ml4gw 0.7.4__tar.gz → 0.7.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ml4gw might be problematic. Click here for more details.

Files changed (117) hide show
  1. {ml4gw-0.7.4 → ml4gw-0.7.5}/.github/workflows/docs.yaml +1 -1
  2. {ml4gw-0.7.4 → ml4gw-0.7.5}/.github/workflows/pre-commit.yaml +3 -3
  3. {ml4gw-0.7.4 → ml4gw-0.7.5}/.github/workflows/unit-tests.yaml +1 -1
  4. {ml4gw-0.7.4 → ml4gw-0.7.5}/PKG-INFO +7 -1
  5. {ml4gw-0.7.4 → ml4gw-0.7.5}/examples/README.md +0 -2
  6. {ml4gw-0.7.4 → ml4gw-0.7.5}/examples/ml4gw_tutorial.ipynb +48 -15
  7. {ml4gw-0.7.4 → ml4gw-0.7.5}/examples/pyproject.toml +2 -1
  8. {ml4gw-0.7.4 → ml4gw-0.7.5}/examples/uv.lock +444 -5
  9. ml4gw-0.7.5/ml4gw/distributions.py +379 -0
  10. {ml4gw-0.7.4 → ml4gw-0.7.5}/pyproject.toml +11 -3
  11. ml4gw-0.7.5/tests/test_distributions.py +229 -0
  12. {ml4gw-0.7.4 → ml4gw-0.7.5}/uv.lock +1 -1
  13. ml4gw-0.7.4/ml4gw/distributions.py +0 -175
  14. ml4gw-0.7.4/tests/test_distributions.py +0 -90
  15. {ml4gw-0.7.4 → ml4gw-0.7.5}/.coverage +0 -0
  16. {ml4gw-0.7.4 → ml4gw-0.7.5}/.gitattributes +0 -0
  17. {ml4gw-0.7.4 → ml4gw-0.7.5}/.github/workflows/coverage.yaml +0 -0
  18. {ml4gw-0.7.4 → ml4gw-0.7.5}/.github/workflows/publish.yaml +0 -0
  19. {ml4gw-0.7.4 → ml4gw-0.7.5}/.gitignore +0 -0
  20. {ml4gw-0.7.4 → ml4gw-0.7.5}/.pre-commit-config.yaml +0 -0
  21. {ml4gw-0.7.4 → ml4gw-0.7.5}/.readthedocs.yaml +0 -0
  22. {ml4gw-0.7.4 → ml4gw-0.7.5}/CITATION.cff +0 -0
  23. {ml4gw-0.7.4 → ml4gw-0.7.5}/LICENSE +0 -0
  24. {ml4gw-0.7.4 → ml4gw-0.7.5}/README.md +0 -0
  25. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/Makefile +0 -0
  26. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/conf.py +0 -0
  27. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/index.rst +0 -0
  28. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/installation.rst +0 -0
  29. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/make.bat +0 -0
  30. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.dataloading.rst +0 -0
  31. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.nn.autoencoder.rst +0 -0
  32. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.nn.resnet.rst +0 -0
  33. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.nn.rst +0 -0
  34. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.nn.streaming.rst +0 -0
  35. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.rst +0 -0
  36. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.transforms.rst +0 -0
  37. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/ml4gw.waveforms.rst +0 -0
  38. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/modules.rst +0 -0
  39. {ml4gw-0.7.4 → ml4gw-0.7.5}/docs/requirements.txt +0 -0
  40. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/__init__.py +0 -0
  41. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/augmentations.py +0 -0
  42. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/constants.py +0 -0
  43. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/dataloading/__init__.py +0 -0
  44. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/dataloading/chunked_dataset.py +0 -0
  45. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/dataloading/hdf5_dataset.py +0 -0
  46. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/dataloading/in_memory_dataset.py +0 -0
  47. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/gw.py +0 -0
  48. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/__init__.py +0 -0
  49. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/autoencoder/__init__.py +0 -0
  50. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/autoencoder/base.py +0 -0
  51. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/autoencoder/convolutional.py +0 -0
  52. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/autoencoder/skip_connection.py +0 -0
  53. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/autoencoder/utils.py +0 -0
  54. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/norm.py +0 -0
  55. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/resnet/__init__.py +0 -0
  56. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/resnet/resnet_1d.py +0 -0
  57. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/resnet/resnet_2d.py +0 -0
  58. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/streaming/__init__.py +0 -0
  59. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/streaming/online_average.py +0 -0
  60. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/nn/streaming/snapshotter.py +0 -0
  61. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/spectral.py +0 -0
  62. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/__init__.py +0 -0
  63. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/iirfilter.py +0 -0
  64. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/pearson.py +0 -0
  65. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/qtransform.py +0 -0
  66. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/scaler.py +0 -0
  67. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/snr_rescaler.py +0 -0
  68. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/spectral.py +0 -0
  69. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/spectrogram.py +0 -0
  70. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/spline_interpolation.py +0 -0
  71. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/transform.py +0 -0
  72. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/waveforms.py +0 -0
  73. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/transforms/whitening.py +0 -0
  74. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/types.py +0 -0
  75. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/utils/interferometer.py +0 -0
  76. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/utils/slicing.py +0 -0
  77. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/__init__.py +0 -0
  78. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/adhoc/__init__.py +0 -0
  79. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/adhoc/ringdown.py +0 -0
  80. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/adhoc/sine_gaussian.py +0 -0
  81. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/__init__.py +0 -0
  82. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/coefficients.py +0 -0
  83. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/phenom_d.py +0 -0
  84. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/phenom_d_data.py +0 -0
  85. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/phenom_p.py +0 -0
  86. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/taylorf2.py +0 -0
  87. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/cbc/utils.py +0 -0
  88. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/conversion.py +0 -0
  89. {ml4gw-0.7.4 → ml4gw-0.7.5}/ml4gw/waveforms/generator.py +0 -0
  90. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/conftest.py +0 -0
  91. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/dataloading/test_chunked_dataset.py +0 -0
  92. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/dataloading/test_hdf5_dataset.py +0 -0
  93. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/dataloading/test_in_memory_dataset.py +0 -0
  94. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/nn/resnet/test_resnet_1d.py +0 -0
  95. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/nn/resnet/test_resnet_2d.py +0 -0
  96. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/nn/streaming/test_online_average.py +0 -0
  97. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/nn/streaming/test_snapshotter.py +0 -0
  98. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/nn/test_norm.py +0 -0
  99. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/test_augmentations.py +0 -0
  100. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/test_gw.py +0 -0
  101. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/test_spectral.py +0 -0
  102. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_iirfilter.py +0 -0
  103. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_pearson.py +0 -0
  104. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_qtransform.py +0 -0
  105. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_scaler.py +0 -0
  106. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_snr_rescaler.py +0 -0
  107. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_spectral_transform.py +0 -0
  108. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_spectrogram.py +0 -0
  109. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_spline_interpolation.py +0 -0
  110. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_waveforms.py +0 -0
  111. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/transforms/test_whitening.py +0 -0
  112. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/utils/test_slicing.py +0 -0
  113. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/waveforms/adhoc/test_sine_gaussian.py +0 -0
  114. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/waveforms/cbc/test_cbc_waveforms.py +0 -0
  115. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/waveforms/cbc/test_utils.py +0 -0
  116. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/waveforms/test_conversion.py +0 -0
  117. {ml4gw-0.7.4 → ml4gw-0.7.5}/tests/waveforms/test_generator.py +0 -0
@@ -7,7 +7,7 @@ jobs:
7
7
  docs:
8
8
  runs-on: ubuntu-latest
9
9
  steps:
10
- - uses: actions/checkout@v1
10
+ - uses: actions/checkout@v4
11
11
  - name: Setup python
12
12
  id: setup-python
13
13
  uses: actions/setup-python@v5
@@ -10,8 +10,8 @@ jobs:
10
10
  pre-commit:
11
11
  runs-on: ubuntu-latest
12
12
  steps:
13
- - uses: actions/checkout@v2
14
- - uses: actions/setup-python@v2
13
+ - uses: actions/checkout@v4
14
+ - uses: actions/setup-python@v5
15
15
  with:
16
16
  python-version: "3.9"
17
- - uses: pre-commit/action@v2.0.3
17
+ - uses: pre-commit/action@v3.0.1
@@ -19,7 +19,7 @@ jobs:
19
19
  # set up our environment
20
20
  -
21
21
  name: Install Python
22
- uses: actions/setup-python@v2
22
+ uses: actions/setup-python@v5
23
23
  with:
24
24
  python-version: ${{ matrix.python-version }}
25
25
  -
@@ -1,9 +1,15 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ml4gw
3
- Version: 0.7.4
3
+ Version: 0.7.5
4
4
  Summary: Tools for training torch models on gravitational wave data
5
5
  Author-email: Ethan Marx <emarx@mit.edu>, Will Benoit <benoi090@umn.edu>, Deep Chatterjee <deep1018@mit.edu>, Alec Gunny <alec.gunny@ligo.org>
6
6
  License-File: LICENSE
7
+ Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
8
+ Classifier: Programming Language :: Python :: 3.9
9
+ Classifier: Programming Language :: Python :: 3.10
10
+ Classifier: Programming Language :: Python :: 3.11
11
+ Classifier: Programming Language :: Python :: 3.12
12
+ Classifier: Programming Language :: Python :: 3.13
7
13
  Requires-Python: <3.13,>=3.9
8
14
  Requires-Dist: jaxtyping<0.3,>=0.2
9
15
  Requires-Dist: numpy<2.0.0
@@ -10,5 +10,3 @@ python -m ipykernel install --user --name ml4gw_tutorial
10
10
  ```
11
11
 
12
12
  If you use a different environment manager, all of the packages listed in the `pyproject.toml` file can be `pip install`ed into whatever environment you desire.
13
-
14
- The background data files used in this tutorial can be copied from `/home/william.benoit/ML4GW/ml4gw_tutorial/background_data` on the Hanford computing cluster.
@@ -31,7 +31,7 @@
31
31
  },
32
32
  {
33
33
  "cell_type": "code",
34
- "execution_count": 1,
34
+ "execution_count": 5,
35
35
  "metadata": {},
36
36
  "outputs": [],
37
37
  "source": [
@@ -71,7 +71,7 @@
71
71
  },
72
72
  {
73
73
  "cell_type": "code",
74
- "execution_count": 2,
74
+ "execution_count": 6,
75
75
  "metadata": {},
76
76
  "outputs": [],
77
77
  "source": [
@@ -113,7 +113,7 @@
113
113
  },
114
114
  {
115
115
  "cell_type": "code",
116
- "execution_count": 8,
116
+ "execution_count": 7,
117
117
  "metadata": {},
118
118
  "outputs": [],
119
119
  "source": [
@@ -162,7 +162,7 @@
162
162
  },
163
163
  {
164
164
  "cell_type": "code",
165
- "execution_count": 9,
165
+ "execution_count": 8,
166
166
  "metadata": {},
167
167
  "outputs": [
168
168
  {
@@ -193,12 +193,12 @@
193
193
  },
194
194
  {
195
195
  "cell_type": "code",
196
- "execution_count": 16,
196
+ "execution_count": 9,
197
197
  "metadata": {},
198
198
  "outputs": [
199
199
  {
200
200
  "data": {
201
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG+CAYAAABPk3reAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR/BJREFUeJzt3XtcW+ed7/uvABt8wSyE7zdAsp3EuQPOxbknyMl0d/cyAdLpNG1np7GaurP3tNNY8Z69z5yes+cQaM7M7JkhrUjbM2mSTmNIL9OZTluUxE6cxImFcq2TOEY2xnZ8QyzAF7ANOn9gKWDA5iJYS+Lzfr14JSwtaf0MifT18/zW8zii0WhUAAAASJg0qwsAAABINQQsAACABCNgAQAAJBgBCwAAIMEIWAAAAAlGwAIAAEgwAhYAAECCZVhdwFTU29urgwcPKjs7Ww6Hw+pyAADACESjUXV2dmrx4sVKS7vwGBUBywIHDx7UsmXLrC4DAACMQUtLi5YuXXrBcwhYFsjOzpbU9wuaM2eOxdUAAICR6Ojo0LJly+Kf4xdCwLJAbFpwzpw5BCwAAJLMSNp7aHIHAABIMAIWAABAgjFFeB7TNFVZWSlJCofD8ng8Wr9+/YDHN2/eLElqbGyU2+3Wxo0bLakVAADYEwHrPD6fT36/X1JfmCosLJTT6VRZWZkk6cEHH9SmTZtUVFQkScrNzZVhGANCGAAAmNqYIuzHNE0Fg0GZpilJMgxDFRUV8REtqW9UKxAIxL93uVxqbGyc7FIBAICNMYJ1nnA4rHA4HB+hMgxD4XA4/vj5YSoUCqmqqmpSawQAAPZmy4BlmqbKy8vl9XrjU3NDqa6uVmtrq/Ly8tTU1CSPx3PB8y/GMAy1tbUNOBYIBFRSUjJkjT6fT1VVVSotLR3zNQEAQOqxVcAqLy+X0+mU1BdsvF7vsOd6vV653e4Bo0cej0eRSCRh/VCx0ay6uroBx03TVCAQkGEYam1tTci1AABA6nBEo9Go1UWcLxwOy+12q66ubsgRqVAopOLiYp1f+nDHx8rj8aiqqio+XTjcOZLU0NAw4tft6OhQTk6O2tvbWWgUAIAkMZrPb1uNYI2U3+8fMvTEjtXX18eDWX19/UXDT3Fx8aBRr9j0X//rxKYu/X6/XC6XpL4m99ra2nH9eQAAQGpJyoAVCASGHVUyDEMNDQ3xgFVWVjbqvqza2lp5PJ5BgS0YDCoYDA44NxKJxMMWAACAlKTLNITD4Xiv1vmcTuegEDQagUBApmnK5XIpFAopFAppx44dkqTS0lJVVFQMCFSBQIC7CAEAwABJOYJ1IYZhxNexGi3TNOM9VT6fL368//Shz+eTz+eL37n4xBNPXHSErLu7W93d3fHvOzo6xlTfSBzp6NL8OVkT9voAAODiki5gjTU8jYRhGBdtkHe5XKMesaqsrNR3v/vd8ZQ2IruPHNe6v9uq21bN05duyNftl8xXetrFd/wGAACJlXRThIZhSOrrfRrKRAawsdq0aZPa29vjXy0tLRNyndfCreqNSi9+eFQPPBnUrdUv6vEtu3XsePfFnwwAABIm6UawYoYLUnZsOs/MzFRmZuaEX+f+G/J184q5+unrzdoc3K8D5ilV//ZD/X3DR/rUlQt1/435KlqeK4eDUS0AACZSUgas2CjWUEzTHHLl9amicO4s/dV/Wq2/XHeJfv32QT39+j693WLql28d1C/fOqhLF2br/hvz9blrlmhWZlL++gEAsL2kmyKUpIqKimGnCKVPFv+0m5qaGq1evVpr1qyZ8GtlTUtXecky/WrDTfrXb96kipKlysxI0weHOvVXv3hP1/8/z+uvf/WePjrcOeG1AAAw1STlSu6BQEAej0dtbW0DRrOGO243Vq3k3n7yjOpD+/X09mbtOXYifvz6QqfuvzFf61Yv1PSMpMzcAABMuNF8ftvy0zTWXzXcKFVpaanKyspUWVk54HhVVZX8fr+tw5WVcmZO0wM3F+r5b9+mpx+4XndfvkBpDun1PRF986dv6qaqF/S3v/9QH7efsrpUAACSmq1GsHw+n0KhkILBoEzTlGEYKikpkWEYgzZclqTq6mpJfT1ZjY2N8ng8o1613Qp22ovwoHlKP3tjn/5lR4uOdvbdbZjmkEovW6D7b8zXTe65SmOpBwAARvX5bauANVXYKWDFnOnp1e//cFhPbd+r7eFPRg4L587Sn16/XOXFy5Qzc5qFFQIAYC0Clk3V1NSopqZGPT092rVrl60CVn8fHe7U09ub9fPQAXV2n5UkZWak6TNXL9b9N+brqqWGtQUCAGABApbN2XEEaygnus/qV28d1E9e26sPDn1yt+HVS3P0pzfk6zNXL1bWtHQLKwQAYPIQsGwuWQJWTDQaVWhfm556rVm/efeQTvf0SpJyZkxTefFS/ekN+SqcO8viKgEAmFgELJtLtoDVX+vxbm0O7tczrzdrf9sndxvesnKuvnRDvu66dL4y0m15cyoAAONCwLK5ZA5YMT29UW3ddURPvdasLbuOKvZf0aKcLH3xuuW677plmp+dZW2RAAAkEAHLppKlyX20WiIn9czr+7Q52KLIidOSpIw0h+65YqHuvyFf1xU62f8QAJD0CFg2lwojWEPpOtOj/3jvYz29fZ8am9vixy9dmK0v31igz127WDOns/8hACA5EbBsLlUDVn9/ONiup7c36xdvHlDXmb6m+OysDFWULNP9N+SrgKZ4AECSIWDZ3FQIWDHtJ8+orrFFT21vVnPryfjx2y+Zp6/cWKDbVs1jpXgAQFIgYNncVApYMb29UW396Kh+8ureAU3xy50z9eUb81kpHgBgewQsm5uKAau/vcdO6OntzdocbFFHV99K8VnT0vT5a5fo/hsKtHrx1PuZAADsj4BlU6l6F+FYnTzdt1L8k68OXCl+TUGuvnxjge65YqGmsaYWAMAmCFg2N9VHsM4XjUa1Y2+bnnxtr3733iGd7e37T3J+dqa+eP1yffG65Zo/hzW1AADWImDZHAFreIc7uvTT1/fpp2/s09HObkl9a2r90ZWL9JUb81Wcn8uaWgAASxCwbI6AdXGnz/bqt384pJ+8ulfBfmtqrV40R1++MV+fvWaJZkxno2kAwOQhYNkcAWt03jvQrqdea9Yv3zqg7rOfbDRdUbJU999QoOV5My2uEAAwFRCwbI6ANTbmydPaHOxbU6sl0rfRtMMh3XHJfH35xnzdupI1tQAAE4eAZXMErPGJbTT95KvN2rrraPx4Qd5M3X9jgcpLlmpOFmtqAQASi4BlUyzTkHjho8f19PZ9qgu2qLO7b02tmdPTVVa8VF9ZWyD3vNkWVwgASBUELJtjBCvxTnSf1S/ePKAnX92rj44cjx+/bdU8/dlNBUwfAgDGjYBlcwSsiRONRvXK7lb986t79PwHR+Jb8rjmztJX1hbo3uKlmp2ZYW2RAICkRMCyOQLW5GhuPaEnX20eMH2YnZmh8pJl+srafOXnzbK4QgBAMiFg2RwBa3Id7z6r5xr368lX9yp87ISkvrsP77p0vr66tlA3rchj8VIAwEURsGyOgGWN3t6otn50VP/8yt4Bdx+unD9bX72pQJ+/dolmTmf6EAAwNAKWzRGwrNd09Lh+8upe1TXu18nTPZL6Fi/9wppluv/GfC3NZfFSAMBABCybI2DZR0fXGdUF+6YP90VOSpLSHNK61Qv11ZsKdH2hk+lDAIAkApZtsQ6WffX0RvXiB0f0/726R6/sbo0fv2zRHP3Z2gJ95prFyprG3ocAMJURsGyOESx723W4U//86l79PLRfXWf69j7MnTlNX7x+ub50Q74W5cywuEIAgBUIWDZHwEoO5snTenZHi37yWrMOmH17H2akOfSpKxfpgZsLdfUyw9oCAQCTioBlcwSs5HK2p1eB9w/rx6/s1Rt7IvHjawpy9cDNhfKsXqh0VokHgJRHwLI5Albyeu9Au368bY9+/c5Bnenp+19nmXOGvrq2UBUlS5XNJtMAkLIIWDZHwEp+hzu69JPX9uqZ1/fJPHlGUt8q8fetWaav3lTAMg8AkIIIWDZHwEodp0736Odv7tePtu1R+GjfKvFpDumPrlik/3JzoYrzcy2uEACQKAQsmyNgpZ7e3qi27jqqH23bo227j8WPX7PM0NduKdQ9ly9URnqahRUCAMaLgGVzBKzU9sGhDv142x798s2DOt3Tt8zDEmOGvrI2X/etWa6cGfRpAUAyImDZHAFrajja2a2ntzfr6e3Naj1xWpI0a3q6ykuW6c9uKlB+3iyLKwQAjAYBy+YIWFNL15ke/eqtA/rRtj3adfi4JMnhkNatXqAHbnZpTUEu2/EAQBIgYNkUW+VMbdFoVNt2H9OPtu3Rlg+Pxo9ftTRHD97i0h9dQZ8WANgZAcvmGMHC7iOd+tG2vu14us/29Wktc87QAzcVqrxkmWZlZlhcIQDgfAQsmyNgIab1eLee2t6sn7zWrMi5Pq2cGdN0/w35+vLafM3PzrK4QgBADAHL5ghYON+p0z16LrRfP3w5rL2tJyVJ09PT9MdFS/S1W1xaMX+2xRUCAAhYNkfAwnB6eqNq2HlYtS81KbTPjB8vvWy+HrzFpesKnTTEA4BFCFg2R8DCSDQ2R+TfGlbD+4cV+7/06mWG1t/i0j1XsME0AEw2ApbNEbAwGuGjx/XDbXtU37hfp881xC93ztQDNxeqvGSpZk6nIR4AJgMBy+YIWBiLY8e79ZPXmvXUa3vVdm6DaWPmuYb4Gws0LzvT4goBILURsGyOgIXxOHW6R/WNLXri5T3aFznXEJ+RpnuLlurBWwrlmkdDPABMBAKWzRGwkAg9vVH9/g+H5H8prLdaTEl9K8T/0RUL9dBtK3Tl0hxrCwSAFEPAsjkCFhIpGo0q2NymH2xp0vMfHIkfv3nFXH3jdrdudOdx5yEAJAABy+YIWJgoHx7q1A+2Nulf3z6ont6+/7WvXpqjh253a93qhUrjzkMAGDMCls0RsDDRWiIn9cOXw/rZjpb4VjyuebP09Vvd+ty1SzQ9gz0PAWC0CFg2R8DCZDl2vFtPvrpXT766Vx1dZyVJC+dk6Wu3FOpPrlvOnocAMAoELJsjYGGyHe8+q395fZ9+uC2swx3dkvr2PPzK2gJ9dW2BnLOmW1whANgfAcvmCFiwSvfZHv3yzQP6wdaw9hw7IUnKmpamL6xZrgdvdWmJMcPiCgHAvghYNlVTU6Oamhr19PRo165dBCxYJrbEw+NbmvTugXZJUkaaQ5+5ZrG+cbtbK+ZnW1whANgPAcvmGMGCXUSjUb2yu1Xf37pbr+xulfTJWlob7lihyxezlhYAxBCwbI6ABTt6u8XU41t263d/OBw/dtel87XhzhUqWp5rYWUAYA8ELJsjYMHOPjzUqce37Nav3z6oc0tp6eYVc/XNO1fo+kIni5YCmLIIWDZHwEIy2HPshL6/Zbd+Hjqgs+eSVkl+rr555wrdtmoeQQvAlEPAsjkCFpLJ/raT8m8N69lgi06fW7T0yiU5+uadK+S5bAGrwwOYMghYNkfAQjI63NGlJ14K65nX9+nUmR5J0iULsrXhzhX6T1cuUjpBC0CKI2DZHAELyaz1eLd+/MoePflqs453960OXzh3lr5xe982PNPS2YYHQGoiYNkcAQupoP3kGT352l79+JU9Mk+ekSQtMWboodvdKi9ZqsyMdIsrBIDEImDZHAELqeR491k9s71ZT7wc1rHjpyVJi3Ky9I07VqiCoAUghRCwbI6AhVTUdaZH//LGPn1/S5OOdPbtd0jQApBKCFg2R8BCKus606Nnd7To8S274xtLE7QApAICls0RsDAVDBu0bnerYs0yghaApEPAsjkCFqaSrjM92hxs0eMvNulQR5ckghaA5ETAsjkCFqYighaAZEfAsjkCFqayrjM9qgu2qKZf0Fo4J0vfuMOtipJlyppG0AJgTwSscTBNU5WVlZKkcDgsj8ej9evXD3uuz+eT3+8f1TUIWIDUfbZHm3e06PEtTfq4naAFwP4IWOPg9Xrjgck0TRUWFuqJJ55QWVnZkOeGw2E1NDSM6hoELOAT3Wd7tDm4X4+/uHtQ0LqPqUMANjKaz2/2tOjHNE0Fg0GZpilJMgxDFRUV8RGt/kKh0CRXB6SmzIx03X9DvrY8fLv+1+eu0KKcLB3q6NL/8as/6PbvbdFT25vVfbbH6jIBYFQIWOcJh8MKh8Px7w3DGPB9TDAYlMfjmczSgJSWmZGuL50LWv/3Zy/XwjlZ+ri9S//zl+/pju9t0TOvN+v02V6rywSAEcmwuoChmKap8vJyeb3eIafmYqqrq9Xa2qq8vDw1NTXJ4/Fc8PyLMQxDbW1tA44FAgGVlJQMOFZfX6+KigoFAoExXwvA0DIz0nX/jQUqL1kWX0frYHuX/uoX7+nxF5v0zTtXqKx4KZtKA7A1WwWs8vJyOZ1OSX3Bxuv1Dnuu1+uV2+1WVVVV/JjH41EkEhm2KX20YqNZdXV18WP9pw8BTJysaen6ytoC3bdmmX72xj49vqVJB8xT2vTzd1Xz4m79+Z0r9MdFBC0A9mTLJvdwOCy32626urohR6RCoZCKi4t1funDHR8rj8ejqqoqFRUVxY/V1tbGA1x9fb38fj9N7sAk6DrTo5++vk/f39qko+f2OlzmnKE/v2OlPl+0hKAFYMKN5vPbViNYI+X3+weEnpjYsfr6+ngwq6+vv2gAKi4uHjTq5fP5BoWrQCCg0tLS8ZYPYAyypqXrv9xcqD+5brmeeb1ZP9gaVkvklDY+945qtuzWN+9Yoc9fu0QZBC0ANpCUASsQCAwZsKS+qbuGhoZ4wCorKxt1X1Ztba08Hs+wgS2moaFB4XBY1dXVKisrk8vlGssfB8AozJierq/d4tKfXp+vp7c36wdbm9TcelIP179zbupwpT57zWKCFgBLJWXACofDw44kOZ1OBYPBMb92IBCQaZpyuVzxpRh27NihsrIylZaWDrpuQ0ODNm7cOObrARibGdPT9eCtLv3pDcv11GvN8r8U1t7Wk/rLurf1Ty/u1n+9a4U+c/USpac5rC4VwBSUcn/FMwwj3og+WqZpyuPxyOfzye12q7i4WMXFxUO+XnV1tZ599lkFg0H5fL4LXrO7u1sdHR0DvgAkxszpGfLe5tbLG+/QI390qXJnTtOeYyf0rWfflufvtupXbx1QT6/tWk0BpLikG8Eaa3gaCcMwRtwgv3HjxhGPXFVWVuq73/3ueEoDcBGzMjP09dvcuv+GfD352l7VvhRW+OgJ/befvaV/eP4j/de7VurTVy1mRAvApEi6EazY8giRSGTIxycygI3Vpk2b1N7eHv9qaWmxuiQgZc3KzNA3bl+hbb479fDdlyhnxjQ1nQta9/z9S/r12wfVy4gWgAmWdAErZrggFYlEbLdGVWZmpubMmTPgC8DEmp2ZoQ13rNA23x36S88qzcnK0EdHjuvP/+VN3fO/X9K/v/MxQQvAhEnKgHWhAGWa5qCV1wFMXdlZ0/Tnd63Utkfu1LdKVyk7K0O7Dh/Xhp+G9Kl/eFn/8S5BC0DiJWXAqqioGHaKUJJt9wisqanR6tWrtWbNGqtLAaacOVnT9N9KV2qb7079t7tWKjszQx8c6tRDz/QFrd++R9ACkDhJGbDKy8sVCoUGTRPG9ga062KgGzZs0M6dO7Vjxw6rSwGmrJwZ0/Qtzypt892p/3rnCs0+F7S+/nRIn/7HbfrdHw4lbDcIAFOXLQNWLDgNN0pVWlqqsrIyVVZWDjheVVUlv99vux4sAPaTM3Oavr3uEm3z3aFv3rFCs6ana+fHHfI+1ahP/+M2New8TNACMGa22ovQ5/MpFAopGAzKNE0ZhqGSkhIZhjFgw+WY6upqSX09WY2NjfJ4PKNetd0K7EUI2E/bidP64baw/vmVvTpxukeSdOWSHP1F6Urdeel8ORws7wBMdaP5/LZVwEp1NTU1qqmpUU9Pj3bt2kXAAmwocuK0nng5rCdf3auT54LW1Utz9Belq3T7JfMIWsAURsCyOUawAPtrPd6t2pfD+smrzTp15lzQWmboL0pX6vZVBC1gKiJg2RwBC0gex453q/alsH7y2l51nemVJF273NBflK7SrSvnErSAKYSAZXMELCD5HO3sln9rk55+vTketIqWG/qWZ5VuXkHQAqYCApbNEbCA5HWks0v+rWE9vb1Z3Wf7glZJfq6+5Vmlte48ghaQwghYNkWTO5A6jnR06ftbm/TM6/t0+lzQuq7Aqb/wrNRa91yLqwMwEQhYNscIFpA6Dnd06ftbmvTTNz4JWtcXOvUtzyrd4MqzuDoAiUTAsjkCFpB6DrV36fEtu/WzN1p0uqcvaN3oytNflK7U9QQtICUQsGyOgAWkroPmKT2+Zbee3dGiMz19b6/F+bl66Da37rx0vtLS6NECkhUBy+YIWEDqO2Ce0uMv7lZdcH98RGvVgtn6+m1u/eerF2taui13KgNwAQQsmyNgAVPHkY4u/eiVPXpm+z4d7z4rSVpizNDXbinUfWuWaeb0DIsrBDBSBCyb4i5CYOpqP3VGz7zerB9v26Njx09LknJnTtNX1xbqK2vzZcycbnGFAC6GgGVzjGABU1fXmR7VN+5X7Uth7YuclCTNnJ6uP7luuR64uVCLjRkWVwhgOAQsmyNgATjb06vfvHdI39/SpPc/7pAkZaQ59OmrFumBm126cmmOxRUCOB8By+YIWABiotGotu46qu9vadLreyLx49cVOvXAzYUqvWyB0rnzELAFApbNEbAADOXd/e360baw/u2dj3W2t++tOT9vpv5sbYHKS5ZpViYN8YCVCFg2R8ACcCGH2rv05Gt79dPX96n91BlJUnZWhr543XJ9ZW0BfVqARQhYNkfAAjASJ0+f1XON+/XjV/Zqz7ETkqT0NIfuuXyhvnRDvm5wOdlcGphEBCybYpkGAGPR2xvVCx8c0Y+27dFr4db48ZXzZ+v+G/P1+WuXKDtrmoUVAlMDAcvmGMECMFY7D3bo6deb9cs3D+jk6R5J0qzp6fp80RLdf0OBLlmYbXGFQOoiYNkcAQvAeHV0ndHPG/frqe3Najp6In78ugKnvnRjvu6+fIEyM9ItrBBIPQQsmyNgAUiUaDSq18Kteuq1Zv1+52H1nLv70Jg5TZ+7ZonuW7NMly3ifQZIBAKWzRGwAEyEQ+1d+ukb+7R5R4sOdXTFj1+1NEcVJcv0mWsWaw69WsCYEbBsjoAFYCL19Eb10kdHtXlHiwLvH9aZnr63+axpafrUFYtUXrJM1xc6lcYCpsCoELBsjoAFYLK0Hu/WL948oGd3tOijI8fjx5cYM/Sfr16sz127WJcu5H0IGAkCls0RsABMtmg0qrdaTG0Otujf3v5Ynd1n449dujBbn71miT5zzWItYRFTYFgELJsjYAGwUteZHr34wRH98q0DevGDozrd0xt/7LpCpz5z9WKtu3yB5mdnWVglYD8ELJtioVEAdtN+8oz+472P9cu3Duj1PRHFPhEcDmlNvlN3X7FQ91yxkJEtQAQs22MEC4AdHTRP6ddvH9Rv3jukt1vMAY9dvTRH91yxSPdcsVCFc2dZUyBgMQKWzRGwANjdQfOUfvveIf32vUPa0fzJyJYkuebO0h2Xztedl87XmgKnpmekWVcoMIkIWDZHwAKQTI50dqlh52H99r1Deq2pVWd7P/nYmDU9XTevnKs7L52v2y+ZrwVz6NtC6iJg2RwBC0Cy6ug6o20fHdOLHxzRix8e1bHj3QMev2RBttauyNNN7rm6zuVkYVOkFAKWzRGwAKSC3t6o/nCwQy98cEQvfnhEb+83B0wlpjmkq5YaWuvO000r5qo4P1dZ09gfEcmLgGVzBCwAqShy4rRea2rVq03H9GpTq/YcOzHg8WnpDl2+OEcl+bkqKchVcb5T87IzLaoWGD0Cls0RsABMBQfNU3q1qVWv7j6mV5qO6XBH96Bz8vNmqnh5rooLcnX1UkOrFmTTNA/bImDZHAELwFQTjUa1v+2Ugs0RBfe2qbG5TR8e7tT5n0DT09N02aJsXbEkR1ctzdEVS3K0akG2pqUTumA9ApbNEbAAoK9h/s19phr3RtS4r03v7m9XR9fZQedNz0jTZYvmaPWiObp0YbZWLcjWpQuzlTtrugVVYyojYNkcAQsABotGo9oXOal3D7Tr3f3tff880K7OIUKXJM3PztQlC7P7ha45WrlgNo30mDAELJtiqxwAGJ3e3k9C1weHOvThoU59eLhTLZFTQ57vcEhLjBlyz5vd9zV/ltzzZss1b5bmzc6Uw+GY5D8BUgkBy+YYwQKA8TnefVa7Dnf2Ba7Y1+FORU6cHvY52VkZg4KXe94sLXfOorEeI0LAsjkCFgAkXjQaVeTEaTUdPaGmo8fVdOS4mo4eV/jYCbVETqp3mE+7jDSHlufN/CR8zZulFfNnyzVvtnJmsFAqPkHAsjkCFgBMrq4zPWpuPTkoeDUdOa4Tp3uGfd687Mx44Ppk9Gu2Fs3JUloa041TDQHL5ghYAGAP0WhUhzq61HTk3KjX0ePafS6ADbVuV8zM6elyzeubZly1IFurF/fd5Tg/mz6vVEbAsjkCFgDYX2fXGYWPnogHrr6vE9p77MSADa/7y5s1vW9JiXOB67JFc+SeN0sZrOOVEghYNkfAAoDkdaanV/siJ9V05Lh2Hz2uDz7u1M6POxQ+enzIPq8Z09J11dIcXbs8V9cuN3TtckPzs7Mmv3CMGwHL5ghYAJB6us706MNDnXr/4w69/3GHdn7cofc/7tTx7sHreC3NnaFrl+fqRleeblqRp+XOmUwtJgFbBayf//zn+uM//uOJvETSIWABwNTQ2xtV+NhxhZpNvdnSpjf3mUNuEbTEmKG17jytXZGnm1bMZYTLpmwVsO6++2797ne/m8hLJB0CFgBMXZ1dZ/TO/na9sSei15pa9WZLm870DPwovmaZIc/qBSq9bIFWLZjN6JZNTGrAeuyxx9TQ0KBIJDLoMdM0FQ6H1dMz/C2wUxEBCwAQc/L0We3Y26ZXm47pld3H9N6BjgGPL82dobsvX6jPXrNYVy7JIWxZaNIC1te//nVt3rxZJSUlcrlcgx5vbW3VCy+8oNbW1rFeIiURsAAAwznc0aXn3z+i598/rG27j6n7bG/8Mde8Wfrs1Uv02WsWq2DuLAurnJpG8/mdMZ4LRSKRIUeu+lu3bt14LgEAwJSyYE6Wvnj9cn3x+uU6efqsXtp1TL9+56ACOw8rfPSE/i6wS38X2KUbXE59dW2BSi9bwDIQNjSugOXxeC56TlVV1XguAQDAlDVzeobuuWKh7rlioY53n9Xv3jukX751QK/sPqbt4Yi2hyNanJOlDXeuUEXJMk0jaNnGuH4Tpmle9Jy2trbxXAIAAEianZmhe4uX6qkHrtfLvjv1jdvdcs6aroPtXfqrX7ynu//uJW3dddTqMnHOuHqw2tvb9cQTT6isrEwFBQVDnsNdhIPRgwUASISuMz36lzf26R9f2K3IidOSpPtKlumvPn2Z5mSxUXWiTVqT+3333SfTNBUIBGQYhpxOpwzDiD/OXYQD1dTUqKamRj09Pdq1axcBCwCQEJ1dZ/S3Dbv0z6/uVTQqFc6dpSe+XKwV87OtLi2lTFrAcjqdcrlccrlccjqdgx7nLsKhMYIFAJgIb+yJ6FvPvqUD5inNmp6uf/rTIt1xyXyry0oZk3YXocvlUjAYvOA53EUIAMDkuK7QqX/95k3a8NOQtocjWv+ToP73F67Vp65cZHVpU864mtyfeOKJi57DXYQAAEyevNmZeuqB6/Wfr16sMz1RffOnIf37Ox9bXdaUM66Ade211170HFacBQBgck1LT9Pf33eNKkqWqjcqfevZt/Rq0zGry5pSJnzBDJ/PN9GXAAAA50lPc6jyj6/Sp65cqNM9vfL+pFEfHe60uqwpY8Q9WI899piCwaB+9rOfxY+tWbPmgs+J3UUIAAAmX3qaQ39bcY2Odb6hN/ZG9PWnG/Wrb96s2ZnjasHGCIz4LkK32629e/cOWHLB6XQOuw+hJEWjUdXX13MX4Xm4ixAAMJmOHe/Wp/9hmw51dOnTVy3SP/7JtbTwjMGE3EUYCoUG7Tvocrn0+9///oLPYyV3AACsNXd2pv7pi9fqC7Xb9W/vfKzbVs1Teckyq8tKaSPuwcrJyVFhYeGAY3V1dRd9HncRAgBgvZICp77lWSVJ+r/+bac+bj9lcUWpbVxN7ucHrv6+973vadOmTcrLyxvPJQAAQIJ4b3Xp6mWGOrvO6pHn3tU41hrHRUzYXYQPP/ywKisrVVlZOVGXAAAAo5CRnqb/t/wqTc9I09ZdR/Wbdw9ZXVLKSshtBC+88IJCodCgZnbTNBUMBglZAADYxIr52frG7W79feAj/c2/79Qdl87TzOncVZho4/6JlpSUKBQKxb+PbfZsmqY8Ho82b9483ksAAIAE+vptbtU37tf+tlP6/pYm/eW6S6wuKeWMa4rwkUceUWlpqdra2tTb26u6ujpFIhFFIhH19vZq/fr13AYKAIDNZE1L1//4T6slSf6Xwjpg0vCeaOPuwXr00UeVk5MjqW/Zhrfeeiv+2L333qv6+vrxXgIAACTY3Zcv0A0up06f7dU/BD6yupyUM66ANXfu3AHfu1wuPfvss+MqyGqmacrn88nn86m8vFy1tbUDHg8EAvJ6vaqtrVV9fb18Pp9M07SmWAAAxsjhcOjhuy+VJNWH9it89LjFFaWWcfVgHTvWt3HkCy+8IJfLpYKCAjU2Nqq5uVn5+fmSpIaGBn3nO98Zf6WTxOfzye/3S+oLW4WFhXI6nSorK5MkhcNhbd68WbW1tSoqKlJVVVW87wwAgGRSnJ+r0svmK/D+Ef1d4CP9459ca3VJKWNcI1herzfeh+X1eiVJ69evV1FRkR566CHdfffdSRU+Ync9xkakDMNQRUXFoLsg29raFI1G1djYqNLSUgsqBQAgMb7t6Wtw//XbB/XhITaDTpRxjWAVFhbq0Ucflcfjie9HWFZWpkgkokceeUR5eXlqbGxMSKGTJRwOKxwOq6ioSFJfyGLDagBAqlq9eI4+deVC/ebdQ/JvbdLf3neN1SWlhBFv9jyZTNNUeXm5vF5vfGpuKNXV1WptbVVeXp6amprk8XgueP5YFBcXy+l0qqGhQZJUW1srp9MpSfG9GdevXz+q12SzZwCAnbyz39Rn/ukVZaQ5tOXh27U0d6bVJdnShGz2PJTnnntOmzdvTlhje3l5eTy8xJrJh+P1euV2uwfsdejxeBSJREYdeIYTG83qv+eiy+VSSUlJfOqzuLhYLpeLqUIAQNK6aqmhm1bk6ZXdrfrhy3v0f37mcqtLSnrjGsFat26dwuGwQqFQQkdiwuGw3G636urqhhyRCoVCKi4uHrSH0nDHx8rj8aiqqio+XTgUr9ercDgcH+EaCUawAAB2s+2jY/rSj17XjGnpeuWRO+WcNd3qkmxn0kawPB6PHn744Que89hjjyX8LkK/3z9k6Ikdq6+vjwez+vr6i4af4uLiQaNePp9vyHBVW1s74Fy3281q9QCApHfTijxduSRH7x5o1zPbm/Xnd620uqSkNq6AVVpaqscee0zr168fNslNxDINgUBg2FElwzDU0NAQD1hlZWWj7suqra2Vx+MZFNjC4bC8Xq9KS0vjTf2tra3xfwcAIFk5HA79l5sL9K1n39Yzr+/TQ7e7lZE+7vXIp6xxBazNmzfH14pyuVxyOp0DlmUwTVOBQGC8NQ4SDoeH7XlyOp0KBoNjfu1AICDTNOVyueJ7LO7YsUNlZWVyuVzauHHjgEAVCAS0adOmC75md3e3uru74993dHSMuT4AACbKp65cpP/1b+/rUEeXGnYe1h9ducjqkpLWuAKW3++X0+lUcXGxJCkajaqtrS0hhY2VYRhjXlk9tkG11DdFGNN/StDr9aq6ulqGYaixsVGbNm266AhZZWWlvvvd746pJgAAJktmRrr+5Lrl+qcXd+vJ1/YSsMZhXAHL6XRq9+7dFzxn3bp147nEIBO5LY1hGBdtkI+NYo3Gpk2b9O1vfzv+fUdHh5YtWzamGgEAmEhfvH65vr+1SdvDEX14qFOXLMy2uqSkNK7J1diWMhfSfyQoEWJTkLE1qM5nx30BMzMzNWfOnAFfAADY0WJjhtatXiBJevK1vdYWk8TGFbDuuuuuIY/v3bs33mc03DnjNVyQikQiSbU9DwAAdnP/jX37Cf/rWwd18vRZi6tJTuMKWEM1d7e3t6upqUkNDQ167LHH9MILL4znEkO6UIAyTVMlJSUJv2Yi1NTUaPXq1VqzZo3VpQAAMKwbXXnKz5up491n9Zt3D1ldTlIaV8BqamoadCwnJ0d33XWX7r33Xn3nO9+J34mXSBUVFcNOEUqKN6rbzYYNG7Rz507t2LHD6lIAABiWw+FQefFSSdLmYIvF1SSncQUsh8Nx0XNGs8L5SJWXlysUCg2aJowtCcG2NQAAjM+9xUuV5pDe2BPRnmMnrC4n6YzqLsJHHnlE4XBY7e3tkqRgMKi77757yHMjkYjC4fCY9gWMBafhRqlKS0tVVlamysrKAXsRVlVVye/304MFAMA4LcqZoVtXzdOWD49qc7BFvnsutbqkpDKmvQjr6+u1fv16ORyO+BpY5zMMQx6PRw8++OCIX9fn8ykUCikYDMo0TRmGEd9Yuf+GyzHV1dXxazU2Nsrj8Yx61XYrsBchACAZ/Me7H+uhZ0Kan52pVx+5c8qv7D6az+8xb/YcDof1yCOPsA/fKNTU1KimpkY9PT3atWsXAQsAYGunz/bqhsrnFTlxWj/+aonuvHSB1SVZajQBa8xR1OVy6b777hvr06ckmtwBAMlkekaaPnvNYknSL988aHE1yWVcY3333ntvouoAAAA29LlrlkiSGnYe1olu1sQaqRE3ue/du3fQsYKCgvi/d3R0qLKyUqFQSIZh6Atf+II+//nPJ6JGAABgkauW5qggb6b2tp7U73ce0uevXWp1SUlhxCNYdXV1crvdcrvd8vl88SURJOnNN99Ubm6uqqqqFI1GVVhYqL/5m78Z9g5DAACQHBwOhz57bhSLacKRG1WTe0VFhaqqqlRYWDjguNPpVHt7u4LBoK699tr48e9973tyOBz6zne+k7iKkxhN7gCAZLTn2And8dgWpac59Pp/v0tzZ2daXZIlJqTJ/bHHHlN1dfWgcPXcc8/JNE2tX79+QLiSpIcffpiG7n5ocgcAJKPCubN09dIc9fRG9e/vfGx1OUlhxAGrqalpQM9VTENDQ9+S+uXliawLAADYSHya8K0DFleSHMa9YlisF+vOO+8cdzEAAMCePn31IqU5pDf3mWpuZeucixlXwGpvb1c4HFZRUdGwj+fm5o7nEgAAwAbmZ2dprXuuJOk37x6yuBr7G3HAysnJ0S9+8YsBx3w+nxwOh7xe75DPefTRR+Xz+cZXIQAAsIVPXblIkvSbd+nDupgRr4P16KOPqqSkRD/72c/kcrkUCATi+/997WtfG3T+D3/4Q4XD4UFN8VNZ/7sIAQBINndfvkD/81fv6d0D7drXelLL82ZaXZJtjWqKMBgMqqSkRI2NjcrNzZXf79fvfve7Aec88sgjWrdunX7wgx+oqalJDz30UEILTmbcRQgASGZ5szN1g8spSfrNe4xiXciYN3vG2I1mHQ0AAOzk6e3N+h+/fE9XL83Rr755s9XlTKpJ2ewZAABMPfdcsVBpDunt/e1qiZy0uhzbImABAIARmzs7U9cX5kmS/oNpwmERsAAAwKh86qq+uwn/neUahkXAAgAAo3L35QvkcEhvt5ja38Y04VAIWJOopqZGq1ev1po1a6wuBQCAMZufnaXrCvruJvzte4xiDYWANYlYpgEAkCpii47+7g8ErKEQsAAAwKh5Vi+QJAWb23TseLfF1dgPAQsAAIzaYmOGrlySo2hUev79w1aXYzsELAAAMCbrzo1i/f4PBKzzEbAAAMCYrLt8oSTp5d3HdKL7rMXV2AsBCwAAjMmqBbOVnzdTp8/26qVdR60ux1YIWAAAYEwcDscn04Q7mSbsj4AFAADGLDZN+Pz7h3Wmp9fiauyDgDWJWGgUAJBqipbnKm/WdHV0ndUbeyJWl2MbBKxJxEKjAIBUk57mUOllfdOEDUwTxhGwAADAuKy7PLZcwyFFo1GLq7EHAhYAABiXm1bM1czp6TrY3qU/HOywuhxbIGABAIBxyZqWrttWzZPE3oQxBCwAADBusb0JA+8fsbgSeyBgAQCAcbv9kvlyOKT3P+7QQfOU1eVYjoAFAADGzTlruoqW50qSXviAUSwCFgAASIi7LpsviYAlEbAAAECC3HVpXx/WK7uP6dTpHoursRYBCwAAJMSqBbO1xJih7rO9emX3MavLsRQBaxKxVQ4AIJU5HI74NOHzU3yakIA1idgqBwCQ6u46t23OCx8cntKruhOwAABAwlxf6NTM6ek63NE9pVd1J2ABAICEyZqWrptXzJUkPT+FFx0lYAEAgIT6ZLmGwxZXYh0CFgAASKg7Lu0LWG/vb9eRzi6Lq7EGAQsAACTU/OwsXb00R5L04hS9m5CABQAAEu7Oc4uOTtU+LAIWAABIuFgf1rbdx9R1Zuqt6k7AAgAACXf54jlaMCdTJ0/36PU9EavLmXQELAAAkHAOh6PfNOHUu5uQgAUAACbEXefuJnz+/SNTblV3AhYAAJgQa1fkaXpGmg6Yp9R09LjV5UwqAhYAAJgQM6dn6PpCpyTpxQ+OWlzN5CJgAQCACXPHJX3ThC9+OLWWayBgTaKamhqtXr1aa9assboUAAAmRWxV9x17IzrefdbiaiYPAWsSbdiwQTt37tSOHTusLgUAgElROHeWCvJm6kxPVK/sPmZ1OZOGgAUAACbU7eemCbdMoWlCAhYAAJhQsWnCFz84OmWWayBgAQCACXV9oVNZ09J0qKNLHxzqtLqcSUHAAgAAEyprWrrWuudKmjp3ExKwAADAhLvjknmSpC1TZD0sAhYAAJhwsUb3xn1taj91xuJqJh4BCwAATLhlzplaMX+2enqj2vZR6i/XQMACAACTIjZNOBX6sAhYAABgUtwRXw/rqHp7U3u5BgIWAACYFCUFTs2anq5jx7v1h4MdVpczoQhYAABgUkzPSNNNK6bGcg0ELAAAMGliq7qn+rY5BCwAADBpbj/X6P5mi6nIidMWVzNxCFgAAGDSLMqZoUsXZisalV7+KHUXHc2wugC7MU1TlZWVkqRwOCyPx6P169cPeY7b7ZZpmiotLVVRUZEV5QIAkHTuuHS+PjjUqRc/OKLPXrPE6nImBAHrPD6fT36/X1JfkCosLJTT6VRZWZmkvtBVXl6uxsZGSZLX61VTU1P8OQAA4MLuuGS+vr+lSVt3HVVPb1TpaQ6rS0o4pgj7MU1TwWBQpmlKkgzDUEVFRXxES+oLYF6vd8D3Pp9vsksFACBpFS03lJ2VobaTZ/T2ftPqciYEAes84XBY4XA4/r1hGAO+r6+vV0lJiUKhkEKhkFwul1wulxWlAgCQlDLS03Trytjmz6l5N6EtA5ZpmvJ4PKqvr7/gedXV1fL5fKqurpbX673o+RdjGIba2toG9FMFAgGVlJRIkkKhkCQpGAzKMAwZhqHy8vL4iBcAABiZ2N2EW3alZqO7rXqwysvL5XQ6JfUFm/5Tcefzer1yu92qqqqKH/N4PIpEIoOa0scqNppVV1cX/16SnE5nfNTK5XIN6NsCAAAXd9u5gPXO/nYd7ezWvOxMiytKLFuNYNXV1cnv91+0pykUCqm2tlYbN24ccLyqquqCoWy0vF6vnn/++QFhStKAEa41a9Zo8+bNCbsmAABTwfzsLF25JEeStDUFR7FsNYI1Un6/f8hlEWLH6uvr43f91dfXq6Gh4YKvV1xcPGjUy+fzqaqqasB1DMOQpPgoWwxThAAAjN7tl8zTuwfatXXXUZUVL7W6nIRKyoAVCASGXXfKMAw1NDTEA1ZZWVn830eqtrZWHo9nUGBzuVzxpvfYY5FIhCZ3AADG4LZV8/SPL+zWyx+l3nINtpoiHKlwODxoFCnG6XQqGAyO+bUDgYBM05TL5YrfKbhjx47445s2bVIgEIh/39DQwDINAACMwTXLDM3JypCZgss1JOUI1oUYhjHmKbvY3YuSBoSm/tOHGzduVHV1taqrqyVpyJXez9fd3a3u7u749x0dHWOqDwCAVJKRnqZbVs7Tv7/7sbZ8eFRFy3OtLilhki5gTWS/k2EYikajFz3v/Ob6i6msrNR3v/vdsZYFAEDKum1VX8Dauuuovu1ZZXU5CZN0U4SxRvNIJDLk43ZsON+0aZPa29vjXy0tLVaXBACALXyyXIOp1uPdFzk7eSRdwIoZLkhFIpF4CLOLzMxMzZkzZ8AXAACQFszJ0qULsxWNStt2H7O6nIRJyoB1oQBlmmZ85XUAAGB/t18yX5K05cPUWQ8rKQNWRUXFsFOEkuKN6nZTU1Oj1atXa82aNVaXAgCAbdy2qm+a8KVdR9Xbe/Fe6GSQlAGrvLxcoVBo0DRhbPmE0tJSC6q6uA0bNmjnzp0Dln0AAGCqK87P1ezMDLWeOK33DrZbXU5C2DJgxYLTcKNUpaWlKisrU2Vl5YDjVVVV8vv9tuvBAgAAw5uekaa17jxJ0tYUmSZ0REeyLsEk8fl8CoVCCgaDMk1ThmGopKREhmHEN1zuL7YWlWEYamxslMfjGfWq7Vbo6OhQTk6O2tvbaXgHAEDST1/fp//+i3dVnJ+r5x5aa3U5QxrN57etAtZUQcACAGCgA+Yp3fToC0pzSG/+z3XKmTnN6pIGGc3nty2nCFMVTe4AAAxtiTFDK+fPVm9Uenl38k8TErAmEU3uAAAML3Y3YSr0YRGwAACALcTWw9q66+iItq6zMwIWAACwhTWFuZoxLV1HOrv1/sedVpczLgQsAABgC5kZ6fHlGrbsOmJxNeNDwJpENLkDAHBhsc2fk70Pi4A1iWhyBwDgwmKN7o3NbersOmNxNWNHwAIAALaRnzdLhXNn6WxvVK/sbrW6nDEjYAEAAFuJL9eQxH1YBCwAAGAr/fuwknW5BgIWAACwlRsK8zQ9I00H27u0+8hxq8sZEwLWJOIuQgAALm7G9HTd4Dq3XEOS3k1IwJpE3EUIAMDIfNKHRcACAABIiNvP9WG9sSeiE91nLa5m9AhYAADAdlxzZ2lp7gyd7unV9nDyLddAwAIAALbjcDjio1jJ2IdFwAIAALZ026r5kvr2JUy25RoIWAAAwJbWuvM0Ld2hlsgp7Tl2wupyRoWANYlYpgEAgJGblZmhNQVOScl3NyEBaxKxTAMAAKOTrH1YBCwAAGBbsT6s7eFWdZ3psbiakSNgAQAA21q1YLYWzslS99nkWq6BgAUAAGyr/3INydSHRcACAAC2Ft82J4n6sAhYAADA1m5aOVfpaQ6Fj53QvtaTVpczIgQsAABga3Oypql4ea4kaeuuIxZXMzIErEnEOlgAAIzNbUnWh0XAmkSsgwUAwNjE+rBebWpV91n7L9dAwAIAALZ3+eI5mpedqZOnexTc22Z1ORdFwAIAALbncDh068rYqu7278MiYAEAgKSQTOthEbAAAEBSuGXlXKU5pF2Hj+ugecrqci6IgAUAAJKCMXO6rllmSLL/KBYBCwAAJI3Y5s9278MiYAEAgKQR68N6ZXerzvT0WlzN8AhYAAAgaVy5JEfOWdN1vPusGpvtu1wDAQsAACSNtDSHbl05V5K9+7AIWJOIrXIAABi/2LY5Wz4kYEFslQMAQCLccm7B0fc/7tCRji6LqxkaAQsAACSVubMzdeWSHEnSSx8ds7iaoRGwAABA0olt/mzXPiwCFgAASDqxPqyXPzqqnt6oxdUMRsACAABJ59plhrKzMmSePKN39ptWlzMIAQsAACSdjPQ03bzCvss1ELAAAEBSsnMfFgELAAAkpVvPBay3W0y1nThtcTUDEbAAAEBSWmzM0KoFs9UblbbtttdyDQQsAACQtGLThC/ZbJqQgAUAAJLWbavmS+rrw4pG7bNcAwELAAAkrZKCXM2Ylq4jnd364FCn1eXEEbAAAEDSypqWrhvdeZLsdTchAQsAACS1W1eeWw/rQwIWAABAQtx2SV8fVrA5ouPdZy2upg8BaxLV1NRo9erVWrNmjdWlAACQMgryZmq5c6bO9ET1WlOr1eVIImBNqg0bNmjnzp3asWOH1aUAAJAyHA5Hv1Xdj1hcTR8CFgAASHqxgLXlQ3ss10DAAgAASe9Gd56mpTu0v+2U9hw7YXU5BCwAAJD8ZmVmaE2BU5I9lmsgYAEAgJTwSR8WAQsAACAhbrukL2BtD7eq60yPpbUQsAAAQEq4ZEG2FszJVNeZXu3YG7G0FgIWAABICQOWa7B4VXcCFgAASBm3repb1b1xX5uldWRYenUAAIAEunXVXD330FpdvTTH0joIWAAAIGVkZ01TcX6u1WUwRQgAAJBoBCwAAIAEI2ABAAAkGAELAAAgwQhYAAAACUbAAgAASDACFgAAQIIRsAAAABKMgAUAAJBgBCwAAIAEI2ABAAAkGAELAAAgwQhYAAAACZZhdQFTUTQalSR1dHRYXAkAABip2Od27HP8QghYFujs7JQkLVu2zOJKAADAaHV2dionJ+eC5ziiI4lhSKje3l4dPHhQ2dnZcjgcCX/9NWvWaMeOHQl/3Ylmh7onq4aJuE4iXnO8rzGW54/mOR0dHVq2bJlaWlo0Z86csZQ45dnh/7OxsEPdyfr+kKjXG8/rjPW5dnt/iEaj6uzs1OLFi5WWduEuK0awLJCWlqalS5dO2Ounp6cn5YePHeqerBom4jqJeM3xvsZYnj+W58yZM8fy/1aSlR3+PxsLO9SdrO8PiXq98bzOWJ9rx/eHi41cxdDknoI2bNhgdQljYoe6J6uGibhOIl5zvK8xlufb4fc+lSTrz9sOdSfr+0OiXm88rzPW59rh9z5WTBECSBodHR3KyclRe3u75aMZAOzFbu8PjGABSBqZmZn667/+a2VmZlpdCgCbsdv7AyNYAAAACUaTO4CUYJqmKisrJUnhcFgej0fr16+3uCoAdmCapjZv3ixJamxslNvt1saNGyf0mgQsACnB5/PJ7/dL6nszLSwslNPpVFlZmcWVAbDagw8+qE2bNqmoqEiSlJubK8MwJvQvYfRgAUh6pmkqGAzKNE1JkmEYqqioiI9oAZjawuGwAoFA/HuXy6XGxsYJvSYjWABSQjgcVjgcjv8N1TAMhcNhi6sCYAfnh6lQKKSqqqoJvSZN7gAsY5qmysvL5fV6LziVV11drdbWVuXl5ampqUkej+eiU3/FxcVyOp1qaGhIdNkAJsFEvD+Ypimfz0cPFoDUVF5eLqfTKUkKBALyer3Dnuv1euV2uwf8bdPj8SgSiQzbPxEbzaqrq0ts4QAm3ES9P5imqUAgIMMw1NraOjHF98MIFgDLhMNhud1u1dXVDfk3zlAopOLi4kE71w93PMbj8aiqqio+XQgg+UzU+4PU9x4haUJHuGlyB2Bbfr9/yJAUO1ZfXz/oMZ/PR7gCpoCRvj+YpimPxzOgJ9Plcg1oep8IBCwAthUIBORyuYZ8zDCMQX/7rK2tlcfjuWAAA5AaRvr+EAwGFQwGBzweiUSGfW6iELAA2FY4HI73YpzP6XQOeNMMBAIyTVMul0uhUEihUEg7duyYrFIBTLKRvj+UlpaqoqJiQKAKBAITfhchTe4AkpJhGPF1r2JTAFLfFGEMK7kDU1P/9wep733B5/PF7zR84oknJnwRYgIWAFvq/+Z4MYZhXLChFUBqGc37g9TXczXRI1bnY4oQgC0ZhiGpr1diKKN9gwWQOpLh/YGABcDWhnujjEQi8TdZAFOTnd8fCFgAbOtCb5CmaaqkpGTyigFgK3Z/fyBgAbCtioqKYacApE8WCwQw9dj9/YGABcC2ysvLFQqFBk0DxBYILC0ttaAqAHZg9/cHAhYAy8TeGIf7W2hpaanKyspUWVk54HhVVZX8fr/lPRYAJk6yvz+wFyGASefz+RQKhRQMBmWapgzDUElJiQzDGHKD5urqakl9PReNjY3yeDwTvoYNAGukyvsDAQsAACDBmCIEAABIMAIWAABAghGwAAAAEoyABQAAkGAELAAAgAQjYAEAACQYAQsAACDBCFgAAAAJRsACgCkgHA5PiWsCdkHAAoAUFwqF5Pf7J/26pmnK5/NN+nUBOyBgARgV0zRVXl4ut9sth8Mhh8Mhj8ej8vLy+FdxcbFyc3PlcDjk9XqtLnlKi4Wcqqqq+Pfn//6Ki4sH/J6qq6vl8Xjij7vdbpWXl496RKqoqEh5eXmqra1N6J8JSAbsRQhgTEzTVG5urlwul5qamoY8x+v1KhgMqrGxcZKrQ4zH45Hf75fL5RpwfCS/v/LyctXX16uxsVFFRUVjrqG4uFh1dXWDagBSGSNYAMbEMIwB/xyKFdNS+EQgEJCkIYPNSH5/TqfzoueMxKZNm5gqxJRDwAIwoUpLS60uYcry+/22CDZlZWUKBAIyTdPqUoBJQ8ACkHD9e3XcbjcfrBYJBAK2CbilpaX0YmFKIWABSLj+U4Mulyve9O7z+RQKheJN1PX19fHzTNOU1+tVdXW1qqur5fV6FQqFhnz96upqlZeXy+fzxV9TUrxROxQKxa9ZXFwcf95wx0daQ//nl5eXyzRNVVdXq7a2VuXl5Rds6K+trZXX643XHJu+iz1WXFwsh8MR/znF1NfXD7iZYKTq6+snrOcpNzdXbrdbPp9vwM/K4XAMG6I8Ho8aGhompB7AlqIAMEaSokVFRQOONTQ0RDdu3DjoXJfLFV2/fn20qqoq/n1ZWVk0Go1Gm5qaooZhRBsbG+PnD3UsGo1Gi4qKoqWlpQOOVVVVRauqquKv1//c8+uLRqPR0tLSQcfHUkPszxJjGMagY9FoNFpWVhZdv379gGN+vz/a0NAw4Fj/n0l/GzdujPr9/kHHL2Tjxo1D/h76G+r319/69eujkqJNTU2D6jzfcD/rmMbGxigfOZhKMqyNdwCSXTgcltfrVSQSkWmaCgQC2rhx46DzXC6XNm/erD179kiSGhsb483TXq9XpaWlA+5Uc7lcKi0tlc/ni498xEar2traBrz2xo0blZubO2g6zOVyDbm0gGEYikQiA46NtIbY8fr6+kFN/CUlJWpoaBjw56+trVV9ff2gmquqqlRUVDSg5tgI11DWr18/5PHhhMNhrVmzZkTnlZeXD/nYcCOIZWVlA76P/V6GuxtRGrrRHkhlTBECGBeXyyW/36+6ujrV1dVdMAi4XK5Bd6/FQtlQYcDj8SgYDMa/r62tVVlZ2ZB3tZWUlAw6FrsL7mLHR1ND7PmGYQwKDS6Xa1Bw8/l8Q9ZcVFSk++67b8Cx2M+u/zSbaZrKy8sb8s9xIaZpjujuP5fLFf/dnf81XP9W/6nK2JRvVVXVBUNUrBZWd8dUwQgWgIQxDENVVVWqrKwc8vGhAk8svDQ1NQ3ZvxNbIDMcDss0zQkZCRlpDf0NF976M01z2Jrr6uoGHTMMQ6WlpfL7/fGwtXnz5lGPXkl9P6+R1DgW/YNXeXm5SktLhxy1HAo3PGCqIGABSCjDMIZtxh5qRCUWAoqLi8cUJBJhLDWMZHQoNpo1mhEor9cbXzU9tgjoWNahGmoaNNG8Xq/C4fCAhWQvNnLGVCGmCqYIASTcaJYGiPU8XWy199gHcyKmmM4PHiOtYbRiNV+oN+l8sf4mv98/4j6q4a49kaNFgUBAtbW18vv9AwLVcKOXsVrGu2gpkCwIWAAst3HjxgHLFvTXf+mDjRs3Dljaob/z+6RihgoZoVBo0PGR1jBasUU2hzLckgbr16+PN8ef31A+Uk6nU62trWN67sXE9jMsLS0dMOJ3oUAXDocJV5hSCFgAJs1wH8BVVVUyDEPV1dUDjtfX1w+4wy125935gae2tnbIfqOhNiiOrQ91/ijWSGuQFL9j8nxDHX/iiSckadDdgaFQaNgeKa/XK9M0xxWQiouLhw12/V0oFMV+Ruef8+CDD0oa3EdWWVkpt9s95GsFg8Ehb0QAUhWbPQMYFdM09eCDDyocDsdv4y8qKpLL5YovddBfIBBQVVVV/MO+tLRUHo9nyKboWAiJ9Sydv2xC//NM01RxcbFM01RZWZm8Xq8Mwxj0oV9dXa0dO3bEp9qKiopUV1enzZs3y+l0qqqqasAo0YVqCIVC8vl8CgaDMk0zvoSD0+kcdNzr9Q56XdM05Xa743cgXmgq1e12q66ubsybLIfDYbndbp3/Fj/U7y/2Z4w181dXV6uhoWHAXoaxx8PhsDweT/z3KEmtra0KhUIKBAKqq6sbctTN6/Va2mcHTDYCFoCU4PF4hgxYycrn8w159+JoFBcXq6qqyhbb5bjd7lH1ogHJjilCALCZ2EjXeG3atGnQYqhWqK+vH/NIHJCsCFgAYLHY1GPM5s2bVVFRMe7XLSsrk2mali/u6ff7xz0aByQbAhaAlDBc43kyePbZZ+N3R5qmGV8pPhH8fv+47oIcr9raWnk8Hta/wpRDDxaApDZUE33sbsNkYZqmKisr4431I10VfaQCgYBCoVDCX/diQqGQnn32WUavMCURsABgCoitDJ/q1wTsgoAFAACQYPRgAQAAJBgBCwAAIMEIWAAAAAlGwAIAAEgwAhYAAECCEbAAAAASjIAFAACQYAQsAACABPv/ATRywtxS8PZDAAAAAElFTkSuQmCC",
201
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHECAYAAAADA589AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATSZJREFUeJzt3Xt8m/V9//23fFJsJ85lOQk5kkQGwqHlYCcwRmEtsWBtxw5Fctr9uu3eIVbZ7h1KS4S7+/fbj3sHI8Nu9mNbNzm029ptLbG7dVu7llqhtIVCiC0CYxxKrIQcCCSxfMVJnMgn3X/YElYk2/JJlyS/no9HHtjXdem6Pk7gypvv9b0+X1ssFosJAAAAC6rI6gIAAAAWA0IXAABAFhC6AAAAsoDQBQAAkAWELgAAgCwgdAEAAGQBoQsAACALCF0AAABZUGJ1AXjf6Oiozp07p7KyMtlsNqvLAQAAGYjFYhocHNTSpUtVVDT5eBahK4ecO3dOjz32mNVlAHln/fr1OnbsmNVlAMhB2bw/fPazn1VVVdWk+wldOaSsrEzS2B+a3W63uBogf3R3d+vTn/601WUAyEHZuD9Eo1E99thjib/HJ0PoyiHxR4p2u53QBcxAcXEx/80ASCub94fppgYxkR4AACALCF0AAABZQOgCAADIAkIXAABAFhC6AAAAsoDQBQAAkAWELgAAgCwgdAEAAGQBoQsAACALCF0AAABZQOgCAADIAkIXAABAFrDg9SLwG3+/X+VlxdpUU6GNjkpdXlOhTTWVWrXMrqKiqRfnBAAA84PQVeAuDo3o+2+eVCyWus9eUqTLHRXaWFOpjTUV478qtdFRoXXV5SotZiAUAID5QugqcDabFPh0vY5EBvR274AO957XkciAjvVdUHR4VG+dPKe3Tp5L+VxxkU3rjHJtrKnQ5Y6xkbH4CNnljgqVlxVb8NMAAJC/CF0Fzl5SrLuuW52yfWhkVO+YF/R274Dejgzo7dPnx/45HsouDo3qSGRARyIDac+7apk9EcQ2Oiq0ccXYCNnGmgoZFWUL/WMBAJB3CF0ZMk1TLS0tkqRwOCyXy6Wmpqak/Xv27JEkdXd3q7a2Vrt27bKk1kyUFheNP1asTNkXi8V08mxUh8eD2JEJI2SHT59X/8VhnTwb1cmzUb14OJLy+eXlpSkjZBsdFdq0Ymwemc3GPDIAwOJD6MqQz+dTIBCQNBawNm/eLIfDIbfbLUnauXOnmpubVVdXJ0mqrq6WYRhJwSxf2Gw2XVa1RJdVLdEtzpqU/ebAYMoIWTyYnTwb1ZkLQ3rl2Bm9cuxMymeXlE6YR+aYMI+spkLrjHKVMI8MAFCgCF0ZME1TXV1dMk1ThmHIMAw1NjaqpaUlEbrC4bCCwWAidDmdTnV3d1tZ9oIxKspkVJTphg1Gyr4LgyNjI2K953Wkd0BvR86PBbTeAR03L+ji0Kh+8t45/eS99PPI1leXj4ey9+ePbVox9s8lpcwjAwDkL0JXhsLhsMLhcCJUGYahcDic2H9pwAqFQvL7/VmtMReUlxVry+pl2rJ6Wcq+oZFRHe+7kJg7Fg9j8Xlk0eHRxLYfvZV67suq7GlHyDY6KrW8ojQLPx0AALOXV6HLNE15PB55vd7ECFM6ra2t6u3tVU1NjXp6euRyuaY8fjqGYaivry9pWzAY1NatW9PW6PP55Pf71dDQMOtrFqLS4iJtWlGpTSsqJa1M2jc6Oj6PbMII2eHe9x9bnr04rPf6o3qvP6oXD6XOIzMqSrXRUaHLayq1aXw+2cbxr1cyjwwAkAPyInR5PB45HA5JY2HH6/VOeqzX61VtbW3SKJPL5VIkEpm3+VXxUa/29vak7aZpKhgMyjAM9fb2zsu1FouiIptWL1+i1cuX6KcumUcWi8VkDgyljJAdGQ9mp85GZQ4MyRw4o5fTzCMrLy1OPLLcWPN+MNvoqNRaYwnzyAAAWZEXoSsebsLhsNra2iY9LhQKqa2tTbFLOoH6/X7V19fPW+jyer3au3evnE5n0nbDMOR2u+V2u+VyueRyudTZ2Tkv11zMbDabqivLVF1ZphvTzCMbGBwef7NyLIglHltGzut43wVdGBrRm++d1ZvvnU35bEl8Hlmax5bMIwMAzKe8CF2ZCgQCiTlXE8W3dXR0JB4zdnR0TBuI0gW1+KPDideJP/YMBAKJIOZ0OqcMiJg/FWUlunp1la5eXZWyb3B4VMfNC2lHyI5EBjQ4PKrDvQM63Ju+H9nqqiXJ3fpr3m+DUbWEeWQAgMwVVOia+PbgpQzDUGdnZyJ0xUekZqKtrU0ulyslxHV1damrqyvp2EgkkjIShuwrKynS5hWV2rwitR/Z6GhM7529mHaE7O3TAzobHda7/Rf1bv9F7Uszj8xRWTbei2zCI8vxYFZTWcY8MgBAkoIKXeFweNLJ6w6HIyUYzUQwGJRpmnI6nQqFQpKk/fv3y+12q6GhQY2NjUkhKxgMavfu3bO+HhZeUZFNa5aXa83yct1amzqPrG9gKPFm5eHTE9tfnNfpc4OKnB/7deComXLupfaS8XYXFbrcMT65f3yUbHXVEhYaB4BFqKBC11QMw5BpmrP6rGmacrlcksYeL8ZNfPTo8/nk8/kSb0zu3r172pG0aDSqaDSa9P3w8PCsasT8stlsclSWyVFZppsur07Zfy46PBbIxh9NHomcHx8xG9A7Zy7oXHRYr53o12sn+lM+WxZfaDzNYuPrWWgcAApWwYSu2QaqTBiGkTI5/1JOp3PGfblaWlr00EMPJW2755571N3dreJiJnDnA4ckR7lUt07SOpukSo2MVuji0IgGBkd0YXBYA0MjujA49v3FoRGNxkYknZFiZ6TT0tHT0lFJz2psgfIlpUWqKC1ReVmxKsqKVV5arIqyse+LGSFLq6+vT/v27bO6DAA5KBv3h5GRkYyOK5jQZRiGpLG5VOksZCibrebmZt1///2J76PRqB5//HHV19fLbrdbWBkWyvDIqE6cuajDve8/qpw4l+zi0Oj4kSPjv5JNbBAb79Qfn9i/vHzxTuzft2+fbrnlFqvLAJCDsnF/iEajGXUrKJjQFTdZuMrFie12uz0pXEWjUZWUFNwfCSYoKS7SBkeFNjgqdPuVyfviC42/3fv+MkqXLjQ+VYPY6orSCT3IJj66rNSKpUzsBwCrFdTf8PHRrnRM00zbQR7IFRMXGr95syNlvzkwqMMTRscOT5hTdvpcVH0DQ+obMPVymon9lWXF73frH5/Qv9FRoY0rKrWGif0AkBUFFboaGxunfEMxPhkeyEdGRZlurEjfIPZ8dDipB9nER5fvnLmg84Mjev1Ev15PN7G/uEgbHOUT1rIcC2MbHRVaX12hshIm9gPAfCio0OXxeNTW1ibTNJNGvYLBoCSxFiIKVqW9RNeurdK1a1MbxEaHR3Ssb6xBbPwNy/go2dG+AQ2OjKrn1Hn1nDqf8tkim7TWKE/MGxtb17JyvBVGhSrKCuoWAgALKq/umPH5WpNNlm9oaJDb7VZLS0vSm4R+v1+BQGDKx49AobKXFKt25VLVrlyasm9kNKZ3zAvvN4W9ZHL/haGxwHas74J0MPXcq5bZkwPZhHUtl1cs3on9AJBOXoQun8+nUCiUeHTo8/nU3t4uwzBSFp1ub29Xa2urWltbZRiGuru75fV6Z9x9HlgMiotsiYn9H9KKpH2xWEynzkb19vhE/rERsoHxEbOxif0nz0Z18mxULx5O/R8ho6I0ZUJ/vCfZyqV2JvYDWHTyInTNtP/Vrl27FqgSYPGw2WxaVbVEq6qWaNum9BP7L53QH59TdupsVObAkMyBM3r52JmUz1aUFSfaXVwayNYsL6cfGYCClBehC0DuMSrKZFSU6YZJJvYfiUyY0B8ZSMwpO3HmggYGR/TGu2f1xrtnUz5bVlyk9Y7ypFGyy8cn9a+vLlelndsWgPzE3QvAvKu0l+iaNVW6Zs3kE/vjfcgmBrOjkbGJ/eFT5xU+dV7SqZTPOyrLtL66XBvGQ9j66nI5BqI6ePKs1hkVKi9jNQcAuYnQBSCrppvYf+LMhfe79I+HsqN9AzrWd0FnLgwlFhp/ZcJjy9/aMqLf6fyhJGnFUvtYKHO8H8riAW2tUa4lpYQyANYgdAHIGcVFtvHHiBW67YrU/f0Xh3QsckHH+gZ0tG/8n5ELWlZ6UkvtxToXHdbpc1GdPhfVgTRNYqWxpZTWV1doQ3W51o0HsbXLy7XGWKK1RrmqlvDWJYCFQegCkDeqlpTq2rWlKf3I9u3bp9/71M06c2FIx/ou6GhkYLzVRXI4uzA0klhKqfvtvrTXWGov0ZrlYwFsrbFEa5bHg9kSrTHKtWb5EkbLAMwKoQtAQbDZbInJ/R9YtzxlfywWU+T84Fgo63s/lJ0wL+qdMxd14swFmQNDOhcd1lsnz+mtk+cmvVZNZdnYyNh4IFuzfIlWL1+iVcuW6LIquy6rWsKEfwApuCsAWBRsNptqltpVs9Se9o1LSRoYHNY75lgAe8e8MOHri3pnfNvFoVH1nh9U7/lBvXo8dVmluKX2Eq2qsuuyCUFsVdXY1xPDGaNmwOJB6AKAcRVlJbpi1VJdsSp1kr80NlpmDgyNB7AJgcy8oJNnL+pkf1Tv9l/UwOCIzkWHde7U8PhbmJOrWlKSWOh8xdIy1Sy1a8VSu2qWlmnlhK9rlpbJXkJAA/IZoQsAMmSz2VRdWabqyjJdtzb1EWbcueiw3usfC2Enz17Ue/0Xx+eSjW17b3zbxaFR9V8cVv/FqR9nxlUtKdGKCUHs0q9XLitTTaVdK5bZVVlWTNd/IMcQugBgni21l2jpJG0x4mKxmPovDuvU2fcD2elzUfWeG9Spc1GdPjeo3vE3MXvPDWp4NDYe0IYVPj316Jkk2UuK3h8lq3x/BG3F+KhZTeX7o2nVlWUqLS6az98CAGkQugDAAjabTcvLS7W8vFRXrFo25bGjozH1XxzS6XNRnTo7qN7zUZ0+Ox7Mzo9tO30uOr59UBeGRhQdHtVx84KOmxcyqseoKJ0QzsZGzuLB7NLHnsvsJYyiAbNA6AKAHFdU9P6bmVesmv74gcFh9Z4bTIyS9Z4fC2gTvx/bP6jI+ahGYxpfK3NIPdPMQZPGlmqqmTBidukIWrzlxhpjCfPQgAkIXQBQYCrKSlThKNEGR8W0x46OxmReGEo0le0df6zZe34w+RHn+UH1nhvUueiwBkdGdeLMRZ04c3Ha869cZtc6o1zrxvuerTPKtXFFpa66bJnWLl/CiBkWFUIXACxiRUU2OSrL5Kgs01WXTf2YU5IuDo2MB7BoYjTt9ISgdupsVCfOjD3WvDg0qlNnozp1Nv0KAUvtJbrqsqWq31itW2trtG2TQ8tYEQAFjNAFAMjYktLixMjVVGKxmPoGhnS8byyAvTM+v+x43wWFT59T+NR5nYsOK3TEVOiIqd0/OqSy4iJ9eMtK/dJN6+S69jKVMLkfBYbQBQCYdzbb+yNoH1yf2l5jcHhUh06f12snzmhfOKIf9/TqSGRA33vtPX3vtfe0wVEu7x212rFtA29WomAQugAAWVdWUqQtq5dpy+pl+qWb1kuSXj/Rr28eOK6OrmM6Grmg/+ebr+orzx/Wn/ziB3XzZofFFQNzx/8+AABywjVrqtT80Wv0rO9O/dE916q6olQ/ee+cGgPP69Gn3tTwyKjVJQJzQugCAOSU8rJi/fptm/X05z6sHVs3SJL+6vsH9StfelFnLgxZXB0we4QuAEBOqq4sk999vf7yUzepsqxYz4d7tSPwvE72T9+qAshFhC4AQE6754a12vOZW7ViqV1vvHtWO9pe0KmzUavLAmaM0AUAyHnXrV2uf7nvp7XOKNeh0+f1q1/mUSPyD6ELAJAXLq+p0D/91i1asdSu10/0y/vVLg0xuR55hNAFAMgbm1ZU6qu/ebMqy4r1QjiiP/3261aXBGSM0AUAyCvXrKnSYztulCT9/Y8Pa8/+o9YWBGSI0AUAyDt3Xbdan224SpL0v/79VR08edbiioDpEboAAHnpd++8QrdfuUIXh0b1u187oOjwiNUlAVMidAEA8lJRkU1/7rlBjsoyvX6iX63ffdPqkoApEboAAHlrVdUStd57vSTpS88e0ouHIhZXBEyO0AUAyGsN116mT24bWy7I941XdHGIx4zITYQuAEDea/7YNVq1zK5Dp8/r/+x9y+pygLQIXQCAvLe8vFR/8osfkCS1/TCsV4+fsbgiIBWhCwBQEO66brU+fv0ajYzG9OC/vKKR0ZjVJQFJCF0AgILxv++5TsuWlOjV4/362otHrC4HSELoAgAUjJXL7Pqca6xp6iNPvanI+UGLKwLeR+gCABSUT//URl29epnOXBjSI0+9YXU5QAKhCwBQUEqKi/TH45Pqv77/qF4+alpbEDCO0AUAKDjbNjn0ibp1isWk//lvrzKpHjmB0AUAKEjNH71Gy+wleuXYGX0jdMzqcgBCFwCgMK1cZtfvbr9CkvToU2/qfHTY4oqw2JVYXUC+ME1TLS0tkqRwOCyXy6WmpqbE/mAwqPb2dtXX18vhcGj//v1qbm6WYRgWVQwA+LWf3qR/2ndEb/cOKPCDHt1/1xarS8IiRujKkM/nUyAQkDQWwDZv3iyHwyG32y1pLIjt2bNHbW1tqqurk9/vJ3ABgMXsJcVq/ujV+sw/htT2o7A+efPlWmuUW10WFikeL2bANE11dXXJNE1JkmEYamxsTIx8xfX19SkWi6m7u1sNDQ0WVAoAuNTd163WLZsdujg0qtbv0kIC1iF0ZSgcDiscDie+Nwwj6XsAQG6y2Wz6nz93rWw26ZsH3tEBWkjAInn1eNE0TXk8Hnm93sRjvXRaW1vV29urmpoa9fT0yOVyTXn8dAzDUF9fX9K2YDCorVu3Jm3r6OiQJEUiEUlKmvMFALDOB9Yt171169XRfUx//K3X1PGZW2Wz2awuC4tMXoQuj8cjh8MhaSzseL3eSY/1er2qra2V3+9PbHO5XIpEIvMWguKjXu3t7YltTqdTW7duTczjqq+vl9Pp5DEjAOSIB+7eom+/ckLdb/fpW6+c0D03rLW6JCwyefF4sb29XYFAQD6fb8rjQqGQ2tratGvXrqTtfr9/yqA2U16vV3v37pXT6Uxsa2hoSJo4v3Xr1qTgBwCw1mVVS/SZn6mVJD38nTd0cWjE4oqw2OTFSFemAoGA6urqUrbHt3V0dCQeM3Z0dKizs3PK89XX16eMjvl8Pvn9/pTrtLW1JR1bW1urPXv2zOrnAAAsjKY7nPr6/iM6bl7Q3//4cCKEAdlQUKErGAymDV3S2Lyszs7OROhyu90znufV1tYml8uVEuLC4bC8Xq8aGhoSo1+9vb1JI2EAAOuVlxXrgbu36P49L+uvnz6oxq0b5Kgss7osLBJ58XgxU+FwODH361IOh0NdXV2zPncwGJRpmnI6nQqFQgqFQtq/f7+ksflcu3btSgpZwWBQzc3Ns74eAGBh/OKN63Td2iqdjQ7r8b1vWV0OFpGCGumaimEYiT5bM2WaplwulyQlzSub+DjR6/WqtbVVhmGou7tbzc3N046kRaNRRaPRpO+Hh1mmAgAWUlGRTX/4sWv0y0/s0z++8LZ+9daNcq5canVZWAQKJnTNNlBlwjAMxWJTr1AfH+2aiZaWFj300ENJ2+655x51d3eruLh4xnUCi1VfX5/27dtndRnII8WSmuuLdercoII/eE43bDCsLgkLJBv3h5GRzF7KKJjQFX9zMN4j61ILGcpmq7m5Wffff3/i+2g0qscff1z19fWy2+0WVgbkl3379umWW26xugzkmZrNZ3X3X/xII6PD2lN/pW7enH56CvJbNu4P0Wh02pfzpAKb0yVNHq4ikUjOrYVot9tVVVWV9KukpGByMADktCtWLdOObRskSX/67dc0Ojr1Ew1grgoqdE0VqkzTTOkgDwBY3P6g4UpVlhXr5WNn9K3/OmF1OShwBRW6GhsbJ328KCkxGR4AAElatez9hql+GqZigRVU6PJ4PAqFQimPGIPBoCSxJA8AIMVv3e7UZVV2HTcv6CvPH7a6HBSwvApd8TA12WhWQ0OD3G63Wlpakrb7/X4FAoGcm9MFALBeeVmxPn/XFknSXz59UH3nBy2uCIUqL0KXz+eTy+XS9u3bk773eDwpx7a3t6umpkatra1qa2uT1+uV1+udt8WuAQCF5xN163XNmiqdvTisx5+mYSoWRl68KjfThaNn2i8LALC4FY83TP30l/bpq8+/rV+9dZM2r6i0uiwUmLwY6QIAYKF96MoV+vCWlRoejan1u29YXQ4KEKELAIBxzR+9RkU26Tuvvquuw5O/DQ/MBqELAIBxW1a/3zD1T779+rRLwAEzQegCAGCCzzZcpYqyYh04aurbNEzFPCJ0AQAwwaqqJfLeMd4w9btvKDpMw1TMD0IXAACX2HnHZq1aZtfRyAV99fm3rS4HBYLQBQDAJSrKShINUx/f+5bMARqmYu4IXQAApHFv/XpdvXqZ+i8O6y+fPmh1OSgAhC4AANIoLrLpCx+7RpL0lecP6+3e8xZXhHxH6AIAYBJ3XLVSd1y1UkMjMbV+902ry0GeI3QBADCFL3zsahXZpG//1wl1v91ndTnIY4QuAACmcPXqKnnqxxqm/um3X6NhKmaN0AUAwDTuv+sqlZcWK3TE1HdefdfqcpCnCF0AAEzjsqolarrDKUl6+DtvaHB41OKKkI8IXQAAZKDpDqdWLrPrSGRAX32BhqmYOUIXAAAZqLSX6HOuqySNNUw9MzBkcUXIN4QuAAAy5Nm6QVsuW6YzF4b0V99/y+pykGcIXQAAZKi4yKbmj10tSfqHH7+tI70DFleEfELoAgBgBn7mqpW6/coVGhwZVetTb1hdDvIIoQsAgBmw2Wxq/ug1stmkb71yQqEjNExFZghdAADM0LVrq+SuWy9J+rNvv07DVGSE0AUAwCx87q4tWlJapK63+/TUf9MwFdMjdAEAMAurly9R0+00TEXmCF0AAMxS08/UasVSuw73Duif9tEwFVMjdAEAMEtL7SW6f7xh6v/Z+5bOXKBhKiZH6AIAYA4at67XlauWyhwY0he/f9DqcpDDCF0AAMxBSXGRvvCxayRJf/fcYR2N0DAV6RG6AACYow9vWanbrqjR4MioHnnqTavLQY4idAEAMEc2m01f+NhYw9R/f/kdHThqWl0SchChCwCAeXDd2uX6xE00TMXkCF0AAMyTz999lewlRXrxcETfe+09q8tBjiF0AQAwT9YsL9fOCQ1Th0ZomIr3EboAAJhHn/lwrVYsLdOh0+f1z/uOWF0OcgihCwCAebTUXqI/aBhrmPoXwZ+o/yINUzGG0AUAwDz75LYNql1Zqb6BIX3x+z1Wl4McQegCAGCeTWyY+uXnDulYHw1TQegCAGBB3Hn1Kt3qrNHg8KgepWEqROgCAGBB2Gw2/eHHx0a7vnngHb1yzLS2IFiO0AUAwAL5wLrl+sRN6yRJf0rD1EWP0AUAwAL63N1bZC8p0r5DEQVfP2l1ObBQidUF5AvTNNXS0iJJCofDcrlcampqSuxva2uT0+mUw+GQYRiJ7Zd+DwBYXNYZ5frND23WF5/pUct3XteHt6xUaTFjHosRoStDPp9PgUBA0lgA27x5sxwOh9xutyTJ7/crHA6nfK67u1t1dXVZrRUAkFvu+3Ctntx/VOFT5/X1F4/oV27dZHVJsABROwOmaaqrq0umaUqSDMNQY2NjYuRLktxut2KxWOJXX1+f/H4/gQsAoGVLSvUHDVdKkh4LvkXD1EWK0JWhcDicNJJlGEbS916vN+n4lpYW7dq1K2v1AQBy2ydvvlzOlZWKnB/U3z5Dw9TFKK9Cl2macrlc6ujomPK41tZW+Xw+tba2yuv1Tnv8dAzDUF9fX9KoVTAY1NatWxPfO53OxNdtbW0pIQwAsLiVFhep+aNjLSS+9OwhHTcvWFwRsi0v5nR5PB45HA5JY2FnqkDj9XpVW1srv9+f2OZyuRSJRJImvs9FfNSrvb09ZZ9pmurs7Jy3awEACkfDNat0y2aH9h2K6M+felP/344brS4JWZQXoSsebsLhsNra2iY9LhQKqa2tLaUPit/vV319/bwFIa/Xq7179yaNbsW1tbXJ5XLNy3UAAIUl3jD15//qOf3LS8f1Gx/arA+sW251WciSvAhdmQoEAmknrse3dXR0JN427OjoUGdn55TnSxfUfD7flBPkA4FA4i1HAAAudf16Q79441p988A7+pNvv6av7fwp2Ww2q8tCFhRU6AoGg5OGIcMw1NnZmQhdbrc78XWm4qNY6UJcXDgcTjwKBQAgnc/fvUX/+eq7eiEc0dNvnNT2ay6zuiRkQV5NpJ/OVIHH4XCoq6tr1ucOBoMyTVNOp1OhUEihUEj79+9Pub4kmqECAKa0vrpCv3HbZknSn/3n6xoeGbW4ImRDQYWuqRiGkeizNVPxtyZ9Pp9qa2tVX1+v+vr6tOczDCPjka5oNKr+/v6kX8PDw7OqEQCQX377I7WqrihVz6nz+vr+o1aXgywomMeLsw1UmTAMI6NFSp1Op/r6+jI+b0tLix566KGkbffcc4+6u7tVXFw84zqBxaqvr0/79u2zugxgxv5wW6neePeiTrz1X3pu9B2VsDzQvMvG/WFkZCSj4womdMUf6UUikbT7FzKUzVZzc7Puv//+xPfRaFSPP/646uvrZbfbLawMyC/79u3TLbfcYnUZwIzVjYzqrx/7oQ6dPi/bKoc+f/cWq0sqONm4P0Sj0WlfzpMK8PHiZOEqEonk3Fwru92uqqqqpF8lJQWTgwEA0ygtLtKDH71akrT7R2GdOEPD1EJWUKFrqlBlmmZSB3kAAHLBXddepps3ORQdHtWjT/3E6nKwgLIauu67774FPX9jY+Okjxcl0bQUAJBzbDabvvDxseWB/uWlY3r1+BmLK8JCyWroCgaDC3p+j8ejUCiU8ogxft2GhoYFvT4AALNx4wZDP3/DWsViYy0kMnl5C/lnXkJXc3OzrrzyShUXF0/5K97HarbiYWqy0ayGhga53W61tLQkbff7/QoEAjk3pwsAgLgH7t6isuIi/binV8+8ecrqcrAA5jxr+8EHH0x0Zq+trZ30uL6+vqRFqGfC5/MpFAolmpv6fD61t7fLMIyURafb29vV2tqq1tZWGYah7u5ueb3eGXefBwAgmzY4KvTrt21S4Idh/dl/vq7br1xBC4kCM+fQZZqmDh48mNGxe/bsmdU1ZhrWdu3aNavrAABgpd/+yBV6suuo3jp5Tu3dx/Spmy+3uiTMozlH6KlGty516agUAAB43/LyUv3unVdKkv4i+BNdGMys6SbyQ1bHLTdv3pzNywEAkHc+/VOXa51Rrvf6o/q7Hx+yuhzMozmHroaGBj399NMZHbtjx465Xg4AgIJmLynW5+++SpL0N8/0qO/8oMUVYb7MOXTddNNNcjgcevTRR/X000/r8OHDKYs4x3+FQqH5qBkAgIL2Czes0zVrqnT24rC++Exm86aR++Y8kb6oqEg2m02xWEw2m20+agIAYFErKrLJ97Nb9H/93X79w4/f1q/99Catr66wuizM0ZxDl9PpVENDw7Td3mOxmLxe71wvBwDAovAzV63Urc4aPR/u1WOdb+nPG2+wuiTM0ZxDl2EYam1tVVVV1bTHPvzww3O9HAAAi4LNZtODH71av/DXz+lfXjqmnXds1tWrp/+7FrlrznO69u7dm1Hgih8LAAAyc8MGQx//4BrFYlLrd9+0uhzM0ZxD1/LlyxfkWAAAIH3+7i0qLrLp6TdO6oVwr9XlYA6y2qfr0UcfzeblAADIe5tXVOpTN2+QJD38nTdYDDuPZS10HTp0SIFAIFuXAwCgYPze9itVXlqsA0dNfffVd60uB7OUcei66667tGLFitQTFBWpuLh42l+1tbUKh8PzWjwAAIvBqmVLtPP2sVVdHnnqTQ2NjFpcEWYj47cXY7GYDMNI2e50OuV2u6dtGdHX10fLCAAAZmnnHU79474jCp8+rz1dR/U/btlodUmYoYxDV2dnZ9rtTqdTX/jCF2gZAQDAAlq2pFS/e+cVeug/XtNfBN/SL920ThVlc+78hCya85yu733ve1MGrsOHD+vw4cOSaBkBAMBc/PItl2t9dblOnY3qy8+yGHa+WfCJ9D09Peru7tYjjzyi7u7uhb4cAAAFy15SrM/ftUWS9Lc/CCvCYth5ZcHHJbdv3574eseOHbrzzjsX+pIAABSsn79hrQI/DOv1E/36q6cP6n/dc63VJSFD8xa6nnjiCZmmqd7e1MZtpmny5iIAAPOgqGhseaBf+/KL+scX3tZv3r5Z64xyq8tCBuYldF1xxRUKh8NyOp2SpEgkIofDkfjaNE21trZq586d83E5AAAWtTuuXKFbNju071BEf7n3LT187/VWl4QMzHlO1yOPPCK3263R0VEdPHhQBw8elN/vT3wdiUR08OBBxWIxlgECAGAe2Gw2PXD32Nyu9u5jCp86Z3FFyMScQ1dPT09KK4gzZ84kfe90OvXAAw/oiSeemOvlAACApK2bHLrz6lUaGY3pseBbVpeDDMw5dNXW1qZsO3jwYNpjWS8KAID587m7rpIk/cfL7+i1d/otrgbTmXPostlsKdtcLlfaUa1LR8AAAMDsXbd2uX7u+jWSpD//3psWV4PpzDl0LV++XP39/XriiSf06KOPSpLuvfde7dq1S9///vcTx/X390/a1R4AAMzOZ11Xqcgm7X3jpLrf7rO6HExhzqFr586dCgQC2rVrl1paWhLbH374YW3fvl01NTW6++67VV1dPe36jAAAYGZqVy6Vu369JOmRp95gKk8Om5eO9A888IAOHTqU1IurqalJe/bsUV1dnXp6evTAAw/o85///HxcDgAATPB7269UWXGRXghH9NzB1H6ZyA3z1hw1XTsIt9stt9s9X5cAAABprK+u0C/fcrn+/seH9chTb+i2K25LO+ca1przSNc3vvEN3X333YlFrQEAQPb9zkeuUHlpsV4+dkbfe+09q8tBGnMOXU8++aT2798v0zTnoRwAADAbK5fZ9Rsf2iRp7E3GkVHmduWaOYeubdu2KRKJ6MYbb5z2WEbDAABYOE2316pqSYl+8t45/fvLx60uB5eYc+hyOp06cOBARsd6vd65Xg4AAExieUWpvD8z1rT8sc63NDg8anFFmGjOoevee+9VJBLRE088oQMHDqi/f/KOuBPfbgQAAPPv12/bpBVLy3QkMqA9XUetLgcTzPntxSuvvFKRSESxWIyO8wAAWKyirET/90eu0P/+j9f0l0+/JXf9ei0pLba6LGgeQlcsFtP27dvlcrnkcDgmPa63t1fNzc1zvRwAAJjGp265XG0/DOudMxf1tReP6Ndv22x1SdA8hC7DMPTEE0+oqqpq2mPb2trmejkAADANe0mxfufOK/SH//qqvvhMjz518+WMduWAOc/pam9vzyhwxY8FAAALz1O/QeuMcp06G9U/vvC21eVA8xC6Nm+efMjy8OHDSRPrpzoWAADMn7KSIv3unVdIkv72Bz0aGBy2uCLMOXQ9+uijk+7r7u5WZ2enHnnkET366KNTvtkIAADm173167XBUa7T5wYZ7coBcw5dnZ2dk+679957de+99yYWu2ZOFwAA2VNaXKTfvfNKSdLf/iCs81FGu6w059AVi2W+zEBvLyufAwCQTZ+4aZ021lQocn5QX3me0S4rzfntxUxWMe/v79eePXsUCoXmejnLmKaplpYWSWNNXl0ul5qampKO8fl8qq2tVU9Pj7Zt2ya3221FqQAAJJQUF+n37rxSn2t/WYEf9uhXbt2opfY5//WPWZjR7/qDDz6ocDisUCikQ4cOJbYXF0//GqrT6ZzyUWSu8/l8CgQCksYC2ObNm+VwOBLByuVyyev1Jn3vdDpVV1dnWc0AAEjSL9y4Vn/9/YMKnz6vf/jxYf3OR66wuqRFaUah6+GHH058HQwG5fF4tGLFCu3atWvKzzmdTm3fvn12FeYA0zTV1dUl0zRlGIYMw1BjY6NaWlrkdrsVDocVDAaTWmLU1dWppaWFNhkAAMuVFBfp9xuu1O9//YDafhjWr9y6UVVLSq0ua9GZ9fhiQ0ODuru79ZnPfEY7d+6cz5pyUjgcVjgcToxcGYaRWEsy/tjUMIzE8bW1tero6Mh6nQAApPNz16/VXz59UAdPntPfP3dYv7f9SqtLWnTmNJHe6XTK4/HMVy3TMk1TLpdr2jDT2toqn8+n1tZWeb3eOYcfwzDU19eX9KgwGAxq69atksZ+H+L1xfX09LDANwAgZxQX2fT740Fr94/COnNhyOKKFp85z6TLxiiXx+NJrOsYDAbl9XonPdbr9aq2tlZ+vz+xzeVyKRKJpEx8n634qFf80WFdXZ3q6urU1dWlhoaGxDEAAOSSj39wjf7y6bf0k/fO6cvPHtJnXVdZXdKismCvLxw4cECSdOONN875XPFwEw6Hp+z1FQqF1NbWltLGwu/3q76+ft5Cl9fr1d69exMjXJK0d+9e+Xy+xGjXtm3bFAwG5+V6AADMh6Iim/6g4Sr99j+F9OVnD+k3btus5RXM7cqWjEPXI488kjJ6YxhGoo1C3H333ZcIRrFYTDabTT6fT3/2Z382D+VOLRAIpH1bML6to6Mj8XZhR0fHtG9TpgtqPp9Pfr8/5TqGYSTebowfF3/8CABArvjZ61br6tXL9Ma7Z/WlZ8O6/64tVpe0aGQcuh544AE98sgj8vl88vl8amxs1E033ZR0zNatW/XSSy/p3nvvld/v1+bNmxOjU9u2bdP+/fvn/QeYKBgMTtqiwTAMdXZ2JkKX2+2ecR+ttrY2uVyutCEuPscrPpk+FApN+RgUAAArFI3P7brvn0L6ux8f1m/d4eRNxiyZ0UT6/fv3q6enRy0tLSmBa/fu3QqFQmpqatKePXsSi1s7nU49/PDDamxsnHKdxvkQDocTc78u5XA41NXVNetzB4NBmaYpp9OpUCikUCiUFCI9Hk/i/OFwWJFIhOaoAICcdPd1q3XVZUt19uKw/uG5w1aXs2hkHLqeeOIJeb3eRJi6VHt7u2w2m/7mb/4m7f4HHnjA0uaohmEkvV04E/G3JuMd5+vr61VfX590vnjobGtrUyAQUHd397TnjUaj6u/vT/o1PMy6WACAhVVUZEs0SP3Sc4d0jjUZsyLjx4vt7e166qmnJt0fDAZVX18/5TmWL1+eeWUzNNtAlQnDMKZdY3I2o1otLS166KGHkrbdc8896u7uzqjLP4AxfX192rdvn9VlAHnlslhMv/9B6fzgRX07+ENtWlFpdUkLIhv3h5GRkYyOyzh0TRWY9u7dK0nasWPHlOfIZJ3G2YrPpYpEImn3L2Qom63m5mbdf//9ie+j0agef/xx1dfXy263W1gZkF/27dunW265xeoygLxzvPSYPtf+smqOjehHvnpVlBXemozZuD9Eo9GMnuZl/HhxqsDU2dkpm82W6FE1melGi+bDZOEqEokkdYzPBXa7XVVVVUm/SkoK7194AEBu+oUb1+pyR4V6zw/qn/cdsbqcgpdx6IrFYurv70+7r62tTYZhTNmT64knnpDL5ZpxgTMxVagyTZMWDgAATFBSXKTf/nCtJCnww7AuDmX2mAyzk3HoevDBB9Mu+bNjxw6Zpjll49H+/n5973vfW/Du9Y2NjZM+XpS04KEPAIB884m69VpnlOvU2aie3H/U6nIKWsahq66uTvfee69qamp033336b777tOVV16p9vZ2uVyulCapcXv37tXmzZv1yU9+ct6KnozH41EoFEp5xBjvDD/d408AABabspIifeZnxlZY+dsf9Cg6zGjXQplRn66mpibt379fy5cvV09Pj2666SZ1dnamfavxkUce0V133SWfz6fNmzerpaVlzn264mFqstGshoYGud3ulADo9/sVCARybk4XAAC5wLN1g1Yts+vEmYv6Rvdxq8spWLZYNma3z5HP51MoFFJXV5dM05RhGInu7/F1GSdqbW2VNDbHq7u7Wy6XKy8alUajUT388MN68MEHeXsRmAHeXgTm7svPHtL/+63XtL66XN///IdVWjyjcZmcla23FzP5+zsvXpXz+/0zOn7Xrl0LVAkAAIXpUzdfri8+c1DH+i7omy8dl2frBqtLKjiFEWMBAMCclJcVa+ftY3O7/vr7BzU8MmpxRYWH0AUAACRJn/6pjaquKNXh3gF965UTVpdTcAhdAABAklRpL9FvfmhsjeW/eaZHo6M5P+07rxC6AABAwq/cuklL7SV6872zevqNk1aXU1AIXQAAIGF5ean+x09dLkn64jMHs7KE32JB6AIAAEl+87bNKispUuiIqRcPTb7SC2aG0AUAAJKsqloid/16SdIXn+mxuJrCQegCAAApvHc4VWSTfvCTU3r1+BmryykIhC4AAJBiY02lfu76tZLG1mTE3BG6AABAWvd9uFaS9J//dUKHT5+3uJr8R+gCAABpXbOmSh/ZslKjMSnwQ0a75orQBQAAJvXbH7lCkvSN7uN6r/+ixdXkN0IXAACY1LZNDm3bVK3BkVF96dlDVpeT1whdAABgSr/94bHRrn964W2dGRiyuJr8RegCAABT+vCWlbp69TKdHxzRPzx/2Opy8hahCwAATMlmsyXeZPy75w5pYHDY4oryE6ELAABM6+MfXKPLHRXqGxhSe9cxq8vJS4QuAAAwrZLiIu28fbMk6YlnwxoZZSHsmSJ0AQCAjLjrN6i6olRHIxf03VfftbqcvEPoAgAAGSkvK9av3LpJktT2wx7FYox2zQShCwAAZOxXb92ospIivXzsjPYf7rO6nLxC6AIAABlbsdSue+vWSxob7ULmCF0AAGBGfuv2zbLZpODrJ3Xw5Dmry8kbhC4AADAjtSuXquGayyRJX3o2bHE1+YPQBQAAZsx7h1OS9I3QcZ06G7W4mvxA6AIAADNWv7FaN11uaHB4VF9haaCMELoAAMCM2Ww2Nd0+Ntr11RfeZmmgDBC6AADArNx13WptrKmQydJAGSF0AQCAWSkusum3PsTSQJkidAEAgFljaaDMEboAAMCsTVwaaPePaB8xFUIXAACYk1+9daPKiot04Kip0BGWBpoMoQsAAMzJiqV2/cKNayVJX372kMXV5C5CFwAAmLNfv21sQv13Xn1X75gXLK4mNxG6AADAnF27tkq3Oms0MhrTV55/2+pychKhCwAAzIvfGG8f8bUXj9AsNQ1CFwAAmBd3Xr1KG2sqdObCkL4ROm51OTmH0AUAAOZFcZFNv/7TmyRJf/fcIY3SLDUJoQsAAMwb99YNWmYvUfjUef3grVNWl5NTSqwuIF+Ypqk9e/ZIkrq7u1VbW6tdu3YlHRMOhxUIBCRJfr8/6zUCAGC1pfYS7di2QU88e0hffvaQPrJlldUl5QxCV4Z27typ5uZm1dXVSZKqq6tlGIaampokScFgUKZpKhwOy+l0WlkqAACW+rWf3qQvP3dIP3rrtH7y3lldddkyq0vKCTxezFA4HFYwGEx873Q61d3dnfi+oaFBbrdbDofDivIAAMgZGxwVuuva1ZLG5nZhDKErQ93d3UmPE0OhkDwej4UVAQCQu+LtI/4ldFyR84MWV5Mb8ip0maYpl8uljo6OKY9rbW2Vz+dTa2urvF7vtMfPtAav1yu/36+GhoZ5Oy8AAIVk26ZqfWBdlaLDo/rai0esLicn5MWcLo/Hk3hsFwwG5fV6Jz3W6/WqtrY2aSK7y+VSJBJJzL+aLdM0FQwGZRiGent753QuAAAKmc1m02/ctln373lZ//Djw9p5u1NlJXk11jPv8uKnb29vVyAQkM/nm/K4UCiktra2lLcK/X7/lEEtU4ZhyO12y+/3KxQKyeVyzfmcAAAUqp+7fq1WLrPr5Nmonvrvd60ux3J5MdKVqUAgkHi7cKL4to6ODrnd7sTXnZ2dU56vvr5eTU1NMk1THo9HgUAg8Wai0+lUW1vbPP8EAAAUjrKSIv3yzZfr/+x9S195/rDuuWGt1SVZqqBCVzAYTBu6pLFRqs7OzkTocrvdia+n09XVpa6urqRtkUiE1hAAAEzjl2+5XH/9/YPaf7hPr73Tr2vXVlldkmXy4vFipsLh8KQtGxwOR0pwylRDQ4MaGxuTQlYwGKQBKgAA07isaol+9gNj7SO++sJha4uxWEGNdE3FMAyZpjnrz/t8Pvl8PtXU1Kinp0e7d+9OGikLhUJ68skntWfPnkTw27Fjx6Qjb5IUjUYVjUaTvh8eZlV2AEBh+bWf3qRvvXJC//rScT34s9doeUWp1SVZomBC11wCVSacTueUI1t1dXWqq6ub0ehXS0uLHnrooaRt99xzj7q7u1VcXDzrWoHFpq+vT/v27bO6DACTiMVi+uwNNp29OKSnnvmRNtZUZu3a2bg/jIyMZHRcwYQuwzAkjc21SmehQ9lsNDc36/777098H41G9fjjj6u+vl52u93CyoD8sm/fPt1yyy1WlwFgCoeLjuixf/kvXX7Kpmc+f7OKimxZuW427g/RaHTal/OkApvTJU0eriKRSCKY5Qq73a6qqqqkXyUlBZODAQBI+IUb16lqSYmORAb0g5+csrocSxRU6JoqVJmmqa1bt2avGAAAkFBeVqwd2zZIkv7h+cPWFmORggpdjY2Nkz5elEQzUwAALPTpn9oom0165s1TOnz6vNXlZF1BhS6Px6NQKJTyiDEYDEoSayUCAGChjTWV+siWVZKkr77wtsXVZF9eha54mJpsNKuhoUFut1stLS1J2/1+vwKBQM7N6QIAYLH51Vs3SpL2dB3VwODiapOUF6HL5/PJ5XJp+/btSd97PJ6UY9vb21VTU6PW1la1tbXJ6/XK6/XOebFrAAAwd3dcuVKbaip09uKwvvnSO1aXk1V58arcTDu/X7rgNQAAyA1FRTb9yq2b9Mffek1fef6wPnXzBtls2WkfYbW8GOkCAACFw12/XuWlxXrj3bN68dDkL8AVGkIXAADIquXlpfrFm9ZKkv75xSMWV5M9hC4AAJB1v3zz2IT67/zXu+o9F53m6MJA6AIAAFn3wfXLdcP65RocGVVH9zGry8kKQhcAALDE/7hlbLTrn188otHRmMXVLDxCFwAAsMTP3bBGy5aU6O3eAT3Xc9rqchYcoQsAAFiioqxEn7hpnSTpn14o/An1hC4AAGCZXx5/xNj5+nt6r/+ixdUsLEIXAACwzJbVy7RtU7VGRmN6cv9Rq8tZUIQuAABgqfiE+q+9eETDI6MWV7NwCF0AAMBSP/uB1aquKNWJMxf1zJunrC5nwRC6AACApZaUFsuzdYOkwu5QT+gCAACW+9TNl0uSvv/mSR3rG7C4moVB6AIAAJbbvKJSt11Ro1hM+vqLhTmhntAFAAByQnxC/df3H9VQAU6oJ3QBAICc4Lr2Mq1cZtfpc1F1vvae1eXMO0IXAADICaXFRfLUr5ekguzZRegCAAA5o3H8LcYfvnVKx80LFlczvwhdAAAgZ2xaUalbnWMT6tu7Cmu0i9AFAAByyidvHhvtau86ppHRmMXVzB9CFwAAyCl3X7day8tLddy8oOcOnra6nHlD6AIAADllSWmxfummdZIKa0I9oQsAAOSc+IT67732rnrPRS2uZn4QugAAQM65dm2Vrl+/XEMjMf3rS8etLmdeELoAAEBO2rFtbLTr6/uPKhbL/wn1hC4AAJCTfv6GtSovLdbBk+cUOtJndTlzRugCAAA5admSUn38+jWSCmMRbEIXAADIWZ8cf8T4rVdO6OzFIYurmRtCFwAAyFn1G6tVu7JSF4ZG9B8vn7C6nDkhdAEAgJxls9n0yW2XS5Ke3H/E4mrmhtAFAABy2i/VrVNpsU0vHzuj10/0W13OrBG6AABATlux1K7tV18mSfpG9zGLq5k9QhcAAMh5nq3rJUnfPHBcQyOjFlczO4QuAACQ8+64aqVWLLXr9LlB/eDNU1aXMyuELgAAkPNKi4v0SzetlSR15OkjRkIXAADIC/fWjz1i3PvGe4qcH7S4mpkjdAEAgLxw9eoqfXDd2CLY/3Yg/xbBJnQBAIC84R4f7crHR4yELgAAkDd+/oa1Ki226b/f6ddr7+RXzy5CFwAAyBvVlWVquGa8Z1cov0a7SqwuIF+Ypqk9e/ZIkrq7u1VbW6tdu3ZlvB8AAMwPd/16fefVd/XNl47rwY9erdLi/BhDInRlaOfOnWpublZdXZ0kqbq6WoZhqKmpKaP9AABgfrzfsyuqZ948Jde1l1ldUkbyIxrmgHA4rGAwmPje6XSqu7s74/0AAGB+JPfsOmpxNZljpCtDlwaoUCgkv9+f8X4AADB/7q1fr90/OqS9r59U77moapbarS5pWnk10mWaplwulzo6OqY8rrW1VT6fT62trfJ6vdMeP9MavF6v/H6/GhoaZrwfAADMXbxn1/BoTP/+8jtWl5ORvBjp8ng8cjgckqRgMCiv1zvpsV6vV7W1tUmjTC6XS5FIZM7zq0zTVDAYlGEY6u3tnfF+AAAwf9z16/Vfx8+oo/uYfv22zVaXM628GOlqb29XIBCQz+eb8rhQKKS2traUtwb9fv+UQS1ThmHI7XbL7/crFArJ5XLNaD8AAJg/E3t2vX4i93t25cVIV6YCgUDi7cGJ4ts6OjrkdrsTX3d2dk55vvr6ejU1Nck0TXk8HgUCATmdTkljE+Xb2tokadr9AABg/lVXlunOq1fpqf9+T9986biuWVNldUlTKqjQFQwG04YuaWwUqrOzMxG63G534uvpdHV1qaurK2lbJBJJBKzp9gMAgIXxSzet11P//Z7+7cA72vWzV6u4yGZ1SZPKi8eLmQqHw4m5X5dyOBwpwShTDQ0NamxsTApRwWAwMW9suv0AAGBhfOTqlapaUqJ3+y/qhXBuz6cuqJGuqRiGIdM0Z/15n88nn8+nmpoa9fT0aPfu3UkjZdPtTycajSoajSZ9Pzw8POsaAQBYbOwlxfr49Wv1tReP6F9fOq7brlhhdUmTKpjQNZdAlQmn0znlyNV0+9NpaWnRQw89lLTtnnvuUXd3t4qLi2dVJ7AY9fX1ad++fVaXAcAiP1M9qMotIyoZOKIfP38h6RFjNu4PIyMjGR1XMKHLMAxJY3Op0lnoUDYbzc3Nuv/++xPfR6NRPf7446qvr5fdnvtN3oBcsW/fPt1yyy1WlwHAIqOjMf3Ji9/Xsb4Luu7Gy3XPDWsT+7Jxf4hGo9O+nCcV2JwuafJwFYlEEsEsV9jtdlVVVSX9KikpmBwMAEBWFBXZ9Is3rpMk/etLxy2uZnIFFbqmClWmaWrr1q3ZKwYAAGTNL940Frp+8JNT6j0XneZoaxRU6GpsbJz08aIkmpUCAFCgrli1VNevX66R0Zi+9coJq8tJq6BCl8fjUSgUSnnEGAwGJYm1EAEAKGC5/ogxr0JXPExNNprV0NAgt9utlpaWpO1+v1+BQCDn5nQBAID5c88Na1VcZNOBo6bCp85ZXU6KvAhdPp9PLpdL27dvT/re4/GkHNve3q6amhq1traqra1NXq9XXq93zotdAwCA3LZymV0fGu/T9c0D71hcTaq8eFVupv2vLl3wGgAALA6fqFunH/zklL750nF9tuFKq8tJkhcjXQAAAJlwXXuZKsqKdSQyoNAR0+pykhC6AABAwagoK9HPXrdakvTNHJtQT+gCAAAFJd6z6z9eeUejozGLq3kfoQsAABSU265YoZXL7DIHhtR7ftDqchIIXQAAoKAUF9n08Q+ukSS923/R4mreR+gCAAAF5+dvHFv0+tTZqC4MjlhczRhCFwAAKDg3bTC0wVGukdGYgq+/Z3U5kghdAACgANlsNt1z/dho17+/nBuNUgldAACgIP3C+FqMz7x5UmcGhiyuhtAFAAAK1JbVy7TUXqKhkZi++98nrC6H0AUAAArX6uVLJOXGI0ZCFwAAKFiXVdklSc/39OrkWWvbRxC6AABAwaooK9GNGwyNxqRvv2LtI0ZCFwAAKGg/f8PYW4z/dsDaR4yELgAAUNB+7vo1KrJJB46aOtI7YFkdJZZdGQAAIAtWVS3RFz52jT6wbrnWV5dbVgehCwAAFLzfut1pdQk8XgQAAMgGQhcAAEAWELoAAACygNAFAACQBYQuAACALCB0AQAAZAGhCwAAIAsIXQAAAFlA6AIAAMgCQhcAAEAWELoAAACygNAFAACQBYQuAACALCixugC8LxaLSZKi0ajFlQD5ZWRkhP9uAKSVjftD/Pzxv8cnQ+jKIYODg5Kkxx57bN7P/eKLL+rmm2+e9/Nmg9W1Z+v6C3Gd+TrnXM4zm8/O5DPDw8P60Y9+pNtvv10lJdzSZsPq/8ZmKxfqXuz3h7meo9DuD4ODg1qyZMmk+22x6WIZsmZ0dFTnzp1TWVmZbDbbvJ77xhtv1IEDB+b1nNlide3Zuv5CXGe+zjmX88zmszP5TH9/v1atWqWTJ0+qqqpq5gXC8v/GZisX6l7s94e5nqNQ7g+xWEyDg4NaunSpioomn7nF/xbmkKKiogX7l8Jms8luty/IuRea1bVn6/oLcZ35OudczjObz87kM/Hj7HZ73v47bjWr/xubrVyoe7HfH+Z6jkK6P0w1whXHRPpF4nd+53esLmHWrK49W9dfiOvM1znncp7ZfNbqP/PFJl9/v3Oh7sV+f5jrORbb/YHHiwDyWn9/v5YvX64zZ87weBFAkly7PzDSBSCv2e12/dEf/ZHlj5kA5J5cuz8w0gUAAJAFjHQBAABkAaELAAAgCwhdAAAAWUDoAgAAyAKaowLIGaZpyuPxyOv1yu12T3pca2