]] | Affine transform matrix. |
43
+ | translation | List[float] | Translation vector from the affine. |
44
+ | scale | List[float] | Scale factors from the affine. |
45
+ | rotation | List[List[float]] | Rotation matrix from the affine. |
46
+ | shear | List[List[float]] | Shear matrix from the affine. |
47
+ | shape | Tuple[int, ...] | Shape of the underlying array. |
48
+ | ndims | int | Number of array dimensions. |
49
+
50
+ ### Methods
51
+
52
+ | name | signature | description |
53
+ | --- | --- | --- |
54
+ | save | `save(filepath, patch_size="default", chunk_size=None, block_size=None, clevel=8, codec=blosc2.Codec.ZSTD, num_threads=1)` | Save to `.b2nd` or `.mla`. |
55
+ | comp_blosc2_params | `comp_blosc2_params(image_size, patch_size, bytes_per_pixel=4, l1_cache_size_per_core_in_bytes=32768, l3_cache_size_per_core_in_bytes=1441792, safety_factor=0.8)` | Compute recommended chunk/block sizes. |
56
+
57
+ #### save arguments
58
+
59
+ | argument | type | description |
60
+ | --- | --- | --- |
61
+ | filepath | Union[str, Path] | Path to save the file. Must end with ".b2nd" or ".mla". |
62
+ | patch_size | Optional[Union[int, List, Tuple]] | Patch size hint for chunk/block optimization. Provide an int for isotropic sizes or a list/tuple with length equal to the number of dimensions. Use "default" to use the default patch size of 192. |
63
+ | chunk_size | Optional[Union[int, List, Tuple]] | Explicit chunk size. Provide an int or a tuple/list with length equal to the number of dimensions, or None to let Blosc2 decide. Ignored when patch_size is not None. |
64
+ | block_size | Optional[Union[int, List, Tuple]] | Explicit block size. Provide an int or a tuple/list with length equal to the number of dimensions, or None to let Blosc2 decide. Ignored when patch_size is not None. |
65
+ | clevel | int | Compression level from 0 (no compression) to 9 (maximum compression). |
66
+ | codec | blosc2.Codec | Compression codec to use. |
67
+ | num_threads | int | Number of threads to use for saving the file. |
68
+
69
+ #### comp_blosc2_params arguments
70
+
71
+ | argument | type | description |
72
+ | --- | --- | --- |
73
+ | image_size | Tuple[int, int, int, int] | Image shape. Use a 2D, 3D, or 4D size; 2D/3D inputs are internally expanded. |
74
+ | patch_size | Union[Tuple[int, int], Tuple[int, int, int]] | Patch size for spatial dimensions. Use a 2-tuple (x, y) or 3-tuple (x, y, z). |
75
+ | bytes_per_pixel | int | Number of bytes per element. Defaults to 4 for float32. |
76
+ | l1_cache_size_per_core_in_bytes | int | L1 cache per core in bytes. |
77
+ | l3_cache_size_per_core_in_bytes | int | L3 cache per core in bytes. |
78
+ | safety_factor | float | Safety factor to avoid filling caches. |
mlarray-0.0.9/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Karol Gotkowski
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ recursive-include assets *
mlarray-0.0.9/PKG-INFO ADDED
@@ -0,0 +1,247 @@
1
+ Metadata-Version: 2.4
2
+ Name: mlarray
3
+ Version: 0.0.9
4
+ Summary: A standardized blosc2 image reader and writer for medical images.
5
+ Author-email: Karol Gotkowski <karol.gotkowski@dkfz.de>
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/Karol-G/mlarray
8
+ Project-URL: Source, https://github.com/Karol-G/mlarray
9
+ Project-URL: Issues, https://github.com/Karol-G/mlarray/issues
10
+ Keywords: copier,template,python
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Operating System :: OS Independent
16
+ Requires-Python: >=3.10
17
+ Description-Content-Type: text/markdown
18
+ License-File: LICENSE
19
+ Requires-Dist: blosc2>=3
20
+ Requires-Dist: numpy>=2
21
+ Provides-Extra: dev
22
+ Requires-Dist: build>=1.0; extra == "dev"
23
+ Requires-Dist: pytest>=7.0; extra == "dev"
24
+ Requires-Dist: twine>=4.0; extra == "dev"
25
+ Requires-Dist: setuptools_scm[toml]>=8.0; extra == "dev"
26
+ Provides-Extra: all
27
+ Requires-Dist: medvol; extra == "all"
28
+ Dynamic: license-file
29
+
30
+ <p align="center">
31
+ <img src="https://raw.githubusercontent.com/Karol-G/mlarray/main/assets/banner.png" alt="{ML Array} banner" width="700" />
32
+ </p>
33
+
34
+ <p align="center">
35
+ <a href="https://pypi.org/project/mlarray/"><img src="https://img.shields.io/pypi/v/mlarray?logo=pypi&color=brightgreen&cacheSeconds=300&v=2026-01-22" alt="PyPI" align="middle" /></a>
36
+ <a href="https://pypi.org/project/mlarray/"><img src="https://img.shields.io/pypi/pyversions/mlarray?logo=python&cacheSeconds=300&v=2026-01-22" alt="Python Version" align="middle" /></a>
37
+ <a href="https://github.com/Karol-G/mlarray/actions"><img src="https://img.shields.io/github/actions/workflow/status/Karol-G/mlarray/workflow.yml?branch=main&logo=github" alt="Tests" align="middle" /></a>
38
+ <a href="https://github.com/copier-org/copier"><img src="https://img.shields.io/badge/template-copier-2ebd59?logo=jinja" alt="Copier Template" align="middle" /></a>
39
+ <a href="https://github.com/Karol-G/mlarray/blob/main/LICENSE"><img src="https://img.shields.io/github/license/Karol-G/mlarray" alt="License" align="middle" /></a>
40
+ </p>
41
+
42
+ **tl;dr:** Using large, medical or scientific images for Machine Learning? => Use MLArray
43
+
44
+ A standardized Blosc2 image reader and writer for medical images. The MLArray
45
+ file format (".mla") is a Blosc2-compressed container with standardized
46
+ metadata support for N-dimensional medical images. Plain ".b2nd" files are also
47
+ supported, but they do not participate in the MLArray metadata standard.
48
+
49
+ ## Installation
50
+
51
+ You can install mlarray via [pip](https://pypi.org/project/mlarray/):
52
+ ```bash
53
+ pip install mlarray
54
+ ```
55
+
56
+ To enable the `mlarray_convert` CLI command, install MLArray with the necessary extra dependencies:
57
+ ```bash
58
+ pip install mlarray[all]
59
+ ```
60
+
61
+ ## API
62
+
63
+ See [API.md](API.md) for the full MLArray api, including argument
64
+ descriptions and types.
65
+
66
+ ## Metadata schema
67
+
68
+ See [SCHEMA.md](SCHEMA.md) for the full MLArray metadata schema, including field
69
+ descriptions and types.
70
+
71
+ ## Usage
72
+
73
+ Below are common usage patterns for loading, saving, and working with metadata.
74
+
75
+ ### Default usage
76
+
77
+ ```python
78
+ import numpy as np
79
+ from mlarray import MLArray
80
+
81
+ array = np.random.random((128, 256, 256))
82
+ image = MLArray(array) # Create MLArray image
83
+ image.save("sample.mla")
84
+
85
+ image = MLArray("sample.mla") # Loads image
86
+ ```
87
+
88
+ ### Memory-mapped usage
89
+
90
+ ```python
91
+ from mlarray import MLArray
92
+ import numpy as np
93
+
94
+ # read-only, partial access (default)
95
+ image = MLArray().open("sample.mla", mmap='r')
96
+ crop = image[10:20, 50:60] # Read crop
97
+
98
+ # read/write, partial access
99
+ image = MLArray().open("sample.mla", mmap='r+')
100
+ image[10:20, 50:60] *= 5 # Modify crop in memory and disk
101
+
102
+ # read/write, partial access, create/overwrite
103
+ array = np.random.random((128, 256, 256))
104
+ image = MLArray().open("sample.mla", shape=array.shape, dtype=array.dtype, mmap='w+')
105
+ image[...] = array # Modify image in memory and disk