urent7VVNTo56eHrlcrkmPn8mxAHKD1feChbpvELoAWM7j8cjhcEiSgsGgvF7vpMd6vV7V1tbK7/cntrlcLkUiETU1Nc36WADWy4V7wULeN2gZASBnhMNh1dbWqr29Pe3/VYZCIdXX1+vS21a67TM5FkBusepesND3DeZ0AcgbgUBAdXV1Kdvj2zo6OmZ1LID8slD3goW+bxC6AOSNYDAop9OZdp9hGOrs7JzVsQDyy0LdCxb6vkHoApA3wuFwYr7HpRwOh7q6umZ1LID8slD3goW+bxC6ABQEwzBkmua8HwsgvyzUvWA+7huELgB5YSY3OwIVULgW6l6QjfsGoQtAXjAMQ5IUiUTS7p94w5zJsQDyy0LdC7Jx3yB0Acgrk934IpFI4qY5m2MB5JeFuhcs5H2D0AUgb0x1wzNNU1u3bp3VsQDyy0LdCxb6vkHoApA3GhsbJx36l8a6Rs/mWAD5ZaHuBQt93yB0AcgbHo9HoVAoZfg/GAxKkhoaGmZ1LID8slD3goW+bxC6AOSM+I1usv/TbGhokNvtVktLS9J2v9+vQCCQ9GhgJscCyC1W3QsW+r7B2osALOfz+RQKhdTV1SXTNGUYhrZu3SrDMNTe3p5yfGtrq6Sx+Rfd3d1yuVxp12eb6bEArJUr94KFum8QugAAALKAx4sAAABZQOgCAADIAkIXAABAFhC6AAAAsoDQBQAAkAWELgAAgCwgdAEAAGQBoQsAACALCF0AAABZQOgCACSWPbFKR0eHwuGwpTUAC43QBQCLnNfrVVNTk6U1uN1u+f1+ghcKGqELwJRaW1tVX1+v6upqVVdXq7a2Vi6XSx6PRx6PRy6XK2l/dXW15aMmyJzP55PL5ZJhGIltE//MbTabqqurVV9fr1AolPRZl8ul2tpa2Ww22Wy2xL8bs+X3++XxeGb9eSDXseA1gIx4vV61tbWps7NTDQ0NaY8JBoPyeDxqbGxUIBDIcoWYqXA4LK/Xq87OzrT7M/kzl6Tq6mpJUl9f35xramtrk2ma2rVr15zPBeQaRroAZCQ+EuJwOCY9pqGhQe3t7YpEIlmqCnPh9Xrl9/sn3Z/Jn3l8/3THZKqpqUmBQECmac7L+YBcQugCMK+mGhFB7giHwwqHw6qrq7O6lBRut1ttbW1WlwHMO0IXgHnndDqtLgHTCAQCcrvdVpeR1o4dO3g8jYJE6AIwZ5c+CqqpqbGmEGSso6NDO3bssLqMtOrq6hSJRFIm7gP5rsTqAgDkv5aWlqS5QW63W/X19Ykw1tPTk+jDtH//fu3YsSNplCUYDKqzs1O1tbUyTVM9PT3y+/1Jb9TFmaYpn88nSaqtrVVvb6+8Xq+cTqe8Xm9ihMQ0TW3fvl2maSocDquvry9xvnA4LI/Hk9g32ftE09V16TVisZhCoZCCwWDi5zYMY8p5U6FQSIFAIPGzSGNvBTY0NMjn8yV+3wzDSPuCQm1tbWK/3+/PqPVDvN6FfrQYn2Df2Nio2trapN83n8+XmL+VTkNDg7q6unLy8ScwazEAyMCuXbtikmLd3d0p+9xud8q2vr6+mNvtjhmGEevs7Ex8zjCMWENDQ9J5L/18Z2dnzDCMWF9fX9rt7e3tKbX19fXFnE7npHVfeq54fZPdBjOtq6+vL9bU1JT4vens7Ez6jNPpjO3atSvtNQKBQKyuri7tzznxPIZhpP09jl/f6XSmnGMqnZ2daX+vLjXVn/lETqcz7fnS/RnGYrFYU1PTpPvi/H7/pD8zkK8Y6QIwa6Zpqq2tLW1DS8Mw5HK5FAwGFQ6HExPs9+7dmxjxCAaDam1tTWk10NDQoK1bt8rn8yWNXHk8HjU3N6fMRfL7/XK5XGnfmty2bVva2uP1dXR0pOybSV3x87S1tSkYDKa0OnC73ero6EgZ7ZrYruHSEb3423vx37Pm5ubE6N6lwuGwAoFA2lHByYTD4RnNu9u5c+eUx092vsbGxpS6gsFgog3FVDU7nc5JW1kA+YrQBWBGdu7cmWgPEJ93M9kjIIfDIdM0tXXr1sS2icd6vV41NDSk/cvX4/EkPS70+XwyTXPSx2dOp1NdXV2z/bGSzKSuidL9PsQf/6W7htPpTPu256Vz5JqamuTz+dTW1pby86cLetMxTXNGIW337t1TPuarra1Ne436+vqUbR6PR01NTdO+5WoYBt3pUXCYSA9gRnbv3q3Ozk51dnaqu7tbPT09034m3SjIdPOK4p+J/8UbDAZVV1c3aVhI9xf/bMy0rnT7MtHV1TXp8fHf3zjDMNTQ0JAS9GYanuJ6e3vnra/WZOJz0CbauXOnJGX0ZqLD4aDfGwoOI10A5mSy0ZqJ0gWDeGgJh8OT9mQKBAJJIScbLQ5mWtdEmQYZ0zRlmuaMQlp8uZ6JI4t79uxJCTaZXn82YW2mJl6jo6NDHR0dM3pkSINUFBpCF4A5m2ze1FTifyFv27Yt48WWF3p0RppdXbO9xkxGcuKPOwOBQNI8t9mEJ8MwshpoTNPUzp07M3qsGBeJROj3hoLD40UAczabEaj4X6jxNgmZHJ+NOT4zrWsu15npz9Pc3JwYfZtqLt10ampqsvrozuPxyOFwpDxWnOzlACl7o3FANhG6AFimoaEh7duDcRNDSV1d3ZQT5ScLSVP9xd3d3T3numaroaFhyuafoVAo7YR6SYk3JWe75JLT6czaSFdHR4eCwaDa29tn9DlGulCICF0ALBMIBBQOhycNHxNHRnbv3p1oUZHOZCFpqkeSk4W4mdQ1W/Emq62trWn3P/nkkymB0TAMud3uSRvHZmo+3/ScSvxtxV27dqWMysVfWJhMT09PVh4nA9lE6AKQkfjIyEweS013rNPpVCAQ0M6dO1NGXtra2pKWqTEMQ+3t7fL5fCl/Wbe2tk466lNXVyen06k9e/ZMev5Lw9VM6prOZCNK8Z+npaUl5fpTLdHj9XoVDodnNYE+rq6uLjGZfyqZ/plHIpG0x3g8HjmdzrQd+VtaWqYMVaFQSC6Xa8rrAvnGFotNsv4FAGgs0Dz55JOJYGAYhpxOp7Zu3TrpiE98mZ1wOJx4Sy8eZNI9MoovhWMYRqL1Q0NDQ9pjw+FwYqQnvjxPU1OTWlpa1NbWltLQNP4Zn88np9OZ+Izb7VYoFJLH40m0ZLj0Edh0dcWXAZr4c9bV1am9vT3t70G6tg8Tf574mpVut3vKR2uT9QmbCZfLJa/Xm3Y+Xro/861bt8rv9yeNWLlcLoXD4UQIjv85d3Z2qqOjQx6PR263O+lFi56eHnV1dSkUCmnXrl2TLpFks9mSlm4CCgGhC0BBiDcPTRe6Ckl8XcfZzueK6+joUCAQyMmu77lcGzAXPF4EgDzS2dk558AljY2mZWNe12w8+eST8nq9VpcBzDtCFwDkqGAwmNRWIRwOz1vnfSm5BUWuiE+wz0YjXCDbCF0AkKPa29uT3srs6OiY14atu3btSiyunSt27typ3bt3W10GsCAIXQDyWigUUn19vdra2mSapmpraydtw5Bv/H6/3G632tra1NrauiCjP7t3756ySWk2BYPBxMsIQCFiIj0ALHLx0TQrH+mFw2EFAoFJ32YECgGhCwAwp2WFCuH6QDYQugAAALKAOV0AAABZQOgCAADIAkIXAABAFhC6AAAAsoDQBQAAkAWELgAAgCwgdAEAAGQBoQsAACALCF0AAABZ8P8DJQ++e+xwf78AAAAASUVORK5CYII=",
202
202
  "text/plain": [
203
203
  "<Figure size 640x480 with 1 Axes>"
204
204
  ]
@@ -234,7 +234,7 @@
234
234
  },
235
235
  {
236
236
  "cell_type": "code",
237
- "execution_count": 17,
237
+ "execution_count": 10,
238
238
  "metadata": {},
239
239
  "outputs": [
240
240
  {
@@ -281,12 +281,12 @@
281
281
  },
282
282
  {
283
283
  "cell_type": "code",
284
- "execution_count": 18,
284
+ "execution_count": 11,
285
285
  "metadata": {},
286
286
  "outputs": [
287
287
  {
288
288
  "data": {
289
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHSCAYAAADIRU4IAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATaFJREFUeJzt3XlcnOW9///3sISscGfInmCSGY0xGhMZ4laXqjO2am3VMIlttV/bHpn2dD/VID3d23PIYH5dT20H29q9TUBba22rTNTWpdrAJG4xmjAmYjYNwwDZIMD8/kAmEAYYuAcGhtfz8eDxGK57mQ8S4c11Xfd1WSKRSEQAAAAYkrRkFwAAADCWEaYAAABMIEwBAACYQJgCAAAwgTAFAABgAmEKAADABMIUAACACRnJLgBjRzgcVmlpqSQpGAzK5XKpqKgo7uMAAKQiwhTiVlxcLJ/PJ6kzOC1evFhWq1WFhYVxHQcAIBUxzIe4hMNhVVdXKxwOS5IMw9CaNWuiPVEDHQcAIFURphC3YDCoYDAY/dwwjB6fD3QcAIBUZGFvvrElHA7L7XbL4/H0O3xWVlam+vp65ebmqra2Vi6XK+HDbQ6HQ1arVVVVVUM6DgBAKmDO1BjhdrtltVolSX6/Xx6Pp89zPR6P7Ha7vF5vtM3lcikUCiVsQnhXL1RFRcWQjgMAkCromRpjgsGg7Ha7KioqYvY0BQIBORwOnfpt7at9qFwul7xer/Lz84d0HACAVEHPVIrx+XwxA0xXW2VlZTSEVVZWDjgE53A4evVmFRcX9xuUBjoOAEAqIUyNEI/HM+C8pUAgoOLiYlNzjPx+f58hxjAMVVVVRWsoLCwc9Dyq8vJyuVyumOEsnuMAAKQanuYbIV6vV6WlpaqsrIx5PBAIyO12R9dpGqpgMBidW3Uqq9Wq6urqId/b7/crHA7LZrMpEAgoEAhoy5YtcR8HACAV0TM1QgzD0ObNm+VwOCSpR29NMBiU2+1WVVWVbDbbsNbQtQ7UYIXDYblcLkmdw3hduoYABzoOAECqIkyNIMMwVFNTI4fDIcMw5HQ6o9uuVFRUmA5SQw1K8TAMo9/J6wMdBwAgVTHMN8K65i15PJ7o/KKKioqETNY2DEOSFAqFYh4fzrAFAMB4RZhKApvNJp/PJ4/HI4/Hk/Cn3voKTaFQKBq4AABAYhCmkiAcDsvj8cjn88nn8ykQCCTs3v2FpXA4rIKCgoS9FwAAIEyNuHA4LIfDIZ/Pp6KiIlVUVMjtdicsUK1Zs6bPYT5J0UniAAAgMQhTI6grSHm9XjmdTkmdi2l2BapEbArcFcxOHerz+/2SFH1fAACQGISpERIOh3XVVVfJ6/X2WsSyK1C5XK4BA1VXSOqr98npdKqwsFClpaU92r1er3w+H3OmAABIMPbmGyFmV0AvLi5WIBBQdXW1wuGwDMNQQUGBDMOIuZlwWVmZpJPLMQz03gAAYGgIUwAAACawaOcI6Ojo0L59+zRt2jRZLJZklwMAAOIQiUTU3NysefPmKS2t75lRhKkRsG/fPuXl5SW7DAAAMAR1dXVasGBBn8cJUyNg2rRpkjq/GdnZ2UmuBgAAxKOpqUl5eXnR3+N9IUyNgK6hvezsbMIUAABjzEBTdFgaAQAAwISUDVPhcFgul0uVlZWDvtblckWXIpCkYDCo4uJieTyeRJcJAADGuJQb5nO73bJarZI6V/0eSgAKhUIqKyuLrtUkdS6GGWv9JwAAML6lXJjqWsAyGAyqvLx8SPew2Wxau3atamtrZRiGXC4X27AAAICYUi5MJYLVatW6deuSXQYAABgDUnbOFAAAwEggTPUjEAiovLw8OhEdAADgVISpGEKhkIqLixUKhVRUVKRQKCSHw6FgMBjX9S0tLWpqaurxAQAAUhNhKgaXyyWv1xuddO50OrV27Vq5XK64ri8tLVVOTk70g61kAABIXYSpGIqKinq1OZ1OBYPBuNatKikpUWNjY/Sjrq5uOMoEAACjAGEqTjabTZLiWmsqKysrunUMW8gAAJDaCFOncLvdcjgcfR4PhUIjWA0AABjtCFOnCAQC0RXUu+sKUatWrRrpkgAAwChGmDpFYWFhzKG8rrlSseZTAQAAKRKJyPPran3uD1uTXcqIStkwFQ6HJfU/LGe322W323u0lZSU9NrPLxAIqLS0VBUVFTIMI9GlAgCQEvY3HtcjLx/Ug9v26WhrW7LLGTEpt51McXGxAoGAqquro593haCuffu6GIbRa0jPMAx5vV55PB4ZhhFdW2rz5s3Kz88fmS8CAIAxqCMSSXYJSZFyYcrr9cZ9bk1NTcx2wzDk8/kSVRIAAEhhKTvMBwAAMBIIUwAAACYQpgAAAEwgTAEAAJhAmAIAADCBMAUAABJuPK2SQJgCAAAJYbFYkl1CUhCmAABAQkTGU3dUN4QpAACQcOOpk4owBQAAYAJhCgAAwATCFAAAgAmEKQAAABMIUwAAIOHG04N9hCkAAJAQrDMFAACAQSNMAQAAmECYAgAAMIEwBQAAEoLtZAAAABJkPM1FJ0wBAICEazrWluwSRgxhCgAAJNyj2w8ku4QRQ5gCAAAJwTpTAAAAGDTCFAAAgAmEKQAAABMIUwAAACYQpgAAAEwgTAEAAJhAmAIAADCBMAUAAGACYQoAAMAEwhQAAIAJhCkAAAATCFMAAAAmEKYAAEDCRSLJrmDkEKYAAABMIEwBAICEi4yjrinCFAAASAhLsgtIkoxkFzBcwuGw3G63PB6PCgsLB319WVmZ6uvrlZubq9raWrlcriHdBwCA8chiGT/RKuXClNvtltVqlST5/X55PJ5B38Pj8chut8vr9UbbXC6XQqGQioqKElYrAACpZPwM7PWUcmGqoqJCkhQMBlVeXj7o6wOBgMrLy3uN9Xq9XjkcDsIUAAB9CB1ujb4eRx1TzJk6lc/nU35+fq/2rrbKysqRLgkAgDHh7kdfTXYJSUGYOoXf75fNZot5zDAMVVVVjXBFAACMDeGjrQOflIIIU6cIBoPROVenslqtqq6uHuGKAADAaJZyc6aGk2EYCofDA57X0tKilpaW6OdNTU3DWBUAAKPPOFpmip6p7uIJSvEoLS1VTk5O9CMvLy8h9wUAYDQbR3POeyBMdWMYhiQpFArFPB5v2CopKVFjY2P0o66uLkEVAgCA0YZhvhj6Ck2hUKjPyendZWVlKSsrK8FVAQCA0YieqVN09U7FEg6HVVBQMHLFAAAwRrE33zi2Zs2aPof5pM6V0AEAALoQpk7hdrsVCAR6DfX5/X5JktPpTEJVAABgtErZMNUVhvrrZbLb7bLb7T3anE6nCgsLVVpa2qPd6/XK5/P1OwwIAMB41n1gj42Ox7Di4mIFAoHo4prFxcWqqKiQYRjRffu6GIYRc4HOiooKlZWVqaysTIZhqKamRh6PR4WFhSPyNQAAMBZ1j0/jac5UyoUpr9cb97k1NTV9Hlu3bl0iygEAYPwYR71R3aXsMB8AAMBIIEwBAIDEGEdDe90RpgAAQEK0tHVEX4+nCeiEKQAAkBA7DjQnu4SkIEwBAACYQJgCAAAwgTAFAABgAmEKAADABMIUAABIuPG0AjphCgAAwATCFAAAgAmEKQAAABMIUwAAACYQpgAAAEwgTAEAANPCR1uTXULSEKYAAIBpv/7XnmSXkDSEKQAAYNr4WVWqN8IUAACACYQpAAAAEwhTAADANEuyC0giwhQAADDtke0Hkl1C0hCmAACAaS/tbUp2CUlDmAIAAAk3np7uI0wBAABT9oaPJbuEpCJMAQAAU+6seD7ZJSQVYQoAAJiyv/F4sktIKsIUAAAwZTwviyARpgAAgEnBQ0eSXUJSEaYAAMCQ7XrrcLJLSDrCFAAAGLIjLW3JLiHpCFMAACDhjra2J7uEEUOYAgAAQ2bpY/b5fU/vHtE6kokwBQAAhuynT74es735+IkRriR5CFMAAGDI/vz8vpjt42k7mYxkFwAAAMaeY63t+tbD25NdxqhAzxQAABi071S9qt8990ayyxgVCFMAAGDQtuxu6P+EcTTOR5gCAACDFomMo7Q0AMIUAAAYlIYjrXr+zcZ+z4mMo66plJ6AXlZWpvr6euXm5qq2tlYul0uFhYVxX+9yuZSfn6+1a9cqPz9fwWBQPp9P4XBYPp9vGCsHAGB0ikQi2lhdF8d5I1DMKJGyYcrj8chut8vr9UbbXC6XQqGQioqK4rpHKBRSWVmZysrKom1Op1NVVVUJrxcAgNEuEonoxnue0ba6cLJLGVVSMkwFAgGVl5f3Gs/1er1yOBxxhymbzaa1a9eqtrZWhmHI5XLJ6XQOR8kAAIx69Uda4w5S46hjKjXDlM/nU35+fq/2rrbKysq4hvusVqvWrVuX8PoAABiLin5VnewSRqWUnIDu9/tls9liHjMMg2E6AAAG4YlX31JlzZsKvBGO+5rx9LRfSvZMBYPBPofjrFarqqsHl6wDgYCqq6tVUFAQs8cLAIBUdtt9W5JdwqiWkj1T/TEMQ+FwOK5zQ6GQiouLo5PWQ6GQHA6HgsFgv9e1tLSoqampxwcAAEhNKdczFW9QiofL5eoxWd3pdGrt2rVyuVyqra3t87rS0lJ94xvfSFgdAACMpEgkoh89vktLZk/TpjiWQYh5jwTXNJqlXM+UYRiSOnuVYhlM2Ir11J/T6VQwGFRlZWWf15WUlKixsTH6UVc3tH+IAAAkw7a6sDY8+pqKfl0j/ytvJbucUS/lwlSXvkJTKBSKBq6h6JrY3t8k9qysLGVnZ/f4AABgtGs40qpvPrRdj+8wH6DG0fzz1Bvmk9RvWAqHwyooKBjwHm63W8FgUDU1NTGP99XzBQDAWLXu/hdUtf1gsssYc1IyTK1Zs6bfJ/ZcLteA9wgEAjGXV+gKUatWrRp6gQAAjBKP7egMT5MyMwhSQ5SSYcrtdqu8vFzhcLhHL5Xf75ekuFYxLyws7LEVTZeuuVLxrqIOAMBos31fk370+C795xV2fewXLMRpVkrOmXI6nSosLFRpaWmPdq/XK5/P12sY0G63y26392grKSmRx+Pp0RYIBFRaWqqKigpT864AABhpHR0Rfd+/U4+/+pZuvOdpPfzifn34p88lu6yUkJI9U5JUUVER3aTYMAzV1NTI4/HE3EbGMAxZrdZebV6vVx6PR4ZhRNeW2rx5Mwt3AgDGjFf2N+lA43FlpFv0Xf9rPY6Fj55IUlWpxRIZT+u9J0lTU5NycnLU2NjIk30AgGFXFzqqZ2oP6ab8BTrjv/8mSbr1woX69bN7RrSO3euvG9H3S7R4f3+nbM8UAADjQXtHROlpFm2rC+uXz+xW8XuX6sZ7ntahw62aPOHkr/mRDlLjCWEKAIAxJBKJqOHoCVmnTFBFdZ2+9ueXVX5rgW75Wef8p7ebW3TocKsk6TO/35rMUseNlJyADgBAqvr2w68o/1tVeuTlA7qz8gUdbW3XR3/x7+jxp3YdSmJ14xNhCgCAUaT+cIv+9uJ+nWjviLY99Pw+feb3W3X8RLt+9tTrkqRvP7w9evxEO9Ofk4lhPgAARlAkEpHFYunR9vU/v6ym4yf0/7lX6Jaf/Vuv7G9S8XuX6trlc/SZ32/VC282SlKPbV7qQsdGtG70jTAFAMAwO36iXRMz03X8RLtu+NHTOmtutr67dqUkqaWtXb94Zrck6VNXnK5X9jdJkrx/3yHv33f0uM/hlraRLBtxIkwBADBIx0+065X9TVqxwFBaWmcvUyQS0ec3btPkCRkqvWm52jsi2vpGg/5VW6/vb96pX338fLW0dWjHgWbtONCsnEmZmjktS0/tPDnH6ZfvhCqMLYQpAAD6cLilTT9+YpeuXT5XZ8/LibZ/seJ5PfzCfn3rhnN064ULJUlvNhzTg9v2SZK++r5l+tW/dqv0byd7lr7+55f1X64zo5//IkZw+tW/WL5gLGICOgAg5bV3RPTwC/v1ZsPRXse272tS6EirfvT4Lj0brO9x7IeP7dSPHq/VdT94SlJn79ObDUf18Av7JUm+f9RKkr764Et6z/f+Gb2uMvBmjyAlSa8dPKxP/KYmoV8XRgd6pgAAo15d6KimT5mgqVmxf21tfaNBv/7XHt11zVLNyp7Y6/hDz+/T5zdu06pF01XxiYuj7S/va4wGpS6711+nutBR3Vz+rPaGT07yfvVAs/yvHNTdj7wabXuz4ZguK3tcb4R6hrSv/OmlIX2dGJsIUwCQYLsPHVF6mkV51slqPHpC0yZmROfV4KTDLW2anJku/ysHdaI9ouvOnRvzvDfqj+qyux9XzqRM/XPdFVJEypmc2eOcG+95RpK0ecdbyp06Qd98/zm65IwZ6uiI6LnXQ3p0+wFJ0pbdDfrM77fqijNn6qb8Bfrri/t7vd/Og836nn9njyAlqUfPU4/6Qr17uzC+EKYAIAF++9wePbh1n+52n6v3/fAptXdE9IuPrtLa8mf1qSvsuv1Sm17Z36wLbdZej8Un0pbdIWWkWXTeadOHfI+tbzTojdBRvefsOXr4hf1ynT1b2RMzB7zuT1v3yvfPoL52/TJ5/75Dt1ywUKsdC2KeW/v2YV3/w6d0xdJZ0SGz8xc7NXNaVo/z3qjv3GNOkhqPndBlZY+royOimq+4NCEjTc3HT2hP/ckw03jshBqPndAtP3tOu9dfpz9t26v/2vR8j3s+9Pw+PfT8Pr28r0nVu0O9anN9N3ZoAvrCRscjgI2OgdT0fF1YX/rjiyp+71J95OedK1BfbM/VM7Wd825sM6YoeOiIJGnJ7Kl67eBh/ehD+X32wAzVkzvf1vq/7dBX37dMa8uflSRt/uLl2rSlTh+7ZLFmxxj26s85X3tEh1va5Fo2W1XbD2plnqE/fepdA1636K6He7X1tdHtdx59VT94bFePtvtuW6Wm4yf0/hXzZLFYVLX9oG7/VbWmZWWo+ZQlAf555xUypmSq6FfVejbYOxBJ0vmLrPp3jLCEkTNeNjomTI0AwhSQWh7ctlf2mVP1g8079ej2gz2OdYUmSTFDgPOsWUqzWGSdMkHrV59rqo6GI62amJmuFd94VK3dVsuWpBV5hp6vC2vpnGn6++cvi+teX9i0Te9fMa9XT44k3XXNUmVlpOmj71rc69jXHnxJ7ZGIfvPsG72OuR0LNDEzXd/8wNmyWCzafeiI/u/xXTp+ol1/eaH3EJskfeuGc3TWnGm664EXteutwzHPWZg7WQcaj6ulrSPmcYwO4yVMMcwHAINQvTukz/1hmyRpoNG6I629F1h8s+GYdhxoliR94wNnK81iUWb64B+sbjx2Qud9q0qzs7N6BSmps9dMknYcaNYPNu+URdJnrjqjz/ttqq7TE6++rSdefTvm8fXvPJm2dlWeJk84+auj6fgJ/bKfx/krat6UJN18fp7qQkf1438Eo7X1JZ7J292H9oBkI0wBQBzu/WdQO99q7rHWUKx+/e57pHXEOH78RHv09UPP79eX/viivvH+s/XB80+Lu5ZIJKIX39le5GBTy4Dnf6fqNUnSRy5a1Gvi9q63DuvJnW/rzYb4tiZ5cNs+/ePVt/V51xn64WO7dKEtN67r3v9/T6s91n8QIAUQpgAgDv/z11ckSZct6T+8dA9LsYSPnYi+/m7Va2pt61DJAy9qdf4CHW1tkzF5Qr/X//KZ3frB5p36+KW9h9sG8vCL+/X7f7+h9auXa2pWhqZmZeiWnz6nA03H475HyQMvSpL+/nLn03EP9zFUdyqCFFIZYQoA+vDgtr0q/2dQ3m5zm1oGCEsDzeE51nry+u6P3n/8l1v079dDeuyOd2u+MSnmdRnpFpX+7RUdP9Ghsr+/2uucgXzpj51B6IYfPa0T7RFlplt69KQBGBrCFAD04ZsPbVf9kVZ9YeO2aFtWZnq/17QOEKb6CltPvrM/25+27tXrh47omnPm6AJbrvaFj8mYnKl33/2ELrbn6vgJ8xOuuwIUQQpIDMIUAHRT+/Zhfeq3Af3nFaer/kirJPWYTzRQz1Rbh7mw8+C2vXrt4GFV1rypG8+brz9u3av3nD1bR1vb5X/lLVP3BjA82JsPALr59l+2a8eBZn3291ujbd3n+xxu6f2EXncms5T2hU/OX/rj1r2SpEdePtjX6QBGAXqmAIx7J9o79NH7tujsedkxn2rrvvTAkQHClNmeqcx0tp0BxhrCFIBx79lgvZ7adUhP7Tqk06yT+z332ADDfGYfWuOhN2DsIUwBGLf+96+v6IU3w1pTkBdta4uxAGZ3w73i9kDvD2D0IUwBGJcikYjK/xmUJOVMOrmQZazVxLsbaB0ps3jCDhh7mIAOYFz56ZNBFXy7Sk/vqo+2tXULMEdb+w9LiViaoD8DhTkAow9hCsC4sDd8TJFIRN9++BUdOtyqux/ZET3WfTPigcIUAJyKYT4AKW/zKwf18V9W6zNXnh5te/6dve0kKXy0NRllAUgRw94z9cADDwz3WwBAL5FIRH/49xsKvNEQ3Xrlh4/tinlu8/H+lzsAgP4Me5jy+XzD/RYA0EMkElHgjQbd9cCLuumeZ1R/pP/NiQdaOwoA+mN6mG/Dhg2qqqpSKBTqdSwcDisYDJp9CwCISyQS0W33bVHoSKuuXjY72m6x9L8QJvOkAJhhKkx94hOf0KZNm1RQUCCHw9HreH19fcyQBQCJtK0urGeD9bph5Xz947W3JUmLZ0yJHh9o8+E2VsoEYIKpMBUKhQYMS1dffbWZtwCAmFra2lWzp0EXLM7VDT96WpK08+Dh6PHGYyeir4d7bSgA45upOVMul2vAc7xer5m3AIAe3mw4qrb2Dv3fY7v0oXufk++ftdFjL+4NR193nyc13KuWAxjfTPVMhcPhAc9paGgw8xYAoIYjrcrMSNMLdWF96KfPaU3BAm2qflOSok/qSdKRlpM9UPWHWe4AwMgw1TNVVFSkDRs2aPfu3X2eQ88UgKF4q+m43qg/qreajusS72Nafc8z+t2/35CkaJA61dHWk0/l1R8hTAEYGaZ6poqKihQOh1VcXCzDMGS1WmUYRvQ4T/MBGIzg24dVvbtBHzhvnm740dM6dLhVd12zVEda2/XqwWZNyOj/77/u60UNNOkcABLFVJiqqqqSzWbT6tWrZbVaex3naT4AfTl+ol0TM9P16oFm/fCxnfrsVWfoi5ue14t7G3XoSIv2NR6XJFXvOfkzpGGAlcp5Kg9AMpgKUzabTdXV1f2ew9N8wPgWiUQUiUgWi/SbZ/fINnOqMtIsuvXn/9YtFyzUrrcP65+vva3GYyf04t7OLV4eCOyNXr+n/mj0NetBARiNTIWpe++9d8BzmDMFjA9t7R3a33hcedbJqtnToOder9fH3rVYN5c/q6ZjJ/Sla8/SVx58WRPS0+Q6e7Za2zr086dfj17/5M5D0df1h08+ifdGtzAVYh4UgFHIVJg677zzBjxnoJWHh1NZWZnq6+uVm5ur2tpauVwuFRYWjvg9gFRwsOm40tMssk6eoN88t0fn5U1XVmaaSh54UZ+83K4tu0Py/TOo76xZof/96w4dOtyitvaIttWFJUkPbO2cNN7a3qHt+5r6fa9wtzWimtnqBcAoZ3o7mYEUFxfrkUceGe636cXj8chut/foGXO5XAqFQioqKhqxewCjQSQSif5h03CkVZMmpCsrI03/qq3X8gU5am3r0B+21GntqjzV7GnQn7ft09euX6ZvPLRdOw406Z4PO1T442eUlZmuO65eoq8++LKmT87UyjxDNXsa9Nk/bI0Owd39yKs69E7P0qPbD0Rr6BrCk6S3m/vfKy/C1CcAY4glEonvx9aGDRtUXV2tP/zhD9G2VatW9XtN19N87e0jO88hEAjI4XDo1C+tr/bhukeXpqYm5eTkqLGxUdnZ2XFfh/Ghrb1DGelpikQiajreppxJmTrW2q7Q0VbNNyZpX/iYWts6tGjGFG3ZHVLOpEzZZ07V757bowtsuZo2MUO/ffYNFToWqK7hqB4I7NUXr16iPz+/T/949W19d+1KfeI3NWpt61BZ4bla4/uX7DOn6nNXnaGiX9co/zRD84xJ+ssL+3VT/nz95YX9am3r0HXnztXDL+yXJF2+ZGZ0m5Zlc7O1fX//PUtdJk9IZ54TMI7tXn9dskswJd7f33GHKbvdrt27d/cIRlarVQUFBbLZbDGviUQiqqysVH19/SDLN8fj8ai6ulo1NTW9jlksFlVUVAw4VJeIe3QZrjDVvbfBzLV93SfWOe0dEaVZOv8btLZ1RB9Vb2lrV1ZGuiKRiFraOjQxM11t7R1q64hoYmZ6dDuPiZnpajx2QpMnpCszPU0HGo9rdnaWOiLSW83HNTdnko6faFf9kc4g0XCkVS1tHZqTM1F1oaPKnpip7EkZenlfk07LnayJGel6cW9YZ8/L0Yn2Du040KyChdP1ZsMxvdlwTBfZc/XS3ka1tnfovDxDj+14S/OMSVo8Y4r++uJ+rVpk1dSsDD384n5dv2Ke3m5u0TO1h7SmIE+BPQ0KHjqiD51/mjZV1ykzPU3XLp+r7/lf0znzc7Qyz9D3N+/UB1bOU0Zamu57+nV99qoztK0uLP8rB/XtG87RT/5Rq7rQMZXetFyf+8NWTZ88QV9wLdHHf7FFly2ZqXefOVOf/f02feJym460tutnT72ustXn6vdb3tC2urDuvbVAdz3wopqPn1D5Rwr0sV9sUXtHROtvWq67HnhRGWkWXbN8rh56fp8usuVqT/0R7Ws8rtX5C3R/oHNYrXv4OX+xVf9+PdTr9UAy0iw8KQdg0EYiTEUiEb0ROqqFuVMGPnmQEh6mGhsbFQqFtHjx4