106
+ ```
107
+
108
+ ### Metadata inspection and manipulation
109
+
110
+ ```python
111
+ import numpy as np
112
+ from mlarray import MLArray
113
+
114
+ array = np.random.random((64, 128, 128))
115
+ image = MLArray(
116
+ array,
117
+ spacing=(1.0, 1.0, 1.5),
118
+ origin=(10.0, 10.0, 30.0),
119
+ direction=[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
120
+ meta={"patient_id": "123", "modality": "CT"}, # Any image metadata (for example raw DICOM metadata)
121
+ )
122
+
123
+ print(image.spacing) # [1.0, 1.0, 1.5]
124
+ print(image.origin) # [10.0, 10.0, 30.0]
125
+ print(image.meta.image) # {"patient_id": "123", "modality": "CT"}
126
+
127
+ image.spacing[1] = 5.3
128
+ image.meta.image["study_id"] = "study-001"
129
+ image.save("with-metadata.mla")
130
+
131
+ # Open memory-mapped
132
+ image = MLArray().open("with-metadata.mla", mmap='r+')
133
+ image.meta.image["study_id"] = "new-study" # Modify metadata
134
+ image.close() # Close and save metadata, only necessary to save modified metadata
135
+ ```
136
+
137
+ ### Copy metadata with overrides
138
+
139
+ ```python
140
+ import numpy as np
141
+ from mlarray import MLArray
142
+
143
+ base = MLArray("sample.mla")
144
+ array = np.random.random(base.shape)
145
+
146
+ image = MLArray(
147
+ array,
148
+ spacing=(0.8, 0.8, 1.0),
149
+ copy=base, # Copies all non-explicitly set arguments from base
150
+ )
151
+
152
+ image.save("copied-metadata.mla")
153
+ ```
154
+
155
+ ### Standardized metadata usage
156
+
157
+ ```python
158
+ import numpy as np
159
+ from mlarray import MLArray, Meta
160
+
161
+ array = np.random.random((64, 128, 128))
162
+ image = MLArray(
163
+ array,
164
+ meta=Meta(image={"patient_id": "123", "modality": "CT"}, is_seg=True), # Add metadata in a pre-defined format
165
+ )
166
+
167
+ print(image.meta.image) # {"patient_id": "123", "modality": "CT"}
168
+ print(image.meta.is_seg) # True
169
+
170
+ image.meta.image["study_id"] = "study-001"
171
+ image.meta.is_seg = False
172
+ image.save("with-metadata.mla")
173
+ ```
174
+
175
+ ### Patch size variants
176
+
177
+ Default patch size (192):
178
+ ```python
179
+ from mlarray import MLArray
180
+
181
+ image = MLArray("sample.mla")
182
+ image.save("default-patch.mla") # Default patch_size is 'default' -> Isotropic patch size of 192 pixels
183
+ image.save("default-patch.mla", patch_size='default')
184
+ ```
185
+
186
+ Custom isotropic patch size (512):
187
+ ```python
188
+ from mlarray import MLArray
189
+
190
+ image = MLArray("sample.mla")
191
+ image.save("patch-512.mla", patch_size=512)
192
+ ```
193
+
194
+ Custom non-isotropic patch size:
195
+ ```python
196
+ from mlarray import MLArray
197
+
198
+ image = MLArray("sample.mla")
199
+ image.save("patch-non-iso.mla", patch_size=(128, 192, 256))
200
+ ```
201
+
202
+ Manual chunk/block size:
203
+ ```python
204
+ from mlarray import MLArray
205
+
206
+ image = MLArray("sample.mla")
207
+ image.save("manual-chunk-block.mla", chunk_size=(1, 128, 128), block_size=(1, 32, 32))
208
+ ```
209
+
210
+ Let Blosc2 itself configure chunk/block size:
211
+ ```python
212
+ from mlarray import MLArray
213
+
214
+ image = MLArray("sample.mla")
215
+ # If patch_size, chunk_size and block_size are all None, Blosc2 will auto-configure chunk and block size
216
+ image.save("manual-chunk-block.mla", patch_size=None)
217
+ ```
218
+
219
+ ## CLI
220
+
221
+ ### mlarray_header
222
+
223
+ Print the metadata header from a `.mla` or `.b2nd` file.
224
+
225
+ ```bash
226
+ mlarray_header sample.mla
227
+ ```
228
+
229
+ ### mlarray_convert
230
+
231
+ Convert a NIfTI or NRRD file to MLArray and copy metadata.
232
+
233
+ ```bash
234
+ mlarray_convert sample.nii.gz output.mla
235
+ ```
236
+
237
+ ## Contributing
238
+
239
+ Contributions are welcome! Please open a pull request with clear changes and add tests when appropriate.
240
+
241
+ ## Issues
242
+
243
+ Found a bug or have a request? Open an issue at https://github.com/Karol-G/mlarray/issues.
244
+
245
+ ## License
246
+
247
+ Distributed under the MIT license. See `LICENSE` for details.
@@ -0,0 +1,218 @@
1
+ <p align="center">
2
+ <img src="https://raw.githubusercontent.com/Karol-G/mlarray/main/assets/banner.png" alt="{ML Array} banner" width="700" />
3
+ </p>
4
+
5
+ <p align="center">
6
+ <a href="https://pypi.org/project/mlarray/"><img src="https://img.shields.io/pypi/v/mlarray?logo=pypi&color=brightgreen&cacheSeconds=300&v=2026-01-22" alt="PyPI" align="middle" /></a>
7
+ <a href="https://pypi.org/project/mlarray/"><img src="https://img.shields.io/pypi/pyversions/mlarray?logo=python&cacheSeconds=300&v=2026-01-22" alt="Python Version" align="middle" /></a>
8
+ <a href="https://github.com/Karol-G/mlarray/actions"><img src="https://img.shields.io/github/actions/workflow/status/Karol-G/mlarray/workflow.yml?branch=main&logo=github" alt="Tests" align="middle" /></a>
9
+ <a href="https://github.com/copier-org/copier"><img src="https://img.shields.io/badge/template-copier-2ebd59?logo=jinja" alt="Copier Template" align="middle" /></a>
10
+ <a href="https://github.com/Karol-G/mlarray/blob/main/LICENSE"><img src="https://img.shields.io/github/license/Karol-G/mlarray" alt="License" align="middle" /></a>
11
+ </p>
12
+
13
+ **tl;dr:** Using large, medical or scientific images for Machine Learning? => Use MLArray
14
+
15
+ A standardized Blosc2 image reader and writer for medical images. The MLArray
16
+ file format (".mla") is a Blosc2-compressed container with standardized
17
+ metadata support for N-dimensional medical images. Plain ".b2nd" files are also
18
+ supported, but they do not participate in the MLArray metadata standard.
19
+
20
+ ## Installation
21
+
22
+ You can install mlarray via [pip](https://pypi.org/project/mlarray/):
23
+ ```bash
24
+ pip install mlarray
25
+ ```
26
+
27
+ To enable the `mlarray_convert` CLI command, install MLArray with the necessary extra dependencies:
28
+ ```bash
29
+ pip install mlarray[all]
30
+ ```
31
+
32
+ ## API
33
+
34
+ See [API.md](API.md) for the full MLArray api, including argument
35
+ descriptions and types.
36
+
37
+ ## Metadata schema
38
+
39
+ See [SCHEMA.md](SCHEMA.md) for the full MLArray metadata schema, including field
40
+ descriptions and types.
41
+
42
+ ## Usage
43
+
44
+ Below are common usage patterns for loading, saving, and working with metadata.
45
+
46
+ ### Default usage
47
+
48
+ ```python
49
+ import numpy as np
50
+ from mlarray import MLArray
51
+
52
+ array = np.random.random((128, 256, 256))
53
+ image = MLArray(array) # Create MLArray image
54
+ image.save("sample.mla")
55
+
56
+ image = MLArray("sample.mla") # Loads image
57
+ ```
58
+
59
+ ### Memory-mapped usage
60
+
61
+ ```python
62
+ from mlarray import MLArray
63
+ import numpy as np
64
+
65
+ # read-only, partial access (default)
66
+ image = MLArray().open("sample.mla", mmap='r')
67
+ crop = image[10:20, 50:60] # Read crop
68
+
69
+ # read/write, partial access
70
+ image = MLArray().open("sample.mla", mmap='r+')
71
+ image[10:20, 50:60] *= 5 # Modify crop in memory and disk
72
+
73
+ # read/write, partial access, create/overwrite
74
+ array = np.random.random((128, 256, 256))
75
+ image = MLArray().open("sample.mla", shape=array.shape, dtype=array.dtype, mmap='w+')
76
+ image[...] = array # Modify image in memory and disk
77
+ ```
78
+
79
+ ### Metadata inspection and manipulation
80
+
81
+ ```python
82
+ import numpy as np
83
+ from mlarray import MLArray
84
+
85
+ array = np.random.random((64, 128, 128))
86
+ image = MLArray(
87
+ array,
88
+ spacing=(1.0, 1.0, 1.5),
89
+ origin=(10.0, 10.0, 30.0),
90
+ direction=[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
91
+ meta={"patient_id": "123", "modality": "CT"}, # Any image metadata (for example raw DICOM metadata)