mhbQUHBgE/zrVmzRps2bYqz7MSw2+3Kz89XRUVFr2PTp0/XmjVr5PP5hv0eXYYrTP33H1/UX17Yry9du1RvNbXol//arbvdK7Tx33V6aV+jvn/zefrmX7arrb1D/3Pjcn36dwGdMWuqPnLRIn3uD1vlLshT3vRJuvuRV1Vy7VnaebBZ9wf26gcfXKmfPvm6Xjt4WD/60HkqeeBFWSzSt29YrqJfV2vFAkM35c/XusoX9OELTtPUiRn68RO1+ur7lumfOw/pqZ2H9P2bV+o7Va/pYNNxff/m8/TFiuc1eUK6vvK+Zfr07wJascDQ+86dq68/tF1rChZI6lyI8UvXLtWD2/Zp+/4m/X/uFfrmX7braGu7vrtmpT6/catyp2TpU1eerq/86SWdNTdbl5yeq3uffF3vO3eu2toj+vvLB/S5q87Qxi11OtB0XF++7iyV/f1Vnejo0B1Xn6m7H3lVkyek68MXnKZ7n3xdC3Mny7Fwuh4I7NXlS2aq/kiLXtrbpJtX5emh5/fpSGu7br1woX797B5J0k3586NPml1zzhz97aUDmpSZLtvMKXp5X5POmput1w42q70jolWLpmvL7s4dALq/XpFn6Pl35hHZZk5R8O0jPb6v3YPLfGOS9oaPSZKWzpmmHQeaJUlzcyZq/ztLBwDAaHXl0llqaWvX164/W5/9/VaduyBH7oI8/dembbpx5XydljtF33n0Vf3X1Wfq9UOH9dDz++Vdfa5+89wevXagWd9Zs1Jf/fNLykxL05ffd5Y++/utWpFnaHX+At1R8bw+eP5pykiz6Mf/qNXP/t8qXWTPTWj9CQ9Tsbz++us9wtVQz0k0i8WioqKimGHHbrfLMIyYPU6JukdLS4taWk7OCWlqalJeXl7Cw5Tn19V65OWDCbsfAABj1bc+cLZuvWhRQu8Zb5gytZ1MfyHp7rvvVklJiXJzE5sSzTIMI649Bc3co7S0VDk5OdGPvLw8U+/Xl7LCFbJOmTAs9wYAYKywz5yiWy5cmLT3NxWm+nPnnXeqtLRUpaWlw/UWMZkNSom4R0lJiRobG6MfdXV1pmuKJWdSpj5+yclAm5l+ct7ThPT+v7WTMtOjrzPShjbvKr3bdVkDbPMBAECX7r8zciZlRl9Pm3hykYHJE07+nor1O21Kt+NrV+UldSmmhPwGfOyxx7RhwwaVlJT0+PjkJz8pv9+fiLeIW9fegH1tYxNPUDJ7j6ysLGVnZ/f4GC4fuWihXMtm66b8+frrZy/V+Yus+syVp+uXHztfy+fnqKzwXHlXL9dZc7P1u/+4QJ+43K6VeYb+/Ol36f0r5sl51mw9+oXLVLBwuq5fMU+PfuEynT0vW598t10/ucWhxTOmaP1Ny/W165dp8Ywp+s3HL9DNq/JknzlFD336El2w2KqL7bl6+LOX6MzZ03Tt8jn6/e0Xaua0LN128SKV3rRc07Iy9M0PnK1PXG7XtIkZuu+2Vbpq6SzlTpmg+z95sRblTtbSOdO0yXORsidm6PzFVv34w/lKs0hrChbos1eeLkkqfu9SOc+arfQ0i763dqXsM6doYmaafnJLvqZMSFfulAn67toVslikJbOn6q5rlkpS53+f8+ZLkj5xuV1LZk+VJH3p2qXKfud/3C9d23nuxMw0fead95uTPVGFjs75XBcstmpFniGps6au/+E/eP7JXsebV518fd25cyV1Bs7zTuu8blHuZE3L6rzu7Hkn/02sfOe+p75emDs57n8H841JcZ8LACPl/z50nspvdej8xVZt8lykL193li49Y4Ye+fxl+vgli/Xes+fo0S9cpvecPVsfv2Sx/vzpS3SRLVfr3numfn7bKhUsnK4ffvA8ld60XBfbc/WnT71Ln7nydF1os+qvn7tUN543X1cvm60PX5C8XinJ5JwpqXMSeiAQiH7eFUTC4bBcLpd+8pOfJGXOlNPpVFVVVa9j06dPl81mi2vOlNl7dGFphP51vDPZOi2t82lByzuvW9raNSE9TRaLRUda2jQlK0MdHRE1t3QuH9DS1q7jrR3KmZypxmMnlGaRpk3M1L7wMVmnTFBWRpp2vnVYthlT1B6JaOfBwzp7XrYajp7Q7vojyj9tuvbUH1Hz8TadMz9HgTcalD0xQ4tnTJX/lYNaNjdb06dM0N9e3K8rls7SsdZ2PfHa27rxvPl68c1Gbd/fpFsvXKgHt+3V8RPtuvn80/Q9/2talDtFly2ZqQ2PvCrnstmaOS1LP36iVkWX2fRG/VFtrK7Tt284R795do+272vSd9eu1H//6SUdb23XN284Wx8sf1bLFxj64Ko8ffK3AbkdC2SdMkG+fwb1uavO0NO7Dql6T4O++r5l+k7Vazrc0ibv6uUqvv9FSdJtFy/SL57Zrcx0iy605erJnYeUMylT84xJemV/k9IsUteDeWfMmqqdbx2WJC2eMUWvH+qcDD99cqYajp7o9b0CgMFgaYQ43HXXXZI6h7VycnJ0//33a/Xq1dHj999/vxwOhxYtWjTUtxiS6dOnq6CgIGYQ6m9ieaLv0YUwhcHoviRF0/ETmjohQxaLVBc6pjzrJDW3tCn49hGtzDO0661m7Qsf16VnzNDfXjqgCelpetfpM/SDx3Yq/7TpWpQ7WV998GXd9q5Faj7eJu/fd+g7a1boV//ao8d2vKX7blulz/5ha+ex1efqjornNSE9TbdcuDC61ctZc7P1yv4mZU/MUNPxztXIZ0ydoEOHO7d2WZQ7Wbvf2fJlxtSs6IKds6Zl6a0BFucEkNrGS5gyvQL6+vXro69tNpu2bdumlStXSpJWr16tDRs26I477jD7NoOyZs2afpdscLlcI3IPYCi6j/tnTzw5l+C0d4b9sidmRocDT581TafPmiZJunb53Oi5xe9dGn39+6ILo6+7hi3fZZ8R7eF76NOX6NiJdi2ZPU2Z6RbNmJqlZXOzdehwi957zhxNzEzTHRUv6MvXnaWndh7SA1v3at17l+orf3pJLW0dunb5XN3zRK2kziUg/vZS56rnc3Im9humsjLS1NLWMaT/RgAwmpgKUzNmzOjxuc1m0/r166NhKlncbrfKy8sVDoejw46SovO3nE7niNwDGK3S0izRSZ951pNzsz6wcn709Q8+eHLvzcBXOv94uHb5XHkut+vMOdNkmzFF2/c36UPnn6Y3QkfVEYnok5efrkdePqAls6fp2uVz9cKbJ7eQkXoOH87KzlJdqHMNre7raRGyAIw1piagHzrUucv7Y489pt27dysnJ0c1NTXas2dP9JxYw2TDzel0qrCwsNeThF6vVz6fr0c4kjrXjbLb7abuAYwHEzPTdeaczp6wgkVWfeSiRcpIT9P/fShf93zYoeULcvTI5y/TRs9FKnQs0M2r8nT/Jy/Sne85U5L0pWvPit5r1UJr9LV91tTo6+mTWe4DwNhietFOn8+nsrIyuVwuPfLII6qsrJTH49GaNWsUDAZlGIY2btyYyJrjVlZWJknRBTZdLlfMLWAcDoesVmvM4BfvPfrDnCmMd5FIRG83t2hW9kQ9tuOgHt/xtr549RK993tPquFoq0quWaqvP7RdkrR8fk6PTZFPlf7OgwoARr/xMmfK9NN8krR582bZbLboU3vl5eW66667lJubq5qamnEfIAhTQGz7G4+p5USHZkzL0s3l/9KSWdM0J2didA5WLNMmZqj5nYnw3YcN2T8QGH0IU0gYwhQQv8ZjJ/SNP7+sG86br18+s1ubd7yly5fM1D9ee1tS5/pbe955enDJ7Kl67WDn0g7TsjLU3NKWtLoB9DZewpSpOVP333+/1q5da+YWANBDzqRMfWftSl22ZKZKVy/XZ688Xd9du1Jnze38QXbl0lnRc/Omn5w8Pzkrvde9ACRPnnX8LCZs6mk+n8+nYDCopqYmelwAJNysaRP1X1d3Tl7/7toV+ldtvW5edZrue3q3pJ5PIk7NytBBsa4VMFoseWfZlvHAVM+Uy+XSrl27+g1SGzZsMPMWACBJWjonWx9912JNmpCuez6cr2/dcI4uPePk8ixTs/r/27D7fpQAkEimwpTT6dSGDRvU1NTU5znJWBoBQGq7dvlc3XrhQl1yxgw5z5qtO99zpubkTOz3mu4bqHbfFBwAzDI1zLdp0yaFw2EtXrxYNptNVqu1x/pL4XB4xDc6BjB+ZGWk66f/r0CS9PSuQ3rk5YO6/dLFuvfJ13udOzUrI7oie86kzOh2OABgluk5U1arVQ6HQ1LnWjINDQ0JKQwABuNdp89Q4CsuTZ+cqdcPHZH/lbd03blz9fAL+yVJU7v1TE2bSJgCkDimwpTVatWuXbv6Pefqq6828xYAEDfrlM7V00uuPUu2mVP1H5csjoap7ovATGT+FDDsxtO6S6bmTPl8vgHPKS4uNvMWADBo9plT9aVrz9Ks7Im62J6rCRlpuvWihdHjUyYQpgAkjqmeqauuuipm++7du2W1WpWdnd3nOQAwEu79SIFCR3oO6XWfjB5LZrpFJ9o7/662WHr2agHAqUz1TJWUlPRqa2xsVG1traqqqrRhwwY99thjZt4CAEyZkpWhPOtkzTcm6aqls3T1stmaPqX/zZQnZpzsuWJJBWBoxtMGK6Z6pmpre++flZOT06M3asOGDbryyivNvA0AmJaWZtHPblslSfrJP/re+0+SsjLT9M6Df5qUma6jre3DXR6AMcxUz5TFMvBaLawzBWC0+eD5p+ndZ85UWeG5MY9PSD/5o3FChqkfkwDGgUH1TN11110KBoNqbGyUJFVXV+s973lPzHNDoZCCwaCKiorMVwkACZQzKVO/+Oj5kqTK6jf1790hzcuZqH2NxyVJWd2G9jLTCVMA+jeonxLr16/Xpk2bdPvtt2vLli2SOsdEY30sXrxY69evV2lp6bAUDgCJULp6ua5dPke//Nj50basbr1RWQP0TE3MJGwBscQzepUqhjRnqrCwUPn5+brrrru0adOmRNcEACPGPnOq7vmwo0fbfGOSdhxoljTwMN/kCRk6foIFQIFTjZ8oZWLOlM1m09q1axNZCwAk1U9uyddN+fP1n1ecHm0bqGfK7NN+aePpNw6Qokz1T69evTpRdQBA0r33nLn6zpqVWpQ7Odo2bWJmv9dkmRzmy+hjTpZ1ygQZkzN153vOlCTln2aYeh8AwyfuYb7du3f3alu0aFH0dVNTk0pLSxUIBGQYhm6++WbdeOONiagRAEZU7tQs/ee77Wpt61Dz8bZ+z51gcoL61KwMhdo6hwnvuHqJNjz6mr51wzm69pw56oh0LjCaZ52sq5bO0tlfe8TUewEYHnH/FKioqJDdbpfdbldxcbH8fn/02NatWzV9+nR5vd7o5PP/+Z//6fNJPwAY7da9d6m+/L5lOmdBTr/nDTQMOPCcq5PDhJ+64nQ9cce7dcsFpyl3apZmTsvSxMx0vX/FPE3JytCnrrDrmnPmyDZzSvxfyCkWz+i89oPnnzbkewDoKe6eqTvvvFNbtmyR1+vV4sWLexzrWqSzpqZG5513XrT97rvv1oYNG3THHXckqFwAGFluxwK9+GZYVy+bo//4VXWv430N03XJykhTa1tHn8fPX2xV9sRmrcgzZLFYtGhG30HpzvcslSQV/apawbePxPkV9PTRdy3SFWfO0uzsibr67Nk61NyiOytfGNQ9pk/OVMPRE5qalaHDLf333AHjQdxhasOGDSorK+sxtCdJ999/v8LhsDweT48gJXUGMCapAxjLJmamq6xwhSTp5lV5+sOWOl21dJY273hLktTecXLLjDSL1HHKDhpZGWlq7uf+xqQJ+uvnLh1UTZ93LtELbzbq01eeri//6aW4rvndf1yg514P6cMXLFT6O7PerzhzliSpeneDNlbXRUNSX7rW4rrnww5FFNGUCRn6wI+eHlTtQCqKO0zV1tb2ClJS5wrnFotFbrc7kXUBwKjzX64lWjxjim4+/zSt+MajkqTu2SkjLU2t7T17oSZPyJDU+s5xi9reSVtffd8yPbD1TX3qCvug61g2L1vPfqlzRKC/MDUtK0PNLW3KykjTxafP0MWnz4h53l3XLNWZc6Zp5WmGbrrnmT7v9+NbHNpdf0QX2XOjbd+/eaXsM6fqfT98qs/r/ufGc7Tz4GF98PzT9OC2vXr4xf3aU390oC8TGDNM7c0nKTp3iv33AKS6WdkT5bm8M/xcv2Kent51SGsKFuj5urAkaerEDIWO9FxzqvucqtX5C7Sxuk5TszL0sUsW62OX9JwyMRSr8xfoyZ1v68w50/TkzkM9jt1w3nxNm5ihS8+Y2e89pk+ZoI9dslj7G4/1e96KPEMr8owebR9YOX/AGj98wcLo63XvXaqdbx3uM0x5LrNp+YIcLZk9Td/6y3a93dwSXfPrVLOmZan5eJuOnWDvRCSXqTDV2NioYDAoh8PR5/Hp06ebeQsAGJV+cPNKtbZ3qPHoCX3zoe3KmZSp7EmZvcLUpG4TzEuuXao86yTdcN7AASReG9znKhKRtu9v0pM7n9K1y+do1rSJ+tO2vSq6zKY86+SBb/KOuTmTdOd7zlT2pEw9/MI+PRsMaW1BnuZPn6TzF1v7vfaOq5fo2WBIz78Zjj4BedXSWcpf2Pt3wDfef7Yaj53QyjxD5f8M9jh26RkzdckZnT1ov/74BfrCxm29wtStFy5U/ZEW/eDm89TS1tHvU465Uyao/giLqiZDZOBTUkbcYSonJ0d//OMfeyx3UFxcLIvFIo/HE/Oa9evXq7i42HyVADDKWCwWZWWka1Z2uv7++cs0MTNN+8LH9P9+vkXF1yzV83Vh/XHrXv33tWfp6dp6GZMyZUyeoE9feUbC67BYpHPm5+iZu65U7tQJyspI19euXzak7Tw+9c6CpasWTdfDL+zXf1xqU86k/tfakqRPX3mGPn2l9PeX9uszv9+qDe4VffZazTMmaZPnIu082BwNUxWfuEi73jocDVJd3r9inv64dW+Ptq9dvyw68T8jPS3mRPj/vvYsXb9inmZnZ+m2+7boH6+93eN4yTVL9UboqH773BsDfm3AQCyRSCTu8FhQUCC73S6bzSa/36+amhq5XC498kjvvwp++tOfqqqqShs3bkxowWNRU1OTcnJy1NjYqOzs7GSXA2AYdXRElJZm0Yn2DoWOtGp29sRklzTiTrR3xL1B9H1Pv64F0yfLtWx2zOORSERPvPa2zpw9TZ/+XUBzcybpRx/O73HOqwea5X/loDZuqdMboaNamWfoT596V/T49/yv6Xv+nT2u2b3+Op1o79CGR17Vtrqwnns9JEnKTLfo8iWzdP2Kufq+f6eCh3o+NXn2vGy9vK8prq9tvLty6Sz9/LZVyS7DlHh/fw8qTEmdyx1UVVVJktxut26//fYex++66y4FAgGFQp3/MFetWqUf//jHg60/pRCmAGD4Bd8+rF88s1ufuNyuecakaPuRljZ9p+o1XWzP1T1P1Oq65XN7zFf72VOv61t/2S5J2voVl6ZNzFBGeppuu+/feuLVkz1aS2ZP1aNfuFyL7nq413sXXWbrNWQ53l1x5kzd99HzBz5xFBu2MIXBI0wBwOgVPtqqD937nK45Z44+c9XJYdhnag/pQ/c+p0vPmKG1q/J0oS1XM6Zm6dKyx1QXOjlZ33erQxfZc3Xu1x/tcd8vXbtU//vXHSP2dYw24ylMmX6aDwCAscyYHHutr4vtM/TEHe/WPGNSj5Xsf/2xC/Tb5/boY5csVmtbhxbmTumx3thnrzpDK/NydOXS2T3C1NevX6bSv+1QS7dFXD99xen6v8d3DdNXhpFCmAIAoA+xVqRfNGOK/vu6ZT3a0tMs+uN/XqyWtg5daDu5Dtf7zp2rv7ywX9ctn6vb3rVYN+Yv0Pf8r+m+p3dLku54z5mEqRRAmAIAIAHOO633MhD/e9NyXbl0lq4+e44kKWdSpj51xel69OWDev/KeT3O/fr1y3SBLVdP7zqkbz/8iiTpIxct1K/+tWf4i4cphCkAAIZJ9sRM3ZS/oEfbjKlZeqr4iujSFY998XIF3z4i5ztPNJ41N1v3PFGr0JFWFToW9AhT841J2hvuf3HV0WIoS3OMVfE9uwoAABKme9CwzZwaDVJd/P91uf7ymUt07gJDN76zyOtnrzxd16842Zt13mnGiNSKgdEzBQDAKGOdMkHWKRMkSd7V5+qWCxdqZZ6hto4OnT0vW+86fYZyJmXq0ZcP6PFX39K/gvVamTddDz2/L8mVnzR++qUIUwAAjGoTMtLkeGdbnvS09B69U9csn6trls+Nft5wpFXPBuv1ow/ny/PrmhGvdbwiTAEAkCLu++gqHT/RrqlZGVo6Z5raOyI6d4Gh+wNvJru0lEaYAgAgRWSmp0W38vnLZy5ReppFTcfatLWuQblTJmjL7oYkV5iaCFMAAKSgrs2gcyZn6rEvvluSVH+4Rev/tkMVNcPfUzWetldJ2TBVVlam+vp65ebmqra2Vi6XS4WFhXFf73K5lJ+fr7Vr1yo/P1/BYFA+n0/hcFg+n28YKwcAYHjkTs3S3e4V+vJ1y5SVmaalX/l7sktKCSkZpjwej+x2u7xeb7TN5XIpFAqpqKgornuEQiGVlZWprKws2uZ0OqObPAMAMFblTM6UdHI7m6uXzdaj2w8muaqxK+U2Og4EAnI4HDr1y+qrvS9ut1urVq1SbW2tDMOQy+WS0+kcUk1sdAwAGK2OtbbrwW17ddcDLyb0vlcunaWf37YqofccaeN2o2Ofz6f8/Pxe7V1tlZWVcQ33Wa1WrVu3LuH1AQAwmkyakK73r5yn3//7Db37zFn6/uadyS5pzEm5FdD9fr9sNlvMY4ZhMEwHAMApJk/I0IOfvkRfcC3Rt284J9nljDkpF6aCwaCsVmvMY1arVdXV1YO6XyAQUHl5uQKBQCLKAwBgVLvlwoXavf467V5/XbJLGTNSLkz1xzAMhcPhuM4NhUIqLi6OTloPhUJyOBwKBoMDXtvS0qKmpqYeHwAAIDWlVJiKNyjFw+Vyyev1RiedO51OrV27Vi6Xa8BrS0tLlZOTE/3Iy8tLWF0AAIyU+z66SjmTMpNdxqiXUmHKMAxJnb1KsQwmbMVaQsHpdCoYDKqysrLfa0tKStTY2Bj9qKuri/t9AQAYLa44c5a2fdWlx+9496CvTbHFAvo16p7ms9vtfYahWKxWq6qqqnpMOu8rNIVCoT4np8ej69qqqqp+nwjMyspSVlbWkN8HAIDRwmKxaPGMKbJOmaDQkdZklzMqjbowVVtba+r6rt6pWMLhsAoKCga8h9vtVjAYVE1N7B23BxP2AABIBfd+pECf+m1AB5qOx3W+xWIZ5opGj5Qa5pOkNWvW9Bt24pnzFAgEYj4R2HXfVavG9iJkAAAMlmPhdD37pauSXcaolHJhyu12KxAI9Brq8/v9khTXKuaFhYUx16PqmisV75Y0AACkmvs+SofCqVIuTDmdThUWFqq0tLRHu9frlc/n6zUMaLfbZbfbe7SVlJTI4/H0aAsEAiotLVVFRUW/Q4kAAKSyK86cFdd5menjZ5hv1M2ZSoSKioroJsWGYaimpkYejyfmpHHDMHoN6RmGIa/XK4/HI8MwomtLbd68OeZWNQAAjCfnLsjRC2829nvOLRcuHKFqki/lNjoejdjoGACQSpqPn9C2urBu/dm/+zzn/k9eLMfC6SNYVeLF+/s75Yb5AADA8Jo2MVOXnjEz2WWMGoQpAAAwJMvn5yS7hFGBMAUAAIZkzSq2S5MIUwAAYIg6Oph2LRGmAADAEJ2WOznZJYwKhCkAADAk717CJHSJMAUAAIbIYrHomx84O9llJB1hCgAADNlHLlqU7BKSjjAFAABMsYyfnWNiIkwBAABTfvsfFyS7hKQiTAEAAFPSx3nXFGEKAACYMt5XmyJMAQAAUyLjPE0RpgAAgClnzZ2W7BKSijAFAABMMSZPSHYJSUWYAgAAMIEwBQAAYAJhCgAAwATCFAAAgAmEKQAAABMIUwAAwLTZ2VnJLiFpCFMAAMC033x8/O7PR5gCAACm2WdOTXYJSUOYAgAApo3nvY4JUwAAACYQpgAAAEwgTAEAANMs43icjzAFAABgAmEKAADABMIUAACACYQpAACQcONpChVhCgAAwATCFAAASLhIJNkVjBzCFAAAgAmEKQAAABMIUwAAACYQpgAAAEwgTAEAAJhAmAIAADAhI9kFDKdwOCy32y2Px6PCwsJBX19WVqb6+nrl5uaqtrZWLpdrSPcBAACpKyXDlNvtltVqlST5/X55PJ5B38Pj8chut8vr9UbbXC6XQqGQioqKElYrAACpYvKEdB1tbU92GSMuJcNURUWFJCkYDKq8vHzQ1wcCAZWXlytyyopjXq9XDoeDMAUAQAxfuvYsfflPLyW7jBHHnKkYfD6f8vPze7V3tVVWVo50SQAAjHrpaeNoQ75uCFMx+P1+2Wy2mMcMw1BVVdUIVwQAAEYrwlQMwWAwOufqVFarVdXV1SNcEQAAGK1Scs7UcDIMQ+FwuN9zWlpa1NLSEv28qalpmKsCAADJQs/UKQYKSvEoLS1VTk5O9CMvL898YQAAjHKnPLc1bhCmTmEYhiQpFArFPB5P2CopKVFjY2P0o66uLoEVAgAw+lnG0Vz0UTfMZ7fb+wwysVitVlVVVfU5YXyo+gpNoVBowPfKyspSVlZWQusBAGC0G08BqrtRF6Zqa2uTXUK0dyqWcDisgoKCkSsGAACMagzzxbBmzZp+e8dcLtcIVgMAwNjAnClEud1uBQKBXkN9fr9fkuR0OpNQFQAAGI1SOkx1haH+epnsdrvsdnuPNqfTqcLCQpWWlvZo93q98vl8/Q4DAgCA8dVLNermTCVCcXGxAoFAdHHN4uJiVVRUyDCM6L59XQzDiLlAZ0VFhcrKylRWVibDMFRTUyOPx6PCwsIR+RoAAMDYkJJhyuv1xn1uTU1Nn8fWrVuXiHIAAEAKS+lhPgAAgOFGmAIAADCBMAUAABJuPC3gSZgCAAAJEdE4eoSvG8IUAACACYQpAAAAEwhTAAAAJhCmAABAQqxYYCS7hKQgTAEAgIQ4Z35OsktICsIUAACACYQpAAAAEwhTAAAg4cbRmp2EKQAAADMIUwAAACYQpgAAAEwgTAEAAJhAmAIAADCBMAUAABIukuwCRhBhCgAAwATCFAAAgAmEKQAAkHAs2gkAAIC4EKYAAABMIEwBAACYQJgCAAAwgTAFAABgAmEKAADABMIUAACACYQpAAAAEwhTAAAAJhCmAABAwlks42cNdMIUAACACYQpAAAAEwhTAAAAJhCmAAAATCBMAQAAmECYAgAAMIEwBQAAEi4SiSS7hBFDmAIAADAhpcNUOByWy+VSZWXloK91uVwqLi5WIBCQJAWDQRUXF8vj8SS6TAAAUs54WrQzI9kFDAe32y2r1SpJ8vv9QwpAoVBIZWVlKisri7Y5nU5VVVUlrE4AADD2pWSYqqiokNTZm1ReXj6ke9hsNq1du1a1tbUyDEMul0tOpzORZQIAgBSQkmEqEaxWq9atW5fsMgAAwCiX0nOmAAAAhhthagCBQEDl5eXRiegAAADdEab6EAqFVFxcrFAopKKiIoVCITkcDgWDwQGvbWlpUVNTU48PAACQmghTfXC5XPJ6vdFJ506nU2vXrpXL5Rrw2tLSUuXk5EQ/8vLyhrtcAACQJISpPhQVFfVqczqdCgaDA65bVVJSosbGxuhHXV3dcJUJAACSbNQ9zWe32xUKheI+32q1qqqqSjabbRir6tT1HlVVVSosLOzzvKysLGVlZQ17PQAAjFbjZ8nOURimamtrk12C3G63gsGgampqYh4fTNgDAACpjWG+GAKBQHQF9e66QtSqVatGuiQAADBKEaZiKCwsjLltTNdcqVjzqQAAwPiU0mEqHA5L6n9Yzm63y26392grKSnptZ9fIBBQaWmpKioqZBhGoksFAABj1KibM5UIxcXFCgQCqq6ujn7eFYK69u3rYhhGryE9wzDk9Xrl8XhkGEZ0banNmzcrPz9/ZL4IAAAwJqRkmPJ6vXGf29ckc8Mw5PP5ElUSAABIUSk9zAcAADDcCFMAAAAmEKYAAEDCzM2ZKItFWjJ7WrJLGTEpOWcKAAAkxz/XXaH2jogmZqYnu5QRQ5gCAAAJk5mepnGUoyQxzAcAAGAKYQoAAMAEwhQAAIAJhCkAAAATCFMAAAAmEKYAAABMIEwBAACYQJgCAAAwgTAFAABgAmEKAADABMIUAACACYQpAAAAEwhTAAAAJmQku4DxIBKJSJKampqSXAkAAIhX1+/trt/jfSFMjYDm5mZJUl5eXpIrAQAAg9Xc3KycnJw+j1siA8UtmNbR0aF9+/Zp2rRpslgsCbtvU1OT8vLyVFdXp+zs7ITdFyOH7+HYx/dw7ON7OLYN5/cvEomoublZ8+bNU1pa3zOj6JkaAWlpaVqwYMGw3T87O5sfAGMc38Oxj+/h2Mf3cGwbru9ffz1SXZiADgAAYAJhCgAAwATC1BiWlZWlr33ta8rKykp2KRgivodjH9/DsY/v4dg2Gr5/TEAHAAAwgZ4pAAAAEwhTAAAAJhCmAAAATGCdqTGqrKxM9fX1ys3NVW1trVwulwoLC5NdFuIQDodVWlqqcDisYDCoUCikkpISvn9jnMPhUE1NTbLLwCCVl5ertrY2+rndbldRUVESK8JgdP0ulDp/tjocjuR8/yIYc4qKiiJer7dHm9PpjPh8viRVhHg1NDREioqKIg0NDdG2mpqaiKRIYWFh8gqDKUVFRRF+nI4tDQ0NvX5u1tTURGw2W6SmpiaJlSFeRUVFkdra2h5tPp8vUlRUNOK1MMw3xgQCAZWXl2vdunU92r1erzweT5KqQrxKS0vl9XplGEa0LT8/X16vV5WVlfL7/ckrDkMSCARUXV2d7DIwSG63WzabrUcvRigUUigU6vH/J0Ynv98vwzBks9l6tBcVFam6ulrhcHhE6yFMjTE+n0/5+fm92rvaKisrR7okDEJlZaUcDkevdqfTKUmqqKgY6ZJg0saNG7V27dpkl4FB8Pv98vv9Ki4u7tHudDrV0NDQ6xc0Rp9AINBnYLLZbAoGgyNaD2FqjPH7/X3+j24Yhqqqqka4IgyGzWZTKBTq1d71l3CsYxi9ysrKVFJSkuwyMEg+ny9mrwbGDpvNpvLycpWXl/c6FggEYnY6DCcmoI8xwWAw2otxKqvVynDDKNdX2A0EApKkVatWjWQ5MCEQCMhmszEkNAZ1/VEaDoejv4zr6+uZfD6GFBYWymazyePxqKKiItqrf/vttyelh58wlUIMwxjxcWIkRtdfyvwgHzs2btwor9eb7DIwBOFwWFartdf8U7fbrZqaGvl8viRWh3jV1NTI7XbL7/dr+vTpys/P1+bNm5PyBw7DfGMIQSk1dc3fqKiooJdjjGB4b+zq+jnq9/t7LUfi9XpVXl7OgyBjhGEYcrvd0e9jIBDQ7bffnpRaCFNjyEDzaghbY5Pb7VZFRUWfw7cYXRjeG9u6vm82m63XnKmuz+mZGhu6nsisqKhQbW2tnE6nKisrZbfbeZoPA+vrHwmP9I49brdbXq+XBTvHkI0bN/L9SgF9/aw0DGPEnwTD4Hk8HrlcrugfoTabTVVVVfL5fAoGg72e1BxuzJkaY/oLS+FwWAUFBSNXDEwpLi6Wy+VintQYUllZqUAg0GtNt64HP7raT11LDKNL1+TzWOjhHxvKy8sViUR6tRcVFSkcDmvjxo0jWg9haoxZs2ZNv0/suVyuEawGQ1VeXq7c3NxeQaq8vJxwNYoVFhbG7JXyeDwKBAIMD40RTqdTmzZt6vM4f5SObYWFhSMephjmG2PcbnfMxcq6Jkwy72b08/v9CofDvVaxD4fDPfYIAzA8iouLo3tjdte1RAm7SYx++fn50e/Xqfx+/4gvpGuJxOonw6jWNemu+2PZLpdLbrebXo1RLhgMRsf5u4aBuoJxdXU1Gx6PUW63W5WVlTGHHTA6FRcXKxAI9Fj7zeFwyOl0suTFGBAIBOR2u1VVVdXjQYJAIKDS0tIRX2uKMDVGlZWVSeqcQ1VTUyOXy8Uv4THAbrf3O7m1pqZmxFfuxdCVlZWpqqoq2jNss9mUn5/PtkBjRGVlpTZu3Cir1apQKKS1a9fyc3QMCQaDvYKv3W7v1es/EghTAAAAJjBnCgAAwATCFAAAgAmEKQAAABMIUwAAACYQpgAAAEwgTAEAAJhAmAIAADCBMAUAAGACYQoARqH+VspPxPkAEocwBQCjTCAQkM/nG9Q14XBYxcXFw1QRgP6wnQyAUc/hcCgcDsswDFmtVhmGoWAwGN0kums/w3A4HO2hKS4ujm78HQ6H5XA45PF4krJv12CEw+HoBq6DVVZWJsMw2PAcGGEZyS4AAAYSCARUUVHRYxPacDis6dOny+l09thYOBwO6/bbb1dtbW20LRQKKRgMasuWLSNa91C43e5B90p1WbdunRwOh5xOp2w2W4IrA9AXhvkAjHqFhYU9glR3hmH0+vzee++N9lpJks1mUyQS6RG6RiO/3y9JpoJQSUkJw33ACCNMARjVwuGwXC7XoK4xDKNXyBoLfD6f6SBUWFgov9/fI0wCGF6EKQCjWjAYHDdDVn6/X06n0/R9nE6nysvLE1ARgHgwZwrAqNY1uXywvF6vpM4w5na7o6GspqZGUuc8rNtvv13BYFBOp1P33nuvysvLZRiGqqqqZLVa5fP5FA6Ho8Fky5Yt0fZTdT1NZ7fbJUm1tbXyeDxx119ZWdlnaAwGg/L5fLLb7dEep/7u73K5VFFRMeon2wOpgjAFIKV1BSiXy6VQKBRtz8/PV01NTfRJwfLy8mj4KCoq0vTp02W322UYRo9Q0tXevS0YDMrhcGjz5s3RcBOrrT9btmzps1fK7XZHQ2CX/oY+CwoK5PF4BnxPAInBMB+AcaGvXh+bzSa/399rgntBQYGKi4t7BZyCggJt3LixR5vH45HT6ewRmmw2m5xOZ9xzoILBoHJzc3u1BwKBmPOf+gtL42VYFBgtCFMAxrWudatODSA2m63P9u7C4bD8fr9WrVrV694ul0vV1dVx1dG1jtapbDabgsGgXC5X9Gk/qXOieV89Xl33YVV0YGQwzAdg3LNarYNq795T1BWWamtrY0767pq7NZBgMBjz/brmcLnd7ujQXn5+vrxe74CT1XmiDxgZhCkA415fyyjEs7xCVwByOBymVh43DKPHnK7unE6nGhoa5Pf7VVVVpcrKSrlcLlVVVfUbqBjuA0YGw3wAYELXUNupE8QHy2azxexJ8vv90eE9p9Mpr9er2tpaFRYW9rkIadd9xuJaW8BYRJgCAJPWrVvXYz5Td/E+VWe1WlVfXx/zWKzQ5PF4+uzJCgaDBClgBBGmAIxpg5kXFOvcUCg06PZTeb1eGYahsrKyHu2VlZVyu91x1eZwOPoMZOXl5b0mk1dVVWnt2rUxz6+urlZBQUFc7wvAPEskEokkuwgAiJfb7VY4HFYwGIwGjPz8fNlsNrlcrl7zloLBoIqLi6NbrHQNlUlScXGxqquro+3FxcWyWq292j0ej2w2W8z27ksqdC2D0LXEwanLJfQnGAzKbrfr1B/Jfr9fgUBAhmH02m+wr/0KPR6P6TlcAOJHmAKAUcLhcMT1lN5A7Ha7amtrE1QVgIEwzAcAo0RJSUnMrWoGo7Kycshb8AAYGsIUAIwShYWF0SHMofL5fHGvbQUgMQhTADCK+Hy+Ie+rV15eLpfLxfpSwAgjTAHAKNI10f3UJwMHEggEVFtb22MDZgAjgwnoADAKBYPBQfUwDfZ8AIlDmAIAADCBYT4AAAATCFMAAAAmEKYAAABMIEwBAACYQJgCAAAwgTAFAABgAmEKAADABMIUAACACYQpAAAAE/5/7CBlyDmFDU0AAAAASUVORK5CYII=",
289
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHYCAYAAAC2kBdxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASQ1JREFUeJzt3XlYnPW9///XsA0QlmHJvjJkN2qExLi2ahirbe0mk/R0Od0M1K89Pa2nBunpt62npwcHPfUcz6+nBdPtW3vaCLa1y2mViXvVGBgTY6KJYbLvYbhDCGHY5vcHMgnDEgIDN8M8H9fVqzP3Pdzzlg9hXny22xIIBAICAABAUIzZBQAAAIw3BCQAAIAQBCQAAIAQBCQAAIAQBCQAAIAQBCQAAIAQBCQAAIAQcWYXAPMYhqGysjJJktfrlcPhUFFR0ZDPAwAwURGQolhJSYkqKiokdYehnJwcZWZmqrCwcEjnAQCYqBhii1KGYai2tlaGYUiSbDab1qxZE+wxuth5AAAmMgJSFPN6vfJ6vcHnNput1/OLnQcAYKKycC82cxmGIafTqeLi4kGHrsrLy9XQ0KCsrCzV19fL4XCEfagrPz9fmZmZqqmpGdZ5AAAmCuYgmcTpdCozM1OS5Ha7VVxcPOBri4uLlZubK5fLFTzmcDjk8/nCNmm6p7eoqqpqWOcBAJhI6EEymdfrVW5urqqqqvrtEfJ4PMrPz1doMw10fLgcDodcLpfy8vKGdR4AgImEHqRxrqKiot9Q0nOsuro6GKyqq6svOvyVn5/fp9eppKRk0PBzsfMAAEw0BKRhKi4uvug8II/Ho5KSkhHN2XG73QMGE5vNppqammANhYWFlzwvqbKyUg6Ho9/ANZTzAABMRKxiGyaXy6WysjJVV1f3e97j8cjpdAb3ERour9cbnKsUKjMzU7W1tcO+ttvtlmEYstvt8ng88ng82rJly5DPAwAwUdGDNEw2m02bNm1Sfn6+JPXqVfF6vXI6naqpqZHdbh/VGnr2KbpUhmHI4XBI6h5C69Ez/Hax8wAATGQEpBGw2Wyqq6tTfn6+bDabCgoKgrfkqKqqGnE4Gm74GQqbzTboBO+LnQcAYCJjiG2EeuYBFRcXB+frVFVVhWVCs81mkyT5fL5+z49mgAIAIJoRkMLAbreroqJCxcXFKi4uDvtqr4GCkM/nC4YoAAAQPgSkMDAMQ8XFxaqoqFBFRYU8Hk/Yrj1YADIMQytWrAjbewEAgG4EpBEyDEP5+fmqqKhQUVGRqqqq5HQ6wxaS1qxZM+AQm6TgRGoAABA+BKQR6AlHLpdLBQUFkro3cOwJSeG4sWtP2AodZnO73ZIUfF8AABA+BKRhMgxDq1evlsvl6rNxYk9IcjgcFw1JPcFnoF6igoICFRYWqqysrNdxl8uliooK5iABADAKuBfbMI10J+2SkhJ5PB7V1tbKMAzZbDatWLFCNput3xvClpeXSzq/tcDF3hsAAAwfAQkAACAEQ2wAAAAh2El7GLq6utTc3KyEhARZLBazywEAAEMQCATU1tamlJQUxcQM3kdEQBqG5uZmPfLII6N2/VmzZunQoUOjdn2MPtowstF+kY82jHyj2YZf//rXlZaWNuhrCEjDkJCQIKn7G2y1WsN+/bq6On3mM58J+3UxdmjDyEb7RT7aMPKNRhv6/X498sgjwc/xwRCQhqFnWM1qtY5KQIqNjR2V62Ls0IaRjfaLfLRh5BvNNhzK9BgmaQMAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAAIQgIAEAgAE9t+uE7t24VWda280uZUzFmV0AAAAYnzq7AvrCz7ZIkiZZ4/S9jy0zuaKxQw8SAADoV9O5871GWw8a5hViAgISAABACAISAABACAISAABACAISAAC4qIACZpcwpghIAACgXxaL2RWYh4AEAAD6FYiuTqNeCEgAAAAhCEgAAAAhCEgAAAAhCEgAAAAhCEgAAKBfrGIDAABAEAEJAAAgBAEJAAD0i32QAAAABhFtYYmABAAA+sUkbQAAAAQRkAAAAEIQkAAAAEIQkAAAAEIQkAAAAEIQkAAAQL8O+FrMLsE0BCQAANCv4l/WmV2CaQhIAACgX0dPt5pdgmkISJLy8/PNLgEAgHGNnbSjTHFxsTwej9llAACAcSSqA5LH41Ftba3ZZQAAgHEmqgPSxo0btXbtWrPLAABg3Iu2+7JFbUAqLy9XaWmp2WUAAIBxKCoDksfjkd1ul81mM7sUAAAiApO0o8DGjRtVWFhodhkAAESMKMtHijO7gLE2nKE1v98vv9/f63lHR0e4SwMAAONEVAWk4Q6tlZWV6YEHHuh17I477lBdXZ1iY2PDWGG3xsZGbd68OezXxdihDSMb7Rf5aMPwuGtRZ/BxauKZMf2ejkYbdnZ2XvxF74mqgLRx40a5XK5L/rrS0lLde++9wed+v1+PPvqo8vPzZbVaw1miJGnz5s1atWpV2K+LsUMbRjbaL/LRhuGx9nd/Dj5eOj1V//h3Y/c9HY029Pv9qqmpGdJroyYgVVdXy+PxqLi4uNfxnn2Qeo67XK4+PUxWq7VXEPL7/YqLi5pvHQAAUSdqPuULCwv7nZjds5N2RUWFCVUBAIDxKCpXsQEAAAwm6gOSz+czuwQAAMa9aFvmH7UBqby8XA6HQ9XV1ZKk3NxcOZ1Ok6sCAADjQdTMQQq1fv16rV+/3uwyAAAYl06e8fd6HoiyrbSjtgcJAAAMrCvKAlEoAhIAAOjDEvrcEnpkYiMgAQAAhCAgAQCAvqKrw6gPAhIAAOjDEuUJiYAEAAD6CJ1yxCo2AAAQ9aK7/4iABAAA+hFtq9ZCEZAAAMBFRVtgIiABAIA+oisO9UVAAgAAffz0b3t7PWeSNgAAiHr/9ewes0swFQEJAAAgBAEJAAAgBAEJAAAgBAEJAAAgBAEJAAAgBAEJAAD0svWgYXYJpiMgAQCAXj72w7+ZXYLpCEgAAAAhCEgAAAAhCEgAAOCiouxOIwQkAABwcbuOnzG7hDFFQAIAAAhBQAIAAAhBQAIAAAhBQAIAAAhBQAIAAAhBQAIAAAhBQAIAAEFPbT1sdgnjAgEJAAAE/eNvtppdwrhAQAIAAAhBQAIAAAhBQAIAAAgRZ3YBAADAfE2t7dp6wDC7jHGDgAQAAPTJite082iT2WWMGwyxAQAAwlEIAhIAAEAIAhIAAEAIAhIAAEAIAhIAAFGsqytgdgnjEqvYAACIUi1tHXL84EXlzc0wu5Rxh4AEAECUembHcR02zumwcc7sUsYdhtgAAIhScbEWs0sYtwhIAABEqbgYAtJACEgAAEQtAtJAmIMEAECU+eWr+2S0tGvB1FSzSxm3CEgAAESZ//vUDknSNz+42ORKxi+G2AAAiFKnz7WbXcK4RUACACAKnG5pV0tbR69jr9Y3mFTN+EdAAgBggmtp69CV//KMVv3bJgUC53fO9hwwzCtqnCMgAQAwwXlPnpUknWntUFtnl8nVRIaomqRtGIbKyspkGIa8Xq98Pp9KS0tVWFhodmkAAIyJTu69NiRRE5AMw1BJSYlcLpdsNpskyePxKD8/X4WFhaqqqjK3QAAARknsBRtCtncSkIYiaobYysrKeoUjScrLy5PL5VJ1dbXcbrd5xQEAMIpiLOcD0kFfi4mVRI6oCUjV1dXKz8/vc7ygoECS6EECAEw4Pcv4L7yjyIf/62WTqoksUTPEZrfbVVtb2+d4T4+Sz+cb44oAAAi/ptZ2ffFnWxQXa9FrXp++unqB7rhiutllRZyoCUg1NTX9Hvd4PJKklStXjmU5AACMip++vFe1+xuDzx/d9K4+TEC6ZFETkAZSUVEhm82moqKiAV/j9/vl9/t7Pe/o6Bjw9QAAjKW2ji4FFJA1LlZn/X0/n778yzoTqopsUR2Q3G633G63ampqek3eDlVWVqYHHnig17E77rhDdXV1io2NDXtdjY2N2rx5c9ivi7FDG0Y22i/yRUsb7jxyWm2dAZ31d6izK6Ab5mdrTmez7lrUGfLKJt2SNfL3G8vv6Wi0YWdn6PdlYFEdkJxOp6qqqoITtQdSWlqqe++9N/jc7/fr0UcfVX5+vqxWa9jr2rx5s1atWhX262Ls0IaRjfaLfBOpDQOBgP705lEtmZ6q+VNSg8fbO7u09p//csErLfrEbcv0fONBbdjlHZVavvWFsfuejkYb+v3+AafchIragOR0OuVyuYa0SaTVau0VhPx+v+LiovZbBwAYhvbOLn37qbd0/fxsffiKGUP+ur/tadA//PoNSdK+Bz8UPN7S1rc3JMZikSx9DmMYovJTvqSkRA6HY9B5RwAAhIPR0ibvqbM60eTXr18/qF+/fnBIAam9s0uv1Ddo6wD3S2vr6HvLkK5AQBYSUlhEXUCqrKxUVlZWn3BUWVlJYAIAhN1t//GSjjW16uqczEv6up++vFdlf3lnwPMB9d0Ru72zSxbyUVhEVUByu90yDEPr16/vddwwDNXX15tUFQBgIjvW1CpJen3v+f32XvM26H+3H1Xp7UuUlND/Yp8fPrdn0OsG+rljyG3/8dLwC0UvUROQvF6viouLVVBQoJKSEkndwUiSamtrVVpaamJ1AIBo8snK1yRJSQmxKr19Sb+vudgd07r6S0gIm6gJSA6HQ16vV5WVlf2et9vtY1wRACDa1Z84O+C5/vLPprePKzUxXlfnZPZ7HuETNQGJITQAwFhpbe9Udd0h3bRo8rCvEegnAX3pF923zPr5F1bqiNE67Gvj4qImIAEAMFYef22//vXPbysjOX7Q18XFDDyj2jLIbOvP/2zLsGvD0MSYXQAAABPNH988KklqbGkf9HWxsYMEpLBWhEtFQAIAwCSdnQH9+c2jOmycCx5rbe/UW4dPk5BMxhAbAABh1tHZdxPH/vx1xzH9dccxJcbH6J3v3S5J+uqv39AzO4+PZnkYAnqQAAAIs0tdYdbafj5QEY7GBwISAABhFsOna8RjiA0AgDD54XN71N7Z1X3T2Ev07vEzOtfe9wa0MAcBCQCAMGj2d+ihp3dJkmbaki756x2PvBjukjACdAICABAGLW0dwcet9ARFPAISAABhcK7tfChqH+IqNoxfBCQAAMLgwvlDnV3cKC3SEZAAAAiDC5fqd3In2YhHQAIAIAwu7DXqYoQt4rGKDQCAEThsnNNr9Q2abksMHmsnIUU8AhIAACPwvT/u1F93HNP7Fk4OHmOELfIxxAYAwAj8dccxSdKLu0+aXAnCiYAEAAAQgoAEAAAQgoAEAAAQgoAEAAAQgoAEAMAlOuvv0I9fqNe+U2fNLgWjhGX+AABcoqrag3rwL+/oN68fMLsUjBJ6kAAAuER/2HZEkrSvocXkSjBaCEgAAFyilrbOi78IEY2ABADAJYqxWMwuAaOMgAQAwCWKjSEgTXRM0gYAYIhe8zYoxRqnGALShEdAAgBgCE40teqTla9Jkq6aYzO3GIy6MR1iu/vuu8fy7QAACJsjp1uDj1v8TNKe6MY0ILnd7rF8OwAAwqbF3xF8fK6dgDTRhSUglZaWasGCBYqNjR30f16vNxxvBwDAmDtzQUBqJSBNeCOeg3T//ferurpahYWFys3NHfB1jY2NcrlcI307AADG1JnWdhkt7eroDASPEZAmvhEHJMMwtGfPniG99oknnhjp2wEAMKaK/l+dXtvboC+//3wnQGtHl4kVYSyMOCAN1msUqqqqaqRvBwDAmHrV2yBJembHseCxNgLShDemk7RzcnLG8u0AABiRzq7zw2rsnh1dRhyQCgoK9Oyzzw7ptWvXrh3p2wEAMCYCgYDaO8/3FLV2MO8omox4iO2qq67S1q1b9fDDDysvL092u12ZmZn9vtbj8Yz07QAAGHVP1h3SA3/cofLCK4LHzrUxrBZNRhyQYmJiZLFYFAgEZKH7EQAwAZQ8+aY6ugK694ltwWOsXIsuIw5IdrtdBQUFcjgcg74uEAiouLh4pG8HAMCo63hv7lFL2/lQ5GeILaqMOCDZbDaVl5crLS3toq998MEHR/p2AACMiqbWdv3wuT36yJUz+j3ffsE+SJj4RhyQNm3aNKRw1PNaAADGo6raQ6p4wauNWw6aXQrGgRGvYktPTx+V1wIAMJb+9OYRSZLR0m5yJeNXIBA9vWhjug/Sww8/PJZvBwDAoFrbO7Wm4lU98McdZpeCcWbMAtLevXtVUVExVm8HAMBFveZt0Ot7ffrZ3/aJddgXF0UdSEOfg3TrrbfK4/Ho1KlTvY73LPO/GLYBAACMF4+/tl+HjXOaPzkleOz0OYbWcN6QA1IgEJDNZutz3G63q7Cw8KLL/BsbG1nmDwAwXWt7p771+7ckSXfmzQoeZ+7RxUVRB9LQA1JNTU2/x+12u775zW+yzB8AMK49UrNbv379gP71Y8uCx44Y54KPz7Z1mFEWxqkRz0F65plnBg1H+/bt0759+ySxzB8AMLYO+lr03T/s0NHT5/Sfm97ViTN+/fszu4Pnj5w+H5Ba27mVyMVsPWiYXcKYGfE+SBdTX18vwzBUVVWl/Px83XLLLaP9lgCAKNbe2aX9DWc19dRZffePO/T8rpN6+2hT8HzD2bbgY19zW3+XwAD2nTqr/LkZZpcxJkY9IK1evTr4eO3atQQkAEDYdXUFVPmSV/bsSTrW1KoDx5v1yGOv6ejpVknS5r2+4Gub/efnGp3xM6x2KbqiaBlb2ALShg0bZBiGGhoa+pwzDENerzdcbwUAiGJnWtt1qrlN87KStb76TTW1tmvtytl68C/vSJKunG3TymQFw1EohtKGL3riUZgC0vz58+X1emW32yVJPp9PmZmZwceGYai8vFzr1q0Lx9uNWHl5uRoaGpSVlaX6+no5HA4VFhaaXRYA4AKBQEBvHDR0+cx0vXnI0K82H9DXVi/UfdXbtGWfTw8VXqmqukOSpKT42ODXNTT7pWSzqp7goighjTggPfTQQyosLOy1Qu2xxx7rFYa8Xq+efPLJcXGrkeLiYuXm5srlcgWPORwO+Xw+FRUVmVgZAESHnn3xjje1qtnfIXv2JG3cclDpSfFaPsemu35Rq9uXTdMka5we+ONOfXrVHO082qQ3Dhjq7AoEh8t++re9wWu+efh08PGpZr80Zcz/s6JCIIoS0ogDUn19vX784x/3Onb69Olez+12u+677z5t2LBBd91110jfctg8Ho8qKyv73EvG5XIpPz+fgAQAF9ETbjq7Ampt79Qka5x8Z9vU0dWlySlW1ew8rpzsSZqSmqj/fmGPPnz5DJ1t69BjL3r1T7cu0u/eOKQ/bDui//50vu75lUcnm/0qv/MK3f/b7ZKkz1wzRzuONGnHkSZNTrVKkn61+UDw/Z/aeiT4+EBDS/Cx9+TZ4GOG0EZPV/Tko5EHpNzc3D7H9uzZ0+9rzb7JXUVFhfLy8voc7zlWXV09robaOrsCio1h93EA54NJIBCQv6NLifGxOtfWqc5AQCnWOJ0406rE+FilWuP0zrEzmpWRpIS4GG3Z26i8uTY1t3Zoy75G3XrZVO080qR9DWd1xxUz9Ls3DqsrENCdebP0H+7dypk8SdfYs/R/f79DhfkzlZwQp0fcu/X1goV685ChX79+UP/1qav0g2d2a9tBQ5V/v0Jf/PkWJcTF6JsfXKySJ7crO8Uq54pZqnjBq+feOaGOroC8J8/qbFuHXvN29/78yx936FhT9xyhDS+f7wly7zwRfHzyjH/Q7wkTrMde6W+364CvRf+4eoHK/7pLV85O1w3zs/XTv+3V7cumKz0pXk/vOCZn/mw1trRpx5Em3b5smvb7WtTY0qa8ORna33BW1rhYTUtP1EFfi7JSEpScEKcTTa3KTrHKYpHOtXea/Z868oDU3+1DHA5Hv71FoT1LY83tdvcbkCTJZrOppqbG1IDU2RXQ1oOGTjS1qvS32/XHbUf048/k68cv1Gu/76x+8rmVuq9qmxLjY/X9jy/TV/7nDV2dk6mPXzVT335qhz5zzRylJsZrw0teldy2WO8cO6Nn3zmh7398mTZuOajDxjl99yOX6d+f3qUpaYn61NVz9K9/flvX5Wbpqjk2VbzgVeGKWbLGxeiJ2oMqfl+u9p46q1e9Dbrn5vn647YjOuvv0Beuz9GvNu9X1iSrVi+Zop+8vFfX2DOVOzlFv3x1vz66fKYCCqhm53GtWTlbBxpatP3waTnzZ+mF3SfV0RXQBy6bpr9sP6opaVZdPtOm3289rFU5mbIlJ+jpHcfkWDJVzf4OeQ406rZl01R/4qyOnj6nWxZP0ZZ9jUpLitOiqal6ftdJLZqWqqyUBL24+5SWz7YpIS5Gm70NunHBZDW1tmvvqbNalZMp76mzMlralT83Q9sPnVZifIzmT0nR63t9mps1SVkpCdqy16e8uRnq6Apo20FDV+dkymhp1/6G7qWtR0+36vS5di2Znqa3jzYpxRqnWRlJeuOgobmZyUpLitfWg0bwr+vth08rf06GfC1tOna6Vctmpuugr0VtnV3KnZyiPSealWKN09Q0q7YfPq1F01JlkUXbDxtaNjNd7Z0B7T5+RlfNtqmxpV3HTrdq6Yw07W84q6T4WE1JS9TOI03KTklQdopV2w4Zyp2SooTYGL11+LSumGXTubZO7TnZrLw5Nh1ralXj2XYtnZGmfae6/+Kelz1Jbx4ylJM9SUnxsarb36glM9IUF2PR1oOGVszNVFNru+pPNOvqnEztb2jRmdYOXT4rXW8dPq2khFjlTk5R7T6fZmYkKXNSgl6pb1DenAwpINXu9+nGBZN14kyr6k+e1fsWZOvto2fUFQho2cx0vVJ/ShnJCVowJUXPvnNCS6anKWNSgl7YdVI3LZqsM63dPweOpVO150SzvCfP6vZl0/RKfYPaO7t006LJ+t/txzQt3aql09P1uzcOa+W8DKUnxesP247ojitn6Exru17YfUprVszS1oOG9p46q09dPUd/3XFMre1duuPK6frJy3u1aGqqVuZk6t0TZxR/oFHZk6z6+Sv79Nlr5+qgr0XPvnNC/3DLfG16+4TePXFG9zoW6b+f36O4mBh98YZ5+tc/va0rZ9u0Yl6GHn56l+7Mn6X4WIt+8vJe/dOti7T90Gk9+84J/evHlumHz+3RYeOcHrzzCn3tN28oO8WqrzsW6u7H6/S+hZO1KidT3/zdW/ry++1q9nfqR8/v0SNrl+vJukN6pb5BP/ncSn2japvOtXfqPz+5XHf9olZT0xL1j6sXaP2Tb2r5bJtW2TNV8YJXH10+Q0dPt+r1vT7dfVOuHn91v874O7TnRLP+69nuP2hPNbfp0fcef3rVHLnfPi7328c1NytZ+xta9N0/7gj20jxSs1sv7+m+7dRX/sejc+2dOtfeqYff21/oVLNfP3tv+Gv38ebg77iecCRJ2w6d/zy4cAl+T2jC+PWj5+t11Din37/Xm/eZa+bo8dcO6PdvHNGCqSl6ftdJ7TjSFPy3dv/ti/Wj5+t1+ly7yj5xuf75d9uVYo3Tdz9yme59Ypsun5ku54pZ+vZTO/TpVXOUFB+rDS/v1Q9ummTqf6clMMJunccee0xr167VE088IcMw9I1vfEOSlJmZqSeffFI333yzJKmpqUlOp1NPP/30yKseJovFoqKion5vmpubmyubzaa6urqLXsfv9+vBBx/U/fffL6vVGrb6Xtx9Un//09dVtLhTle90TzjMnJQg33t7dszJTNYBX3eXck72JO197wNucqpVJ8/4FRtjUWpinIyWdmWnWNVw1q9AQMEPc0lalZMZHL+/8PGKuRmq3d+ozEkJSk6I1aHGc7pqjk07jjSpraNLNy7I1kvvdv9CvHnRZD2366QkafXiKdr0zgmlWuN0xex0/W1Pg5ZMT9O5tg7ta2hRwZIpeqW+QS1tnfro8hnB7nFn/ixV1R1SQmyMbr1sqv705lFNT0/UgqmpenH3SV2Xm6XDxjntb2jRnXmz9Je3jqqlrVNfvD5HP3ul+xfvuhvtqnzRq1RrnG6/fJqeqD2k+VNSNDsjSc/tOqnbl03T7uNnVH/yrD537Vw9UXtI59o7dfdNufrR8/WKj7XoSzfY9eMX6pWdYtWHr5iun7+yT1fNsSnFGqeX3j2lwvxZ2ry3QQd951T8frt+8/pBnT7Xrn9yLNQP3LuVFB+rz183T//9fL1mZSTpxgWT9evXD6gkL1avNmfqxd0n9dlr5sr99nEdPd2qf1y9QD9+oV4dXQHd61ioR2p2KzkhVp+7bp7+69k9mj8lRctn21Rdd0iOpVPV0OyX54ChL16fo6d3HNNh45y+cevC4AfZV26erx/U7FZGcrzWrJitihe9WjwtVYunper3W4/ow1dMV/3Js3r7aJOK32fXxtqDMlra9fWChfrRC3vU1SXdc/N8PeLercmpVn1w2TT94tX9umJWuqakJsr99nF9/KqZ2nbIkPfkWa27MUe/2nxALW2d+uot8/Xos3uUEBejL92Qox89X6/JqVa9f+FkVdcd0lVzbLLGxeg1r08fv2qmXq1v0LGmVq27MUe/eHW/2jq69KUbcvSTl/cqIS5Ga1bM0uOvHdDkVKuuy83SU1uPKH9uRvAPhzuunKHnd53QmdYOfXLlbP1my8FeP0vxsRbdvmy6/rDtiLJTrFo8LVUv7+kOzSfP+HXYOCfH0ql6ftcJtXcG9MHLp+l/tx+TJN26dKqe2XlcMRbp+vnZWhRzXL89lKTp6YnacaRJy2am6XDjOTW2tCtvjk2eA4YkaflsW3DjvCtmpevN9z70r5yVrm2HTstikWakJ+mwcU4z0hN1stmv9s6A7NmT5H3v3++CKSl690R3iJiaZtXxpu5ek4zkeDUOcuuL5IRYtbR1/5U9KSFWZ997nBAbo7bOSx9iio3pHjabKO5a1KkNu2Iv/kKYJi7Goo5BfubuXtql9Z/9cFjv43opn98jDkhS90TtsrIyWSyW4DL/yspKffnLX1ZGRoZWrFght9stl8sVDFBmGCwg5efnyzAM1dfX9znn9/vl9/t7PX/00Uf1rW99K6wBqbW9U3nfq9Gnctr4hx3h+OUc2Wi/yEcbRr7vX2+V8/ZblBA34pt+BF1KQArLMv/77ruvzwTnoqIiZWZmqqKiQvX19brvvvtMDUeGYQz7a8vKyvTAAw/0OnbHHXeorq5OsbHh/Qf4tSssSgoEdNci88dfMXxzU2jDSEb7RT7aMLJNSbUqK75Db9RtCet1OzuH/jMRto0i+1vCX1hYOG4mPdtsNknd+zL1Z7AAVVpaqnvvvTf4vKcHKT8/P6w9SJK013JAe3Zs1YZdsZpp6+6al6T0pHidPte7u312ZpIO+rrPL52epp3vDaMtnJoSHPfvGV6Lj7VodmayvCfPak5msoyWNjW1duiqOd1DBIGAdF1ull6p7+4BvGXxFD37zglZLNL7F07W87tOanKqVbMzkuQ5YGjlvAztPXVWp5rb9KErpuuvbx1TZ1dAH79qpn73xmFJ0poVs/RE7SFNSojVzYun6E9vHtWCKSlKT4pX7f5GfeCyqarbb+hUs1+fXjVHT9QeVHtnQHfdkKMNL+9VfKxFn141Vz9/ZZ+mpFp17XvDLivnZagrINXtb9SdebP08p6TOt7kV9H77Prlq/vV2tGpe26ar//vuT1KscbpU6vmqPJFr3KyJyl/boaq6w6pYMkUGS3tqt3fqM9fN09/eeuojjf59bWCBap4wauOri593bFQDz29SxnJCfrkytn67+frddmMNC2alqrfeg7rY8tnaG9Di7YdNHTPzbmqrjuk401+ldy2WIf279Tj3jh9rWChHvzLO5qenqhP5M3UD5+r18p5GZqenqQ/bDuiv7t6jrYdNLTzaJO+VrBAj792QL6zfn3zg0v00NO7FB8bo3tuni/XX9/RnMxk3bZsmipf9OrGBdlKio/VMzuP6/PXzdMr9ae0+3iz7nUs1E9e3qtmf4dKblukh57epaT4WBW/P1cPPb1L9smTdMP8bP2/V/erYMkU+Tu69NK7p/TF63NU8/YxHfR1D+FVvODVufZOfd2xUA8/s0vpSfH69Ko5+uFz9Vo4NUVXzrKpqu6Qbrtsmo42tWrbwe5hwP/dflTHmlr11Vvm68cvetXVFdA9N8/Xf256V7bkeH1s+Uz9/JV9WjwtVbMzk1Wz87g+ePk07T7erD0nmvWZa+boqTeO6Iy/Q+tu7B5+s1gs+uw13T8H6Unxciydquq6Q1o8LVUZyQl61dugD1w2VVsPGjre5NedebP0x21H1NbZFRyKs1i6h+KeqD2kVGucrsnNUs3O41owJUVxsTF6+2iTblo0WXX7GnXG36F/XhmnDbu6JwA7lk5Vzc7jkhQcak6Kj1XeXJv+tqdBM21JkqTDxjktm5mmHUeaFAicH2aTpMtnpmv7e8vQ50/pnntmsUjZKd3D4xcOpc9IT9SR9zY4nJJq1Yn3Jipf+PvgwtdfzIVDZzGW6FmFRA9S5Lnwc+7fPr5EGTqqVatWhfU9/H6/ampqhvTaEQ+xPfnkk6qsrFRFRYXmzZs3kkuNOovFooKCgn6/ORkZGbLb7abOQZKkxrNt+tnva/TamUyV3L5Idz/u0W3LpummRZP17ad26KurF6ijM6DHX9uv733sMm16+4Q8Bxr1gzXL9YOa3Wrv7NJ377hM//KnnZqXNUmfvHq2/uVPO3X7smmalzVJP3l5rz533TydaW3XX946pn+4Zb627GvUziNN+sfVC1Rdd1AdXQH93dXdoWLRtFRdl5ulx17aq1uXTlV2ilVP1B6Uc8UsnT7Xrr/tadDfXT1btfsadaypVYV5s/TXHceUnBCr9y+crKe2HtH8KSlaMDVFT71xRDcuzFZ8bIxe2HVSH1g2TSeaWvXOsTP6wGXTtPNIk5pa23X9/Gy9Un9KaYnxumxGmp7fdVILp6Uqa1KCXn73lFbmZEoByXOwUdfnZst3tk37GronYu89dVYtbZ1aNjNd2w+dli05XrMykrRlX6MWTk3RJGuc6vY3avlsmzq7AnrnWJOump2hhrNtOnGmVZfN6J5E3dkV0LzsSXr3+BnZkhOUnZKgHUealJM9SQlxMdp5pElLZ6SpraNL+xrOaun0NDW2tKuxpU25k1P0wsuvaOHlV2l6epL2nGjW5BSr0pLitPNok3Inpyg2xqJ3jzdr8bRUnWvv1GHjnBZOTVVDs19n/Z2ak5Wsw8Y5xcdYNCUtUd6TzZqcalWKNU5vHz2j+VNSJEl7TnRf42xbh443tWr+lFSdPONXa3unZmcm66CvRYnxsZqcatWuY2c0MyNJyfGx2nm0SYumpaqzK6A9J5q1dHqamlrbdbzJr0XTUnX09Dm1dXRpblb39yA9OV6TU6zadui0cidPUmJ8rLYdNHT5rPMTyZfPsqnhbJuON3VPRveebFZXIKD5U1L15iFD2SlWTU1L1GZvgy6bka6EuBi9vs+nVTmZavZ36O2jTbouN1sHfC060dSqVfYsbT1oKC7GostmpOmF3Sc1L2uSZtiS9MzOY1qVk6UYi/TynlMqWDJVx5pa9dbh0/rQ5dO1/fBpnTzjl+O9uUVpifFalZOpJz2HtGR6muyTJ+k3rx+UY+lUSdL/bj+qNStm64CvRVv2+bQ07oROJM7WGX+HPn31HP3slX2anGrV6sVT9MPn9ui63GzNykjST/+2V8782Wr2d+gP2w7rnpvna8s+n7bsa1TJbYv105f36kxrh77mWKDvPLVD9uxJ+sjyGfr2Uzv0ocuna1ZGkv69Zre+cvN87T11Vk96Dsl15xX62d/26e2jTXr075brm799S52BgL57x2X6ws9f1+Uz0/XJq+fonl959HdXz1HmpAT956Z3VXr7Yr2855ReeveU/vOTy/W9P70to6VNDzmv0L1PbFNSfKxKblus7/xhhyanWnXHFTP007/t1fLZNiUnxOqV+gZ96PLpen7XCZ1t69SHLp+uP28/Kun8JFyp97yr/v5wu9CFc6ounDc5FghIo2fxtFS9c+yM3rdwst7Y3/1HRc8ftpK0/rZFKv/rLiUnxOqfbl2k7/1pp5bNTNM1OVna8PJefWrVHLX4O/T7rUdUXtj98+492ayffr574UGMxaI//cMN2v3WG6MSkMZsDtKaNWvkdrv17LPPavny5SO51KjrmQ/VX0AabH5SqNEMSJK0efPmsP9QYGzRhpEtEtqvraNL8bEWWSwWGS1tsiUnyN/RKd/ZNk1PT+oVtt89fkYJcTGanZGs53ad0PwpKcqclKDfbz2i1Yu7exKf2npYn141V28dOa1X9pzSV25ZoMdf26/Dxjl984NLdM+vPJqcatWXbsjRF3++RR+4bJoWTUtV6W+368vvz1Vre6d+/so+/fMHl+h/Xj+gvafOqvT2xSp77/Yf9zoW6gc13avcrrVn6VVv39tS9biw18saFyN/R/ek82lpiUNe5UZAGj3/c9cqVdcd0tcdC3WwsUVvHDB01405enH3KXV2BfSBy6bq2XdOaIYtSYunperV+u7FO6mJ3X/gLZmeqq6AdLypVbMzk9XW0aVzbZ1KT45XR2eXLBaLYmMso/LvcEznIK1cuVJPPPHEkF67b98+U3uZ1qxZo9ra2gHPOxyOMawGAIbvwomrtuQESZI1LlbT07uH/LJSrMrq7mjUgqmpwdeuXjI1+Piz18wNPv5awUJJ0s2LpujmRd3bUN9z8/zg+V988erg41fuvyW4smj14imanGrVufZOfWT5DF0126b3LZysHUdO62PLZyo9KV5n2zr1mWvm6M1DhuZmTZJj6VTV/sSnT1w1SymJcfrJy3v16VVztOntEzrW1KqPXzVT1e/dQmSVPUsv7u5eNbt8tk1/3dG98jDFGqdm9kEyxXXzs3Xd/GxJ0uzMZF2X2/24p0dW6v1z1vNaSbp81vnpOLMzu+8HkxAXE/x5josN34TskRpxQLLb7dq6deuQeo+Ki4tNXebvdDpVWVkpwzCCc5Kk7v2RJKmgoMCkygAgcly47HpKWqIkKTkhrnvvK0mLpqVq0bTuUPbJq+cEX7vhcyuDjz3/16FJCXHq6Apo5bxM3bRosj58xQw9tfWw/unWRWo61y7PAUNfvWW+Xn63OyDduDA7GJBm2pK06/iZAWtkj12M1IgD0p133qlnn31WGzZs0IoVK2S325WWltbva71e70jfbkQKCgpUWFiosrKyXvdic7lcqqio6BWaAACjJzUxXpKUEGPRbcumSZKuzc3StblZkqSKz+YHg9gvv7RKFou6FwfUHtKqnEylJsZp1zNndOOCbG0/fDq4/9up5u45T9YLethSE+N0ppXeJlyaEQekBQsWyOfzKRAImL5T9lBUVVWpvLxc5eXlwY0hi4uLx81qOwBA716q6y8Yovn9PddLkvwdnUpNjNfqJVP0W89h/aBmt77uWKB//t1bkrp7tKTuJd327EnBFYUXm1iOwWUkx5tdwpgZcUAKBAJavXq1HA6HMjMzB3xdQ0ODSktLR/p2YbF+/XqzSwAAjIA1rnsHekn6h1vma+3K2ZqalqgDDS2qqjukedlWSd1DcPbJKcGANDXNSkAagZ4VtNFgxAHJZrNpw4YNAw6rXaiysnKkbwcAQC8Wi0VT35sLVfrBJbr/9sXavHmzrp+fpaOnW3VdblZwf7a0xOjpAcHIjDggVVVVDSkc9bwWAIDRZLF0b3/w+Je6V94dOd2qhLgYzbIlKSUxbPsjR6XE+OjZOmHE6+lycnIGPLdv3z41NTUN6bUAAIRTT1CaaUvSM197n6rvvk7LZ9vMLiui3X1TrtkljJkRR+mHH354wHus9exK7fV6gxsxDrW3CQCAcJmXPUmS9Jlr5mrbQUPOFbP1f37l6fO6hNgYtXV2jXV5EcOWlGB2CWNmxAGppqZmwIB055139no+WJgCAGC0ZadY9bMvdA+9feCyqXp6x3GtnJehLfsaJUnJ1li1tRCQEIYhtku5U0lDw8BbywMAMJa+7lioj181Uw/eeUXw2KSE8/0GifHjZ1fn8SKgKLnbscLQg3ThXhUDaWpq0hNPPCGPp293JgAAZlg8LU2PrF3e61h87PnPtBRrvFrb/WNcFcaLSwpI999/v7xerzwej/bu3Rs8Hht78Vntdru935vEAgBgtk+tmqMn6w6p+P25Kv3tdkmSLTk+uDM3ulkUPfdwuaSA9OCDDwYfu91uOZ1OZWdnX3TjRbvdrtWrVw+vQgAARtn3P7ZM3/zgEh1uPBc8ljUpQXtMrAnmGvYQW0FBgerq6vTlL39Z69atC2dNAACMKYvFohRrnDImnd9IMpVNJaPaiGag2e12OZ3OcNUCAICpJqdYZc+epMxJCVo6g21pQi2almp2CWNmxJO06T0CAEwUFotFf/yHG9TRFdDjr+0PHk+Ii1FbB8v/Y2OYgzRiW7dulSQtX758tN4CAICwm2Tt/mi8cBubhFgCUrQZckB66KGH5PV6ex2z2WwqKyvrdezuu+8O3pQ2EAjIYrGopKRE//Zv/xaGcgEAGBszbEnBx12XsOcfJoYhz0G67777ZLfbVVFRIZvNpqKioj7haMWKFaqsrNSdd96pPXv2qKurS++++666urq0cuXKsBcPAMBoWb14qnKyJ+lz185VZxcBKdpc0hDbli1bVF9f3+9NZx977DF5PB4VFxfrRz/6UfC43W7Xgw8+qIceeohbjQAAIkZ6crye+8ZNkqRfv37Q3GIw5obcg7RhwwYVFxf3G44kqaqqShaLpVc4utB9993HRpEAgIjEEFv0GXJAqqqqGnSzR7fbrby8vEGvkZ6ePvTKAAAYJ6Jp9Ra6DTkgDRZuNm3aJElau3btoNcYyn3bAAAYbz66fIak7tuPIDoMOSANFm5qampksVhUUFAw6DUCdFECACLQNz6wSJ9eNUdP3n2d2aVgjAx5knYgEFBTU5PS0vruLFpZWSmbzTbonkcbNmyQw+EYVpEAAJhpSmqivv/xy3sdi4uxqIPVbRPWkHuQ7r///n5vK7J27VoZhqGioqIBv7apqUnPPPMMu24DACaMhLgR3a0L49yQe5Dy8vJ05513KisrS2vWrJHUPTG7vr5eDoejz55IPTZt2qQ1a9boscceC0/FAACMA3EXTNy2WCRmkUwslxR/i4qKtGXLFqWnp6u+vl5XXXWVampq9PTTT/d57UMPPaRbb71VJSUlysnJUVlZmR5++OGwFQ4AgJku3DwyjlVuE84l34utZ+PHi7nvvvt03333DasoAADGqw9dPl1/3n5Un8ibpV++d0Pb+NgYtXd2mlwZwokBVAAALsH3P75MT91zvT58xfTgMXqQJh4CEgAAl8CWnKArZ9t6bR7JhO2JhxYFAGAYLgxI8bF8nE40tCgAAMNwYSiKi2WIbaIhIAEAMAyTrOfXOcXH8HE60dCiAAAMQ8oFAenCsISJgRYFAGAYslMS9MmVs9XS1qnGljazy0GYEZAAABgGi8WiB++8QpL02Z9sNrkahBtDbAAAjBC3GZl4CEgAAIxQQCSkiYaABADACHV1mV0Bwo2ABADACFnYBmnCISABADBCGckJZpeAMCMgAQAwQv/n5lwlxsfonptzzS4FYcIyfwAARuiyGel68zsfUEJcjH74XL3Z5SAM6EECACAMEuL4SJ1IaE0AAIAQBCQAAMaJvDk2xbAiblxgDhIAACb71oeWaHZmsq7NzVJza4eue/BZs0uKegQkAABMdteN9uDjtMR4EytBD4bYAAAIo7+/dq4sFumuG3LMLgUjQEACACCMvv3hpXrl/lt0y5IpZpeCESAgAQAQRnGxMZqenqS4GD5iIxmtBwDAKEhOiB30/IIpKZKkK2alX9J1q758rR7/0qph14WhYZI2AACjIDF+8D6Ir9wyX1sPGvri9X3nKt2ZN0tPeg71+3WXz0xXs78jLDViYAQkAABMMDszWR9dPrPfc9/9yFI5lk7Vb7Yc0PO7TvY6Fx8bI7ZKGn1RNcRmGIZKSkpUXFwsh8Oh/Px8VVdXm10WAGACmpWRLGngnqRAIDDg16Ymxuu2ZdMUa+kbhWJjLIplN8lRFzU9SD3hyOVyyWazSZI8Ho/y8/NVWFioqqoqcwsEAEwoifGxevO7tyouxqKl3366z3lLP+EnVEdX/yFqkjVqPr5NEzU9SGVlZb3CkSTl5eXJ5XKpurpabrfbvOIAABNSWmK8khP6DzMpQwg5F3YUXT8/S5+/bp6k7mG26i9fqx99Oi8cZaIfUROQqqurlZ+f3+d4QUGBJNGDBAAYNT3B5spZ6frnDy7RV26eH1zFNpjYC7YK+NVd1+i7H7ks+HzFvExdNz87+Pzum3L1ibz+5zTh0kVNH53dbldtbW2f4z09Sj6fb4wrAgBEi687FmpeVrI+kT/rkm4lkjfXJvfbxwc8f2EP04cun65F01LVdK5j0K/B0ERNQKqpqen3uMfjkSStXLlyLMsBAESR9KR4fb6f5fwX88Xrc9Ta3iXHkqn9nr9wHpPF0j30tuFzK/Sln2/RpndODLteRFFAGkhFRYVsNpuKiooGfI3f75ff7+/1vKODPSgAAKMrMT5W9zoWDnj+wh6kC1e2dV2wQu7GBdl66d1To1LfRBbVAcntdsvtdqumpqbX5O1QZWVleuCBB3odu+OOO1RXV6fY2MF3Sh2OxsZGbd68OezXxdihDSMb7Rf5oqUNu7oCumtRpyTp6LvbdXp/98f6qpRG5b533LFUWhTTGZb3G8vv6Wi0YWfn0L8PUR2QnE6nqqqqghO1B1JaWqp77703+Nzv9+vRRx9Vfn6+rFZr2OvavHmzVq1iG/lIRhtGNtov8kVTG24+u1vNrR26+calwWM/3PG6XtzdvcHkt76wSmt/9+ewvNe3vjB239PRaEO/3z/glJtQEROQcnNzL2kidWZmpmpqamS32/s973Q65XK5VFhYeNFrWa3WXkHI7/crLi5ivnUAgAnsawV9h+AG24QSQxMxn/L19fVhu1ZJSYkcDseg844AAIhUQ9mEEoOLmn2QelRWViorK6tPOKqsrDSpIgAAwuszq+ZI6t5cEsMTVQHJ7XbLMAytX7++13HDMMLaQwUAgJluvWya3Pe+Xz/9fPcWNnfdcOlbDES7iBliGymv16vi4mIVFBSopKREUncwkqTa2lqVlpaaWB0AAOE1/4Kdur/14aW6+6Zc/Z9febRln08D3OINF4iagORwOOT1egccShtoMjcAABNBVopVG4uvlST98Lk9eujpXSZXNL5FTUBiCA0AgG7xsUzivpiomoMEAACkzi6zKxj/CEgAAESZzi4S0sUQkAAAiDLT05PMLmHci5o5SAAAoNvHrpqpd080a5U9U1/42RazyxmXCEgAAESZ2BiL7r99sdlljGsMsQEAAIQgIAEAAIQgIAEAEMWyUxLMLmFcIiABABDFfvHFq80uYVwiIAEAEMUum5Guf3deaXYZ4w4BCQCAKPfR5TP0kStnmF3GuEJAAgAgysXFxuhbH1pidhnjCgEJAABoSlqifvipPLPLGDcISAAAQJJ08+LJZpcwbhCQAAAAQhCQAACAJMkii9kljBsEJAAAIEmykI+CCEgAAAAhCEgAAAAhCEgAAAAhCEgAAEASc5AuREACAACSJGtcrP7lo5eZXca4QEACAABBn1w5x+wSxgUCEgAACEqIi9H3PrbM7DJMR0ACAAC9zM5IMrsE0xGQAABALwGzCxgHCEgAAKCXQICIREACAAAIQUACAAC90IFEQAIAAOiDgAQAAHqhB4mABAAA0AcBCQAA9EIHEgEJAACEYJk/AQkAAIS4YUG22SWYjoAEAAB6SU6I06qcTLPLMBUBCQAA9BEfG90RIbr/6wEAQL8CUT5Vm4AEAAAQgoAEAAD6iPaFbAQkAADQBwEJAAAgBHOQAAAAQtCDBAAAECLK8xEBCQAAIBQBCQAA9BXlXUgEJAAA0AeTtAEAANALAQkAAPTBKjYAAIAQUZ6PCEgAAKCvv792rtklmCrqA1J+fr7ZJQAAMO58dPlMs0swVVQHpOLiYnk8HrPLAAAA40zUBiSPx6Pa2lqzywAAAONQ1AakjRs3au3atWaXAQAAxqGoDEjl5eUqLS01uwwAADBORV1A8ng8stvtstlsZpcCAEDEuHXpVLNLGFNxZhcw1jZu3CiXy3VJX+P3++X3+3s97+joCHdpAACMW9fYs8wuYUxFVUAa7tBaWVmZHnjggV7H7rjjDtXV1Sk2NjZc5QU1NjZq8+bNYb8uxg5tGNlov8hHG4bHXYs6g49Tm/Zq8+YTY/beo9GGnZ2dF3/Re6ImII1kaK20tFT33ntv8Lnf79ejjz6q/Px8Wa3WMFbZbfPmzVq1alXYr4uxQxtGNtov8tGG4bH2d38OPv7OwhytWpUzZu89Gm3o9/tVU1MzpNdGTEDKzc2Vz+cb8uszMzNVU1Mju90uaXhDaz2sVmuvIOT3+xUXFzHfOgAAhiXVGqcz/uicUhIxn/L19fXD/trq6mp5PB4VFxf3Ot6zD1LPcZfLxeRtAADe89XVC/T9/33b7DJMETEBaSQKCwtVWFjY53jPTtoVFRUmVAUAAMarqFvmDwAAcDFRHZAuZU4TAADRJqDA+ceBQV44AUVlQCovL5fD4VB1dbWk7gngTqfT5KoAAMB4ERVzkEKtX79e69evN7sMAAAihsVidgVjKyp7kAAAAAZDQAIAAAhBQAIAAP2KtonZFyIgAQAAhCAgAQAAhCAgAQCAfl0xyxZ8HGWL2AhIAACgf9fmZgUfR9t0JAISAABACAISAABACAISAABACAISAABACAISAABACAISAAC4KJb5AwAARDkCEgAAQAgCEgAAuCg2igQAAIhyBCQAAIAQBCQAAIAQBCQAAHBRLPMHAACIcgQkAACAEAQkAACAEAQkAACAEAQkAACAEAQkAABwUflzM80uYUzFmV0AAAAYv14rXa3DRosun5VudiljioAEAAAGNC09UdPSE80uY8wxxAYAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABAizuwCIlEgEJAk+f3+Ubl+Z2fnqF0bY4M2jGy0X+SjDSPfaLRhz/V6PscHQ0Aahra2NknSI488EvZrd3R06KWXXtKNN96ouDiaJxLRhpGN9ot8tGHkG+02bGtrU2Ji4qCvsQSGEqPQS1dXl5qbm5WQkCCLxRLWazc1NWnKlCk6ceKE0tLSwnptjA3aMLLRfpGPNox8o9WGgUBAbW1tSklJUUzM4LOMiNbDEBMTM2r/6KxWa/D/ex4jstCGkY32i3y0YeQbzTa8WM9RDyZpAwAAhCAgAQAAhCAgjTNWq1Xf+c536BaOYLRhZKP9Ih9tGPnGQxsySRsAACAEPUgAAAAhCEgAAAAhCEgAAAAh2AdpnCgvL1dDQ4OysrJUX18vh8OhwsJCs8vCEBiGobKyMhmGIa/XK5/Pp9LSUtpvAsjPz1ddXZ3ZZeASVVZWqr6+Pvg8NzdXRUVFJlaEoer5LJS6f7fm5+eb13YBmK6oqCjgcrl6HSsoKAhUVFSYVBGGqrGxMVBUVBRobGwMHqurqwtIChQWFppXGEasqKgowK/IyNLY2Njnd2ddXV3AbrcH6urqTKwMQ1FUVBSor6/vdayioiJQVFRkSj0MsZnM4/GosrJS69ev73Xc5XKpuLjYpKowVGVlZXK5XLLZbMFjeXl5crlcqq6ultvtNq84DJvH41Ftba3ZZeASOZ1O2e32Xj0OPp9PPp+v179RjD9ut1s2m012u73X8aKiItXW1sowjDGviYBksoqKCuXl5fU53nOsurp6rEvCJaiurlZ+fn6f4wUFBZKkqqqqsS4JYbBx40atXbvW7DJwCdxut9xut0pKSnodLygoUGNjY58PXowvHo9nwBBkt9vl9XrHtiARkEzndrsH/Idrs9lUU1MzxhXhUtjtdvl8vj7He/5a7e8cxrfy8nKVlpaaXQYuUUVFRb89EIgMdrtdlZWVqqys7HPO4/H025Ew2pikbTKv1xvsbQiVmZlJN/84N1CA9Xg8kqSVK1eOZTkYIY/HI7vdznBMBOr5Y9MwjOCHbENDAxO0I0RhYaHsdruKi4tVVVUV7H1ft26daT3xBKRxzGazmTLuipHr+WuWX8yRZePGjXK5XGaXgWEwDEOZmZl95nQ6nU7V1dWpoqLCxOowFHV1dXI6nXK73crIyFBeXp42bdpk2h8sDLGZiPAzMfXMhaiqqqInIoIwtBa5en6Xut3uPttruFwuVVZWsmAiAthsNjmdzmAbejwerVu3zrR6CEgmutg8FQJUZHI6naqqqhpw6BTjD0Nrka2n3ex2e585SD3P6UEa/3pWIVZVVam+vl4FBQWqrq5Wbm4uq9ii1UANz9LUyON0OuVyudgkMsJs3LiRNpsABvp9abPZTFkFhaErLi6Ww+EI/mFpt9tVU1OjiooKeb3ePqsTxwJzkEw2WAAyDEMrVqwYu2IwIiUlJXI4HMw7ijDV1dXyeDx99h3rWSDRczx0vyuMLz0TtPtDb/z4V1lZqUAg0Od4UVGRDMPQxo0bx7wmApLJ1qxZM+hKNYfDMYbVYLgqKyuVlZXVJxxVVlYSmMa5wsLCfnuPiouL5fF4GJqJEAUFBXriiScGPM8fm5GrsLDQlIDEEJvJnE5nvxtk9UwoZB7L+Od2u2UYRp/d0A3D6HU/KACjp6SkJHg/xAv1bLnBnQnGt7y8vGBbhXK73aZs3GoJ9NenhTHVMzHtwuXFDodDTqeT3odxzuv1BsfNe4ZfesJubW0tN62NYE6nU9XV1f12+2N8Kikpkcfj6bU/WX5+vgoKCti+YZzzeDxyOp2qqanpNdHe4/GorKzMlL2QCEjjRHl5uaTuOUl1dXVyOBx8sEaA3NzcQSd/1tXVmbIDLIavvLxcNTU1wV5cu92uvLw8bhsTIaqrq7Vx40ZlZmbK5/Np7dq1/C6NEF6vt0+Qzc3N7dM7P1YISAAAACGYgwQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAABCCgAQAY6zn3ouXorq6etD7/gEILwISAIyh4uJiFRUVXfLXFRYWyuVyEZKAMcLNagGMqvz8/OCHut1uV2ZmpiTJ5/MFj69YsSJ4zDAM+Xw+SVJpaWmvO3k7HA5JUk1NzZjVH04lJSVauXLlsO8ubxiGVq9erbq6ujBXBiAUAQnAqMrIyNCaNWvkcrlks9mCxw3DUEZGhvLy8vp84Hs8Hq1bt04rVqxQRUVF8Hhubq58Pp8aGxvHqvyw8Xq9Ki4uHnG4q6yslGEYvYIjgPAjIAEYVbm5uaqvr+/3nMViUUFBQb+hwePxqKysTFVVVaNd4phwOBxyuVzKy8sb8bVyc3NVV1fXK3ACCC/mIAEYNYZhDHs4KS8vLzgcF+m8Xq+8Xm9YwpHUPR+psrIyLNcC0D8CEoBR4/P5lJubO+yvnyg9JBUVFcMOiv1Zu3Ztr6FHAOFHQAIwagzDkN1uH/bXZ2VlhbEa81RXV2vt2rVhu15eXp58Pp88Hk/YrgmgN+YgATDNYHOQQjkcjuBQ1YW/tnpWdhmGETzn8XjkdrslSVu2bJHdbpfL5ZIkud3uYLCor69Xbm7uoBOe3W63ampqlJubK8MwVF9f32fC+WB6JqMP9KvWMAxVVlb2uV7P8ORAAdPpdMrhcAxrywAAFxdndgEAMBRVVVUqKyvrs8mizWbTpk2bVFJSosrKSnk8Hvl8vl6hp2eYr2ebgNBzNput36BRUlIir9fba6K42+1WTk6O9u7dO6SQVFtbO2gvmtPpVFVVVa9reb1e5efnDzost3LlStXU1BCQgFHCEBuAiGCz2YIBZ7BzbrdbBQUFvc73TGr2er19zhUUFPQ7n8ftdqu8vFyPPfZYn9evWLFCJSUlQ6rb6/UOGJA8Ho9sNlufoGW32y8afOx2uwzDGFINAC4dAQnAhNLfSrGe4bGeDSlDz/W3O3VxcbEKCgr67SVyOp1DXkVmGMagPU1ut7vfoLNy5cpBr2uz2dhVGxhFBCQAE8pgw1lDXWbfM59poNf3vMdQAkpDQ8OA2xX0bGWQk5Oj4uLi4LwpSYPOP5KkzMzM4I7jAMKPOUgAJpRw7J3UE3y8Xu+APUUVFRVDWqF3sR6kuro6rVu3TpWVlcH3Kiws1GOPPXbROU4MsQGjh4AEACF6gsnKlStHPAnaZrMNGmRsNltwEnjPirnKykrl5OSorq5uwBDm8/lGtIUCgMExxAYAIXqCR0NDw4ivlZWVNeBQmNvt7jVMV1BQIJfLpcbGxl5bE/TnYj1TAEaGgAQA/SgoKFB1dfWA54c6QXqw1WaGYQz4Hi6XS7W1tQNelx4kYHQRkACgHxUVFfJ6vQPuVj3UW33Y7fZBg85A18nMzBw0ANXX10+Ye9UB4xEBCYApenpVLmUlVs/XXOry9sHmADU0NPR73m63q6KiQuvWretzvrKycsi3DsnLy5NhGAPW4PP5+p0IXlFRMegQm8fjGXBfKAAjx61GAIwph8Mhn88nr9cbDA12u112u115eXn9hoKe24n0fI3dbldxcbHWr1/f77m8vDxVVVXJ6/XK6XT2OtezMaTH49G6det6nSssLOzz/h6PRxUVFbLZbMEduQsKCi5peMvhcKi4uLjPztg9y/ozMzN79TLV19dr7dq1g25LYLFY1NjYyDwkYJQQkABglFVXV6uiomJI95wz43oA+iIgAcAYyMjIUGNjY1iu5XQ6tXbt2kHv1QZgZJiDBABjoLS0dMi3JxlMzy7fhCNgdNGDBABjJD8/X5s2bRrRvCGn06nS0tIh3zYFwPDQgwQAY+Sxxx5TSUnJsL/e7XYHJ6EDGF0EJAAYI3l5eXI4HINuQDkQr9ermpqaQZf+AwgfhtgAYIx5PJ5L7gUaztcAGD4CEgAAQAiG2AAAAEIQkAAAAEIQkAAAAEIQkAAAAEIQkAAAAEIQkAAAAEIQkAAAAEIQkAAAAEIQkAAAAEL8/47bqZCXbNjUAAAAAElFTkSuQmCC",
290
290
  "text/plain": [
291
291
  "<Figure size 640x480 with 1 Axes>"
292
292
  ]
@@ -322,7 +322,7 @@
322
322
  },
323
323
  {
324
324
  "cell_type": "code",
325
- "execution_count": 19,
325
+ "execution_count": 12,
326
326
  "metadata": {},
327
327
  "outputs": [
328
328
  {
@@ -405,7 +405,7 @@
405
405
  "cell_type": "markdown",
406
406
  "metadata": {},
407
407
  "source": [
408
- "Now that we have our waveforms generated, one thing we might want to do is calculate their SNRs with respect to some background data. To do that, we'll need the power spectral density of the background. The [`SpectralDensity`](https://github.com/ML4GW/ml4gw/blob/main/ml4gw/transforms/spectral.py) module can take a batch of multi-channel timeseries data and compute the PSD along the time dimension.\n",
408
+ "Now that we have our waveforms generated, one thing we might want to do is calculate their SNRs with respect to some background data. To do that, we'll need the power spectral density of the background. The [`SpectralDensity`](https://github.com/ML4GW/ml4gw/blob/main/ml4gw/transforms/spectral.py) module can take a batch of multi-channel timeseries data and compute the PSD along the time dimension. We'll begin by downloading some background data from the Gravitational Wave Open Science Center (GWOSC). This data comes from the Hanford and Livingston and was taken during O3.\n",
409
409
  "\n",
410
410
  "One important piece to note is that, due to the scale of the strain, the background data is cast to `double` precision before being given to the module to avoid certain values being zeroed out.\n",
411
411
  "\n",
@@ -415,7 +415,43 @@
415
415
  },
416
416
  {
417
417
  "cell_type": "code",
418
- "execution_count": 30,
418
+ "execution_count": null,
419
+ "metadata": {},
420
+ "outputs": [],
421
+ "source": [
422
+ "from gwpy.timeseries import TimeSeries, TimeSeriesDict\n",
423
+ "\n",
424
+ "# Point this to whatever directory you want to house\n",
425
+ "# all of the data products this notebook creates\n",
426
+ "data_dir = \".\"\n",
427
+ "\n",
428
+ "# And this to the directory where you want to download the data\n",
429
+ "background_dir = data_dir + \"/background_data\"\n",
430
+ "\n",
431
+ "# These are the GPS time of the start and end of the segments.\n",
432
+ "# There's no particular reason for these times, other than that they\n",
433
+ "# contain analysis-ready data\n",
434
+ "segments = [\n",
435
+ " (1240579783, 1240587612), \n",
436
+ " (1240594562, 1240606748), \n",
437
+ " (1240624412, 1240644412),\n",
438
+ " (1240644412, 1240654372),\n",
439
+ " (1240658942, 1240668052),\n",
440
+ "]\n",
441
+ "\n",
442
+ "for (start, end) in segments:\n",
443
+ " # Download the data from GWOSC. This will take a few minutes.\n",
444
+ " duration = end - start\n",
445
+ " ts_dict = TimeSeriesDict()\n",
446
+ " for ifo in ifos:\n",
447
+ " ts_dict[ifo] = TimeSeries.fetch_open_data(ifo, start, end, cache=True)\n",
448
+ " ts_dict = ts_dict.resample(sample_rate)\n",
449
+ " ts_dict.write(f\"{background_dir}/background-{start}-{duration}.hdf5\", format=\"hdf5\")"
450
+ ]
451
+ },
452
+ {
453
+ "cell_type": "code",
454
+ "execution_count": null,
419
455
  "metadata": {},
420
456
  "outputs": [
421
457
  {
@@ -438,9 +474,6 @@
438
474
  " average=\"median\",\n",
439
475
  ").to(device)\n",
440
476
  "\n",
441
- "# Point this to whatever directory you want to house your data\n",
442
- "data_dir = \"\"\n",
443
- "\n",
444
477
  "# This is H1 and L1 data from O3 that I downloaded earlier\n",
445
478
  "# We have tools for dataloading that I'll get to later\n",
446
479
  "background_file = data_dir + \"background_data/background-1240579783-7829.hdf5\"\n",
@@ -7,8 +7,9 @@ requires-python = ">=3.10,<3.13"
7
7
  readme = "README.md"
8
8
  license = "MIT"
9
9
  dependencies = [
10
- "ml4gw==0.6.1",
10
+ "ml4gw~=0.7.0",
11
11
  "matplotlib==3.10.0",
12
+ "gwpy~=3.0",
12
13
  "h5py~=3.12",
13
14
  "torchmetrics==1.6.0",
14
15
  "lightning==2.4.0",