92
+ )
93
+
94
+ print(image.spacing) # [1.0, 1.0, 1.5]
95
+ print(image.origin) # [10.0, 10.0, 30.0]
96
+ print(image.meta.image) # {"patient_id": "123", "modality": "CT"}
97
+
98
+ image.spacing[1] = 5.3
99
+ image.meta.image["study_id"] = "study-001"
100
+ image.save("with-metadata.mla")
101
+
102
+ # Open memory-mapped
103
+ image = MLArray().open("with-metadata.mla", mmap='r+')
104
+ image.meta.image["study_id"] = "new-study" # Modify metadata
105
+ image.close() # Close and save metadata, only necessary to save modified metadata
106
+ ```
107
+
108
+ ### Copy metadata with overrides
109
+
110
+ ```python
111
+ import numpy as np
112
+ from mlarray import MLArray
113
+
114
+ base = MLArray("sample.mla")
115
+ array = np.random.random(base.shape)
116
+
117
+ image = MLArray(
118
+ array,
119
+ spacing=(0.8, 0.8, 1.0),
120
+ copy=base, # Copies all non-explicitly set arguments from base
121
+ )
122
+
123
+ image.save("copied-metadata.mla")
124
+ ```
125
+
126
+ ### Standardized metadata usage
127
+
128
+ ```python
129
+ import numpy as np
130
+ from mlarray import MLArray, Meta
131
+
132
+ array = np.random.random((64, 128, 128))
133
+ image = MLArray(
134
+ array,
135
+ meta=Meta(image={"patient_id": "123", "modality": "CT"}, is_seg=True), # Add metadata in a pre-defined format
136
+ )
137
+
138
+ print(image.meta.image) # {"patient_id": "123", "modality": "CT"}
139
+ print(image.meta.is_seg) # True
140
+
141
+ image.meta.image["study_id"] = "study-001"
142
+ image.meta.is_seg = False
143
+ image.save("with-metadata.mla")
144
+ ```
145
+
146
+ ### Patch size variants
147
+
148
+ Default patch size (192):
149
+ ```python
150
+ from mlarray import MLArray
151
+
152
+ image = MLArray("sample.mla")
153
+ image.save("default-patch.mla") # Default patch_size is 'default' -> Isotropic patch size of 192 pixels
154
+ image.save("default-patch.mla", patch_size='default')
155
+ ```
156
+
157
+ Custom isotropic patch size (512):
158
+ ```python
159
+ from mlarray import MLArray
160
+
161
+ image = MLArray("sample.mla")
162
+ image.save("patch-512.mla", patch_size=512)
163
+ ```
164
+
165
+ Custom non-isotropic patch size:
166
+ ```python
167
+ from mlarray import MLArray
168
+
169
+ image = MLArray("sample.mla")
170
+ image.save("patch-non-iso.mla", patch_size=(128, 192, 256))
171
+ ```
172
+
173
+ Manual chunk/block size:
174
+ ```python
175
+ from mlarray import MLArray
176
+
177
+ image = MLArray("sample.mla")
178
+ image.save("manual-chunk-block.mla", chunk_size=(1, 128, 128), block_size=(1, 32, 32))
179
+ ```
180
+
181
+ Let Blosc2 itself configure chunk/block size:
182
+ ```python
183
+ from mlarray import MLArray
184
+
185
+ image = MLArray("sample.mla")
186
+ # If patch_size, chunk_size and block_size are all None, Blosc2 will auto-configure chunk and block size
187
+ image.save("manual-chunk-block.mla", patch_size=None)
188
+ ```
189
+
190
+ ## CLI
191
+
192
+ ### mlarray_header
193
+
194
+ Print the metadata header from a `.mla` or `.b2nd` file.
195
+
196
+ ```bash
197
+ mlarray_header sample.mla
198
+ ```
199
+
200
+ ### mlarray_convert
201
+
202
+ Convert a NIfTI or NRRD file to MLArray and copy metadata.
203
+
204
+ ```bash
205
+ mlarray_convert sample.nii.gz output.mla
206
+ ```
207
+
208
+ ## Contributing
209
+
210
+ Contributions are welcome! Please open a pull request with clear changes and add tests when appropriate.
211
+
212
+ ## Issues
213
+
214
+ Found a bug or have a request? Open an issue at https://github.com/Karol-G/mlarray/issues.
215
+
216
+ ## License
217
+
218
+ Distributed under the MIT license. See `LICENSE` for details.